Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = chloride profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2648 KiB  
Article
Sustainable Soil Management: The Dynamic Impact of Combined Use of Crop Rotation and Fertilizers from Agri-Food and Sulfur Hydrocarbon Refining Processes Wastes
by Angela Maffia, Federica Marra, Mariateresa Oliva, Santo Battaglia, Carmelo Mallamaci and Adele Muscolo
Land 2025, 14(6), 1171; https://doi.org/10.3390/land14061171 - 29 May 2025
Viewed by 208
Abstract
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed [...] Read more.
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed to determine whether the effectiveness of fertilization was modified by rotational practices—exploring whether these interactions were additive, antagonistic, or synergistic. This study assessed the impact of two-year open-field crop rotations—broccoli–tomato and broccoli–pepper—combined with organic and mineral fertilization on soil chemical and biological properties. Treatments included sulfur bentonite enriched with orange waste (SBO), horse manure (HM), mineral fertilizer (NPK), and an unfertilized control (CTR). Soil samples were collected after each crop cycle and analyzed for enzymatic activities (fluorescein diacetate hydrolase, dehydrogenase, catalase), microbial biomass carbon (MBC), organic matter, total nitrogen, and macro- and micronutrient content. The results showed that organic amendments, particularly SBO and HM, significantly increased microbial activity, MBC, and nutrient availability compared to NPK and CTR. Organic treatments also led to a reduction in soil pH (−12%) and a more balanced ionic profile, enhancing soil biological fertility across both rotations. By contrast, the NPK treatments favored higher nitrate and chloride concentrations (3.5 and 4.6 mg * g−1 dw, respectively) but did not improve biological indicators. Improvements were more pronounced in the second crop cycle, suggesting the cumulative benefits of organic amendments over time. These findings highlight the potential of combining organic fertilization with crop rotation to enhance soil health and support long-term sustainability in horticultural systems. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

16 pages, 4660 KiB  
Article
Erosion Resistance of Iron Ore Tailings as Aggregate for Manufacturing of Cement-Based Materials
by Shuang Liu, Kangning Liu, Jing Wu and Sheliang Wang
Buildings 2025, 15(10), 1741; https://doi.org/10.3390/buildings15101741 - 21 May 2025
Viewed by 105
Abstract
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments [...] Read more.
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments of cement-based materials made with iron ore tailings (IOTs) as an aggregate (namely, IOTCs). The compressive strength, mass loss, and relative dynamic elastic modulus (RDEM) macroscopic performance of IOTC undergoing different chloride diffusion times (0–180 d) were explored in detail. Chloride ion profiles at 0–180 d were analyzed via chemical titration, while X-ray computed tomography (CT) and scanning electron microscopy (SEM) were employed to characterize microstructural evolution. The results demonstrate that IOTC exhibited superior chloride resistance compared to conventional concrete (GC). While both materials showed early strength gain (<60 d) due to hydration and pore-filling effects, IOTC experienced only a 23.9% strength loss after long-term exposure (180 d) significantly less than the 37.2% reduction in GC. Chloride profiling revealed that IOTC had 43.5% lower free chloride ions (Cf) and 32% lower total chloride ions (Ct) at 1 mm depth after 180 d, alongside reduced chloride diffusion coefficients (Da). The CT analysis revealed that IOTC exhibited a significantly denser and more uniformly distributed pore structure than GC, with a porosity of only 0.67% under chloride-free conditions. SEM confirmed IOTC’s more intact matrix and fewer microcracks. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 2630 KiB  
Article
Nitrogen Metabolism in Two Flor Yeast Strains at Mid-Second Bottle Fermentation in Sparkling Wine Production
by Juan Carlos García-García, Miguel E. G-García, Juan Carbonero-Pacheco, Inés M. Santos-Dueñas, Juan Carlos Mauricio, María Trinidad Alcalá-Jiménez, Juan Moreno and Teresa García-Martínez
Appl. Sci. 2025, 15(10), 5579; https://doi.org/10.3390/app15105579 - 16 May 2025
Viewed by 152
Abstract
This study investigates nitrogen metabolism during the middle of the second fermentation in stopped bottles of sparkling wine, focusing on two flor Saccharomyces cerevisiae yeast strains (G1 and N62) isolated from the velum of biologically aged wine. Nitrogen compounds, including amino acids, biogenic [...] Read more.
This study investigates nitrogen metabolism during the middle of the second fermentation in stopped bottles of sparkling wine, focusing on two flor Saccharomyces cerevisiae yeast strains (G1 and N62) isolated from the velum of biologically aged wine. Nitrogen compounds, including amino acids, biogenic amines, and ammonium chloride, were quantified, revealing strain-specific differences in nitrogen utilization and production. Proteomic analysis identified 1053 proteins, with 127 showing significant differences between strains. Strain G1 demonstrated enhanced cell wall remodeling and prioritized nitrogen conservation via arginine and lysine biosynthesis, while strain N62 exhibited increased translational activity and alternative carbon utilization pathways. Notably, strain N62 produced higher concentrations of biogenic amines (putrescine and tyramine), likely due to its greater decarboxylation capacity. Principal Component Analysis (PCA) highlighted clear differentiation in the nitrogen compound profiles across the base wine and wines inoculated with the two strains. The proteome of strain N62 showed increased mitochondrial activity and TCA cycle involvement, facilitating faster fermentation (27 days vs. 52 days for G1), growth (46 × 106 cells/mL vs. 21 × 106 cells/mL for G1) and cell viability (4 × 106 cells/mL vs. 0.7 × 106 cells/mL for G1). These findings suggest that yeast strain selection significantly influences nitrogen metabolism and potentially aroma profiles and and fermentation dynamics in sparkling wine production. Understanding these metabolic adaptations provides valuable insights for optimizing yeast performance to enhance wine quality and preserve regional characteristics. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

