Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (236)

Search Parameters:
Keywords = combined compression–shear tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11426 KB  
Article
Structural Behaviour of Slab-on-Grade Constructed Using High-Ductility Fiber-Reinforced Cement Composite: Experimental and Analytical Investigation
by Su-Tae Kang, Nilam Adsul and Bang Yeon Lee
Fibers 2025, 13(10), 133; https://doi.org/10.3390/fib13100133 - 29 Sep 2025
Abstract
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were [...] Read more.
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were 37 MPa and 54 MPa, respectively. The average flexural tensile strength of HDFRCC was 3.9 MPa at first cracking and 9.7 MPa at peak load. Punching shear tests were performed under three loading configurations: internal (center), edge, and corner loading. Crack patterns and load–displacement responses were analyzed for both material types. Under center loading, the experimentally measured load-bearing capacities were 174.52 kN for conventional concrete and 380.82 kN for HDFRCC, with both materials exhibiting reduced capacities under edge and corner loading. Analytical predictions demonstrated close agreement with the experimental results for conventional concrete but significantly underestimated the load capacity of HDFRCC SOG. This discrepancy is attributed to the strain-hardening and crack-bridging mechanisms inherent in HDFRCC, which contribute to enhanced strength beyond conventional analytical predictions. In terms of failure mode, the conventional concrete SOG exhibited the expected flexural failure. In contrast, the HDFRCC SOG experienced either flexural failure or a combination of flexural and punching failure, in contradiction to the analytical prediction of exclusive punching shear failure. These findings indicate that the punching shear resistance of the HDFRCC SOG is substantially higher than predicted. Full article
Show Figures

Figure 1

20 pages, 5803 KB  
Article
Cooperative Failure Modes of Overlying Strata and Stressed Distribution Mechanism in Shallow Coal Seam Mining
by Chi Mu, Xiaowei Zhai, Bingchao Zhao, Xueyi Yu, Jianhua Zhang, Hui Chen and Jun Zhu
Processes 2025, 13(10), 3033; https://doi.org/10.3390/pr13103033 - 23 Sep 2025
Viewed by 97
Abstract
With the deepening implementation of the coordinated development strategy for energy exploitation and ecological conservation, green coal mining technology has become a critical pathway to achieve balanced resource development and environmental protection. This study investigates the stress field evolution and dynamic fracture propagation [...] Read more.
With the deepening implementation of the coordinated development strategy for energy exploitation and ecological conservation, green coal mining technology has become a critical pathway to achieve balanced resource development and environmental protection. This study investigates the stress field evolution and dynamic fracture propagation mechanisms in overlying strata during shallow coal seam mining in the Shenfu mining area. By employing a multidisciplinary approach combining triaxial compression tests (0–15 MPa confining pressure), scanning electron microscopy (SEM) microstructural characterization, elastoplastic theoretical modeling, and FLAC3D numerical simulations, the synergistic failure mechanisms of overlying strata were systematically revealed. Gradient-controlled triaxial tests demonstrated significant variations in stress-strain responses across lithological types. Notably, Class IV sandstone exhibited exceptional uniaxial compressive strength of 106.7 MPa under zero confining pressure, surpassing the average strength of Class I–III sandstones (86.2 MPa) by 23.6%, attributable to its highly compacted grain structure. A nonlinear regression-derived linear strengthening model quantified that each 1 MPa increase in confining pressure enhanced axial peak stress by 4.2%. SEM microstructural analysis established critical linkages between microcrack networks/grain-boundary slippage at the mesoscale and macroscopic brittle failure patterns. Numerical simulations demonstrated that strata failure manifests as tensile-shear composite fractures, with lateral crack propagation inducing bed separation spaces. The stress field exhibited spatiotemporal heterogeneity, with maximum principal stress concentrating near the initial mining cut during early excavation. Fractures propagated obliquely at angles of 55–65° to the horizontal plane in an ‘inverted V’ pattern from the goaf boundaries, extending vertically 12–18 m before transitioning to the bent zone, ultimately forming a characteristic three-zone structure. Experimental and simulated vertical stress distributions showed minimal deviation (≤2.8%), confirming constitutive model reliability. This research quantitatively characterizes the spatiotemporal synergy of strata failure mechanisms in ecologically vulnerable northwestern China, proposing a confining pressure-effect quantification model for support parameter optimization. The revealed fracture dynamics provide critical insights for determining ecological restoration timelines, while establishing a novel theoretical framework for optimizing green mining systems and mitigating ecological damage in the Shenfu mining area. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