15 pages, 3470 KiB  
Article
Fate of Microplastics in Deep Gravel Riverbeds: Evidence for Direct Transfer from River Water to Groundwater
by Marco Pittroff, Matthias Munz, Bernhard Valenti, Constantin Loui and Hermann-Josef Lensing
Microplastics 2025, 4(2), 26; https://doi.org/10.3390/microplastics4020026 - 8 May 2025
Viewed by 340
Abstract
Riverbed sediments act as potential retention reservoirs or transport corridors for microplastic particles (MPs) from river water to groundwater. Vertical concentration profiles of MPs, together with river water and groundwater analysis, provide insight into their fate and transport behavior in freshwater systems. However, [...] Read more.
Riverbed sediments act as potential retention reservoirs or transport corridors for microplastic particles (MPs) from river water to groundwater. Vertical concentration profiles of MPs, together with river water and groundwater analysis, provide insight into their fate and transport behavior in freshwater systems. However, such data remain scarce. This study provides a depth-specific analysis of MPs ≥ 100 µm (abundance, type, and size) in gravelly riverbed sediments down to 200 cm, along with river water and groundwater analysis. Three sediment freeze cores were collected from the Alpine Rhine, a channelized mountain stream with high flow velocities and permanent losing stream conditions. The average MP abundance in the riverbed was 3.1 ± 2.3 MP/kg (100–929 µm); in the river, 92 ± 5 MP/m3 (112–822 µm); and in the groundwater, 111 ± 6 MP/m3 (112–676 µm). The dominant polymer types in the riverbed were polypropylene (PP), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) (>70%), while polyamide (PA) dominated in the river water (56%) and the groundwater (76%). The comparable MP concentration, particle sizes, and polymer types between river water and groundwater, as well as the vertical MP concentration profiles, indicate that even large MPs up to 676 µm are transported from river water to groundwater without significant retention in the gravel sediment. Full article
Show Figures

Figure 1

20 pages, 3343 KiB  
Article
Unraveling the Reactivity of SiO2-Supported Nickel Catalyst in Ethylene Copolymerization with Polar Monomers: A Theoretical Study
by Daniela E. Ortega and Diego Cortés-Arriagada
Polymers 2025, 17(9), 1268; https://doi.org/10.3390/polym17091268 - 6 May 2025
Viewed by 291
Abstract
Understanding the catalytic behavior of heterogeneous systems for the copolymerization of ethylene with polar monomers is essential for developing advanced functional polyolefins. In this study, we conducted a quantum chemical investigation of the SiO2-supported Ni–allyl–α-imine ketone catalyst (Ni-OH@SiO2) to [...] Read more.
Understanding the catalytic behavior of heterogeneous systems for the copolymerization of ethylene with polar monomers is essential for developing advanced functional polyolefins. In this study, we conducted a quantum chemical investigation of the SiO2-supported Ni–allyl–α-imine ketone catalyst (Ni-OH@SiO2) to uncover the factors governing monomer insertion, selectivity, and reactivity. Using DFT calculations and energy decomposition analysis (ALMO-EDA), we evaluated the coordination and insertion of six industrially relevant polar monomers, comparing their behavior to ethylene homopolymerization. Our results show that special polar monomers (SPMs) with aliphatic spacers, such as vinyltrimethoxysilane (vTMS) and 5-hexenyl acetate (AMA), exhibit favorable insertion profiles due to enhanced electrostatic and orbital interactions with minimal steric hindrance. In contrast, fundamental polar monomers (FPMs), including methyl acrylate (MA) and vinyl chloride (vCl), show higher activation barriers and increased Pauli repulsion due to strong electron-withdrawing effects and conjugation with the vinyl group. AMA displayed the lowest activation barrier (7.4 kcal/mol) and highest insertion thermodynamic stability (−17.6 kcal/mol). These findings provide molecular-level insight into insertion mechanisms and comonomer selectivity in Ni–allyl catalysts supported on silica, extending experimental understanding. This work establishes key structure–reactivity relationships and offers design principles for developing efficient Ni-based heterogeneous catalysts for polar monomer copolymerization. Full article
(This article belongs to the Special Issue Status and Progress of Soluble Polymers II)
Show Figures

Graphical abstract

24 pages, 1152 KiB  
Article
An Efficient Method for the Synthesis and In Silico Study of Novel Oxy-Camalexins
by Maria Bachvarova, Yordan Stremski, Donyo Ganchev, Stela Statkova-Abeghe, Plamen Angelov and Iliyan Ivanov
Molecules 2025, 30(9), 2049; https://doi.org/10.3390/molecules30092049 - 4 May 2025
Viewed by 275
Abstract
Methoxycamalexins are close structural derivatives of the indolic phytoalexin Camalexin, which is a well-known drug lead with an antiproliferative and antioxidant profile. 6-methoxycamalexin, 7-methoxycamalexin, and 6,7-dimethoxycamalexin are natural bioactive products, and there is significant interest in the development of efficient methods for [...] Read more.
Methoxycamalexins are close structural derivatives of the indolic phytoalexin Camalexin, which is a well-known drug lead with an antiproliferative and antioxidant profile. 6-methoxycamalexin, 7-methoxycamalexin, and 6,7-dimethoxycamalexin are natural bioactive products, and there is significant interest in the development of efficient methods for the synthesis of structurally related analogues. Herein, we describe an efficient and high-yielding method for the synthesis of variously substituted hydroxy-, bezyloxy, and methoxycamalexins. A set of methoxy-, hydroxy-, and benzyloxy-indoles were successfully amidoalkylated with N-acyliminium reagents derived in situ from the reaction of thiazole or methylthiazoles with Troc chloride. Eleven novel N-acylated analogues were synthesized, with yields ranging from 77% to 98%. Subsequent oxidative reactions with o-chloranil or DDQ led to 10 novel oxy-camalexins in 62–98% yield. This two-step approach allowed the synthesis of two 4,6-dimethoxy camalexins, which are difficult to obtain using published methods. The structure of the obtained products was unequivocally determined by 1H-, 13C{1H}-, HSQC-NMR, FTIR, and HRMS spectral analyses. An in silico assay was carried out on the obtained products to assess their general toxicity and physicochemical properties, including their compliance with Lipinski’s rule of five. The results indicate that all compounds have good potential to be developed as drugs or agrochemicals. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

26 pages, 4026 KiB  
Article
Enhanced Extraction of Bioactive Compounds from Red Grape Pomace: Optimizing Ultrasound-Assisted Extraction with Ethanol and NaDES as Solvents
by Nicoleta Balan, Silviu Măntăilă, Gabriela Râpeanu and Nicoleta Stănciuc
Antioxidants 2025, 14(5), 526; https://doi.org/10.3390/antiox14050526 - 27 Apr 2025
Viewed by 534
Abstract
This study aims to investigate two types of solvents, ethanol and natural deep eutectic solvent (NaDES), using the ultrasound-assisted extraction techniques, in order to analyze their efficiency and ability to extract polyphenolic compounds from red grape pomace. The optimization and validation of the [...] Read more.
This study aims to investigate two types of solvents, ethanol and natural deep eutectic solvent (NaDES), using the ultrasound-assisted extraction techniques, in order to analyze their efficiency and ability to extract polyphenolic compounds from red grape pomace. The optimization and validation of the most feasible extraction conditions leading to maximization of the dependent variables (total anthocyanins, polyphenols, flavonoids and antioxidant activity), were carried out using response surface methodology with a central composite design. For ethanol extraction, the validated optimal conditions were at 35 °C for 22.5 min and a concentration of 70% ethanol. The values obtained under these conditions were 105.32 mg cyanindin-3-glucoside (C3G)/g DW, 465.81 mg gallic acid equivalents (GAE)/100 g DW, 15.3 mg catechin equivalents (CE)/100 g DW and 1414.15 mMol Trolox/g DW, respectively. Concerning the extraction using NaDES, consisting of a 1:2:1 molar mixture of choline chloride, lactic acid and water, the optimal conditions that led to a profile consisting in 57.58 mg C3G/g DW, 414.04 mg GAE/100 g DW, 15.8 mg CE/100 g DW and 7.28 mMol Trolox/g DW, respectively, were at 60 °C for 60 min and a solvent volume of 10 mL. Two different chromatographic profiles were obtained, with 12 polyphenolic compounds identified in ethanolic extracts and only 5 in NaDES, respectively. The in vitro digestion study revealed the high bioaccessibility of polyphenols in the gastric environment, with a drastic decrease in simulated intestinal fluid. The results are valuable in terms of identifying the best extraction conditions for polyphenols using alternative, non-toxic, ecofriendly solvents. Full article
(This article belongs to the Special Issue Green Extraction of Antioxidant from Natural Source)
Show Figures

Figure 1

20 pages, 6847 KiB  
Article
Thermodynamic and Technological Compatibility of Polyvinyl Chloride, Thermoplastic Polyurethane, and Bio-Plasticizer Blends
by Yitbarek Firew Minale, Ivan Gajdoš, Pavol Štefčák, Ľudmila Dulebová, Tomasz Jachowicz, Tamás Szabó, Andrea Ádámné Major and Kálmán Marossy
Polymers 2025, 17(9), 1149; https://doi.org/10.3390/polym17091149 - 23 Apr 2025
Viewed by 443
Abstract
Polymer blending enhances material properties by combining different polymers, which requires careful consideration of both thermodynamic and technological compatibility. This study investigates the compatibility of polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and a bio-plasticizer in blends produced via roll milling at various mixing [...] Read more.
Polymer blending enhances material properties by combining different polymers, which requires careful consideration of both thermodynamic and technological compatibility. This study investigates the compatibility of polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and a bio-plasticizer in blends produced via roll milling at various mixing ratios. Compatibility and morphology were analyzed using thermally stimulated discharge (TSD), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM), while mechanical and thermal properties were assessed by mechanical testing and thermogravimetric analysis (TGA). The PVC/TPU (100/30) blend exhibited superior phase compatibility over PVC/TPU (100/50), as indicated by a single relaxation peak in TSD and DMA, along with a more homogeneous morphology and enhanced tensile properties. The PVC/TPU/bio-plasticizer (100/20/50) blend showed a well-balanced mechanical performance and improved phase homogeneity. The TSD peak maxima trends for the TPU/bio-plasticizer blend highlighted the bio-plasticizer’s dual role in enhancing flexibility at low concentrations while restricting molecular mobility at higher concentrations. TGA revealed TPU’s positive effect on PVC’s degradation profile, while the bio-plasticizer reduced thermal stability. These findings demonstrate that blending PVC, TPU, and bio-plasticizer creates compatible materials with enhanced and diverse properties, making them suitable for industrial applications. Full article
Show Figures

Figure 1

15 pages, 801 KiB  
Communication
Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions
by David Madariaga-Troncoso, Isaac Vargas, Dorian Rojas-Villalta, Michel Abanto and Kattia Núñez-Montero
Microorganisms 2025, 13(4), 936; https://doi.org/10.3390/microorganisms13040936 - 18 Apr 2025
Viewed by 289
Abstract
Soil health is essential for maintaining ecosystem balance, food security, and human well-being. Anthropogenic activities, such as climate change and excessive agrochemical use, have led to the degradation of soil ecosystems worldwide. Microbiome transplantation has emerged as a promising approach for restoring perturbed [...] Read more.
Soil health is essential for maintaining ecosystem balance, food security, and human well-being. Anthropogenic activities, such as climate change and excessive agrochemical use, have led to the degradation of soil ecosystems worldwide. Microbiome transplantation has emerged as a promising approach for restoring perturbed soils; however, direct soil transfer presents practical limitations for large-scale applications. An alternative strategy involves extracting microbial communities through soil washing processes, but its success highly depends on proper microbiota characterization and efficient extraction methods. This study evaluated a soil wash method using four different dispersant solutions (Tween-80, NaCl, sodium citrate, and sodium pyrophosphate) for their ability to extract the majority of microbial cells from Antarctic and Crop soils. The extracted microbiomes were analyzed using 16S rRNA gene metataxonomics to assess their diversity and abundance. We found that some treatments extracted a greater proportion of specific taxa, and, on the other hand, some extracted a lower proportion than the control treatment. In addition, these dispersant solutions showed the extraction of the relevant microbial community profile in soil samples, composed of multiple taxa, including beneficial bacteria for soil health. Our study aims to optimize DNA extraction methods for microbiome analyses and to explore the use of this technique in various biotechnological applications. The results provide insights into the effect of dispersant solutions on microbiome extractions. In this regard, sodium chloride could be optimal for Antarctic soils, while sodium citrate is suggested for the Crop soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

29 pages, 6215 KiB  
Review
Efficacy of Platelet-Rich Plasma in the Treatment of Equine Tendon and Ligament Injuries: A Systematic Review of Clinical and Experimental Studies
by Jorge U. Carmona and Catalina López
Vet. Sci. 2025, 12(4), 382; https://doi.org/10.3390/vetsci12040382 - 18 Apr 2025
Viewed by 640
Abstract
(1) Background: Tendon and ligament injuries are a leading cause of lameness in horses, with significant economic implications. Platelet-rich plasma (PRP) has gained attention for its regenerative potential, but its efficacy remains uncertain due to inconsistent study designs and reporting. (2) Methods: This [...] Read more.
(1) Background: Tendon and ligament injuries are a leading cause of lameness in horses, with significant economic implications. Platelet-rich plasma (PRP) has gained attention for its regenerative potential, but its efficacy remains uncertain due to inconsistent study designs and reporting. (2) Methods: This systematic review, following the PRISMA guidelines, evaluated 22 studies (clinical and experimental) to assess the safety and efficacy of PRP in treating equine tendon and ligament injuries. The risk of bias was analyzed using the ROBINS-I and RoB 2.0 tools. (3) Results: PRP demonstrated a favorable safety profile, with no severe adverse effects reported. Clinical outcomes included improved lameness scores, ultrasonographic tissue organization, and return-to-work rates. However, variability in PRP formulations (e.g., leukocyte-rich vs. leukocyte-reduced) and activation methods (e.g., calcium chloride, thrombin) contributed to inconsistent results. Experimental studies supported PRP’s role in collagen synthesis and neovascularization, but comparative trials with stem cells or other therapies (e.g., extracorporeal shockwave) showed mixed results. The methodological quality of studies varied, with only 27% achieving “good” scores for PRP reporting. (4) Conclusions: PRP is a safe and potentially effective treatment, but its clinical application is hindered by a lack of standardization. Future research should focus on large, randomized controlled trials with uniform PRP protocols, long-term (≥2 years) efficacy assessments, comparative studies with MSC combinations, and cost-effectiveness analyses. Full article
Show Figures

Figure 1

14 pages, 3323 KiB  
Article
Lithium Induces Oxidative Stress, Apoptotic Cell Death, and G2/M Phase Cell Cycle Arrest in A549 Lung Cancer Cells
by Pearl Ramushu, Dikgale D. Mangoakoane, Raymond T. Makola and Thabe M. Matsebatlela
Molecules 2025, 30(8), 1797; https://doi.org/10.3390/molecules30081797 - 17 Apr 2025
Viewed by 449
Abstract
Lithium has been identified more than six decades ago as a preferred treatment option for manic depression. Due to its affordability, stability, minimal side effects, and immunomodulatory effects, recent studies on lithium have focused on its potential anticancer properties and possible mechanisms of [...] Read more.
Lithium has been identified more than six decades ago as a preferred treatment option for manic depression. Due to its affordability, stability, minimal side effects, and immunomodulatory effects, recent studies on lithium have focused on its potential anticancer properties and possible mechanisms of action. Lung cancer ranks the highest as the main cause of death in males and has high mortality rates with low survival rates. In this study, lung adenocarcinoma (A549) cells were treated with various concentrations of lithium chloride to evaluate its inflammatory and anticancer properties. The in vitro cytotoxic effects of lithium chloride were assessed using the MTT [3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay, Muse® cell death, and cell cycle analysis. The nitric oxide and oxidative stress flow cytometry Muse® assays were used to monitor inflammation profiles of lithium-treated lung adenocarcinoma cells. The MTT viability assay showed the safe use of LiCl on the noncancerous RAW 264.7 macrophage cells below a concentration of 40 mM. Lithium reduced cell viability, induced late apoptotic cell death, and disrupted normal cell cycle progression in a dose-dependent manner, leading to cell cycle arrest in the S and G2/M phases of A549 cells. The induction of cell death by lithium in A549 cells is accompanied by increased ROS and nitric oxide production. This study shows that lithium chloride possesses some immunomodulatory cytotoxic effects on A549 lung cancer cells and can be further investigated for use in lung cancer treatment. Full article
Show Figures

Graphical abstract

24 pages, 2317 KiB  
Article
Bioactivities and Chemotaxonomy of Four Heracleum Species: A Comparative Study Across Plant Parts
by Tugce Ince Kose, Gamze Benli Yardimci, Damla Kirci, Derya Cicek Polat, Betul Demirci, Mujde Eryilmaz and Ceyda Sibel Kilic
Pharmaceuticals 2025, 18(4), 576; https://doi.org/10.3390/ph18040576 - 16 Apr 2025
Viewed by 477
Abstract
Background/Objectives: This study investigates the phytochemical profile, essential oil composition, and bioactivities—including antioxidant, antimicrobial, antibio-film, and anti-quorum sensing (QS) activities—of four Heracleum L. species (H. crenatifolium Boiss, H. paphlagonicum Czeczott, H. sphondylium subsp. montanum Schleich. ex Gaudin, and H. pastinacifolium subsp. [...] Read more.
Background/Objectives: This study investigates the phytochemical profile, essential oil composition, and bioactivities—including antioxidant, antimicrobial, antibio-film, and anti-quorum sensing (QS) activities—of four Heracleum L. species (H. crenatifolium Boiss, H. paphlagonicum Czeczott, H. sphondylium subsp. montanum Schleich. ex Gaudin, and H. pastinacifolium subsp. incanum (Boiss. & A.Huet) P.H.Davis). Methods: Total phenolic and flavonoid contents were quantified using the Folin–Ciocalteu and aluminum chloride colorimetric methods, respectively. Essential oils were extracted by hydrodistillation and analyzed via Gas Chromatography–Flame Ionization Detector (GC–FID) and Gas Chromatography–Mass Spectrometry (GC–MS), while Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) evaluated chemical variability among the species. Antioxidant activities were assessed using DPPH and ABTS free radical scavenging assays. Antimicrobial activity was assessed using the broth microdilution method to determine Minimum Inhibitory Concentration (MIC) values, while antibiofilm activity was evaluated using an in vitro microplate-based biofilm model against Pseudomonas aeruginosa PAO1. Anti-QS activity was analyzed using a disc diffusion assay with Chromobacterium violaceum ATCC 12472 as the reporter strain. Results: It was observed that the amounts of total phenolic compounds and total flavonoids were higher in root extracts than in aerial parts extracts for the four species in this study (H. sphondylium subsp. montanum excluding phenolic content). In the analysis of essential oil, it was determined that the major component in the roots was mostly myristicin, and in the fruits it was mostly octyl acetate. Phenolic and flavonoid contents were positively correlated with antioxidant activity. Methanol and n-hexane extracts of H. pastinacifolium (aerial parts) and n-hexane extracts of H. paphlagonicum (root) exhibited notable antimicrobial activity, primarily against Gram-positive bacteria, but none of the extracts showed activity against Klebsiella pneumoniae ATCC 13383 or P. aeruginosa ATCC 27853. Among methanol extracts, H. pastinacifolium (aerial parts) exhibited the highest antibiofilm activity (73.2%), while H. paphlagonicum (aerial parts) showed the highest activity among n-hexane extracts (75.5%). All n-hexane extracts exhibited anti-QS activity, whereas the methanol extracts showed no activity. Conclusions: These findings underscore the chemical diversity and bioactive potential of Heracleum species, contributing to the chemotaxonomic understanding of the genus and supporting their potential applications in medicine and industry. To our knowledge, this is the first study that reveals the antibiofilm and anti-QS properties of these Heracleum species. Full article
Show Figures

Graphical abstract

17 pages, 1042 KiB  
Article
Experimental and Theoretical Study of the Synthesis of a Deep Eutectic Solvent Based on Protonated Caffeine, Ethylene Glycol, and ZnCl2
by Laura Sofía Benavides-Maya, Manuel Felipe Torres-Perdomo, Luz M. Ocampo-Carmona and Luver Echeverry-Vargas
Molecules 2025, 30(7), 1557; https://doi.org/10.3390/molecules30071557 - 31 Mar 2025
Viewed by 472
Abstract
In this study, a deep eutectic solvent (DES) incorporating protonated caffeine (CafCl), ethylene glycol (EG), and zinc chloride (ZnCl2) was synthesized and characterized for the first time. Caffeine was protonated using an optimized procedure in an anhydrous medium to enhance [...] Read more.
In this study, a deep eutectic solvent (DES) incorporating protonated caffeine (CafCl), ethylene glycol (EG), and zinc chloride (ZnCl2) was synthesized and characterized for the first time. Caffeine was protonated using an optimized procedure in an anhydrous medium to enhance its interaction with the system, and its structure was confirmed by FTIR spectroscopy, NMR, and thermogravimetric analysis (TGA), evidencing the formation of the N-H bond in the imidazole ring. A eutectic mixture with a molar ratio of ETG:ZnCl2:CafCl of 1:2:0.1 was synthesized, and its characterization confirmed the formation of hydrogen bonds and the coordinative interaction between the components. Additionally, computational simulations based on COSMO-RS and ab initio molecular dynamics (AIMD) were conducted to analyze the charge distribution and the stability of the hydrogen bond network in the eutectic mixture. Sigma profiles revealed that protonated caffeine possesses highly polar regions capable of establishing strong interactions with EG and ZnCl2, enhancing the system’s stability. Furthermore, radial distribution functions (RDFs) showed a decrease in the interaction distance between key atoms after incorporating protonated caffeine. The results suggest that this novel DES has promising potential for industrial applications, especially in the extraction of sulfur compounds from fossil fuels due to the activation of the imidazole ring of caffeine. However, further studies are needed to optimize its operating conditions and evaluate its performance on an industrial scale. Full article
Show Figures

Figure 1

22 pages, 7757 KiB  
Article
Study on Chloride Permeability and Chloride Ion Transport of Fiber-Reinforced Cementitious Composite Repair System
by Qiang Xue, Tian-Yu Zheng, Jian Wang, Jian-Jun Zhang, Wei Xia and Sheng-Ai Cui
Buildings 2025, 15(6), 975; https://doi.org/10.3390/buildings15060975 - 19 Mar 2025
Viewed by 328
Abstract
The durability degradation of concrete structures in marine and urban underground environments is largely governed by chloride-induced corrosion. This process becomes significantly more severe under the coupled action of external loading and drying–wetting cycles, which accelerate chloride transport and structural deterioration. However, the [...] Read more.
The durability degradation of concrete structures in marine and urban underground environments is largely governed by chloride-induced corrosion. This process becomes significantly more severe under the coupled action of external loading and drying–wetting cycles, which accelerate chloride transport and structural deterioration. However, the existing research often isolates the effects of mechanical loading or environmental exposure, failing to comprehensively capture the synergistic interaction between these factors. This lack of understanding of chloride ingress under simultaneous mechanical and environmental loading limits the development of reliable service life prediction models for concrete structures. In this study, a self-made loading system was employed to simulate this coupled environment, combining external loading with 108 days of drying–wetting cycles. Chloride profiles were obtained to assess the combined effects of stress level, water/binder ratio, and fiber content on chloride penetration in fiber-reinforced cementitious composites (FRCCs). To further extend the analysis, a Crank–Nicolson-based finite difference approach was developed for the numerical assessment of chloride diffusion in concrete structures after repair. This model enables the point-wise treatment of nonlinear chloride concentration profiles and provides space- and time-dependent chloride concentration distributions. The results show that using an FRCC as a repair material significantly enhances the service life of chloride-contaminated concrete structures. The remaining service life of the repaired concrete was extended by 36.82% compared to the unrepaired case, demonstrating the clear practical value of FRCC repairs in aggressive environments. Full article
Show Figures

Figure 1

27 pages, 9881 KiB  
Article
Anti-TNFα and Anti-IL-1β Monoclonal Antibodies Preserve BV-2 Microglial Homeostasis Under Hypoxia by Mitigating Inflammatory Reactivity and ATF4/MAPK-Mediated Apoptosis
by Linglin Zhang, Chaoqiang Guan, Sudena Wang, Norbert Pfeiffer and Franz H. Grus
Antioxidants 2025, 14(3), 363; https://doi.org/10.3390/antiox14030363 - 19 Mar 2025
Viewed by 651
Abstract
The disruption of microglial homeostasis and cytokine release are critical for neuroinflammation post-injury and strongly implicated in retinal neurodegenerative diseases like glaucoma. This study examines microglial responses to chemical hypoxia induced by cobalt chloride (CoCl2) in BV-2 murine microglial cells, focusing [...] Read more.
The disruption of microglial homeostasis and cytokine release are critical for neuroinflammation post-injury and strongly implicated in retinal neurodegenerative diseases like glaucoma. This study examines microglial responses to chemical hypoxia induced by cobalt chloride (CoCl2) in BV-2 murine microglial cells, focusing on signaling pathways and proteomic alterations. We assessed the protective effects of monoclonal antibodies against TNFα and IL-1β. CoCl2 exposure led to decreased cell viability, reduced mitochondrial membrane potential, increased lactate dehydrogenase release, elevated reactive oxygen species generation, and activation of inflammatory pathways, including nitric oxide synthase (iNOS), STAT1, and NF-κB/NLRP3. These responses were significantly mitigated by treatment with anti-TNFα and anti-IL-1β, suggesting their dual role in reducing microglial damage and inhibiting inflammatory reactivity. Additionally, these treatments reduced apoptosis by modulating ATF4 and the p38 MAPK/caspase-3 pathways. Label-free quantitative mass spectrometry-based proteomics and Gene Ontology revealed that CoCl2 exposure led to the upregulation of proteins primarily involved in endoplasmic reticulum and catabolic processes, while downregulated proteins are associated with biosynthesis. Anti-TNFα and anti-IL-1β treatments partially restored the proteomic profile toward normalcy, with network analysis identifying heat shock protein family A member 8 (HSPA8) as a central mediator in recovery. These findings offer insights into the pathogenesis of hypoxic microglial impairment and suggest potential therapeutic targets. Full article
Show Figures

Figure 1

Back to TopTop