15 pages, 3315 KB  
Article
Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications
by Jin-Su Kim, Jun-Pil Hwang, Chang-Hong Lee and Jang-Ho Jay Kim
Materials 2025, 18(18), 4315; https://doi.org/10.3390/ma18184315 - 15 Sep 2025
Viewed by 347
Abstract
The global generation of industrial waste is increasing rapidly, with much of it either landfilled or discharged into marine environments, resulting in severe environmental pollution. To address this issue, extensive research has been conducted on utilizing waste materials as partial replacements for cement. [...] Read more.
The global generation of industrial waste is increasing rapidly, with much of it either landfilled or discharged into marine environments, resulting in severe environmental pollution. To address this issue, extensive research has been conducted on utilizing waste materials as partial replacements for cement. Although concrete incorporating industrial by-products offers environmental advantages—such as reducing pollution and lowering CO2 emissions—its application has been limited by poor early-age performance. In South Korea, the annual production of ferronickel slag (FNS) now exceeds 2,000,000 tons, yet its usage remains minimal. To improve this early-age performance, researchers have applied steam curing (SC), a method widely used in precast concrete, which can enhance the utilization of FNS-containing concrete. Some studies have individually evaluated the mechanical or microstructural properties of SC effects, but the combined effects of FNS and SC replacement in precast concrete have rarely been addressed. This study applied SC, a method widely used in precast concrete production, to improve the performance of FNS concrete and conducted a comprehensive evaluation to promote its practical application. For this purpose, ordinary Portland cement (OPC) was partially replaced with FNS at rates of 10%, 20%, and 30%. To assess the effects, tests were conducted on hydration heat, SEM, and XRD, along with evaluations of compressive and splitting tensile strength. Results identified 20% as the optimal replacement ratio. At this ratio, chloride penetration resistance and freeze–thaw durability were also assessed. Furthermore, FNS concrete was evaluated under both natural curing (NC, 28 days) and SC conditions to simulate precast production. Under NC, mechanical properties declined as the FNS content increased, whereas under SC, the performance of the 20% replacement mixture was comparable to that of the control. In addition, the chloride diffusion coefficient and freeze–thaw resistance were improved by 11% and 2%, respectively, under SC compared to NC. This study evaluated the feasibility of FNS-containing concrete, and further studies should be conducted to investigate the structural performance of FNS-containing reinforced concrete via methods such as flexural, shear, splicing, and debonding experiments. Full article
Show Figures

Figure 1

21 pages, 16056 KB  
Article
Effect of Steel Fiber Hybridization on the Shear Behavior of UHPC I-Beams
by Tamer Birol, Aytaç Aygen and Altuğ Yavaş
Buildings 2025, 15(18), 3335; https://doi.org/10.3390/buildings15183335 - 15 Sep 2025
Viewed by 280
Abstract
This study aims to investigate the synergistic effect of hybridizing steel fibers on the shear behavior of I-shaped reinforced concrete beams (I-beams) produced with Ultra-High-Performance Concrete (UHPC) without shear reinforcement. For this purpose, five I-beams were prepared using UHPC mixtures with three fiber [...] Read more.
This study aims to investigate the synergistic effect of hybridizing steel fibers on the shear behavior of I-shaped reinforced concrete beams (I-beams) produced with Ultra-High-Performance Concrete (UHPC) without shear reinforcement. For this purpose, five I-beams were prepared using UHPC mixtures with three fiber volume fractions (0%, 1% and 2%), incorporating either straight micro steel fibers alone or an equal combination of straight micro and hooked-end macro steel fibers, and tested under three-point loading. In addition, the experimental program evaluated the effects of hybridization on the compressive strength, splitting tensile strength and fracture behavior of UHPC. The test results showed that beams with 1% microfibers and hybrid fibers demonstrated substantial improvements in shear resistance, achieving 2.7 and 2.0 times higher shear strength than the reference beam without fibers, respectively. Moreover, the beam reinforced with only microfibers exhibited 37% greater shear strength than the beam with hybrid fibers, indicating that the synergistic effect was limited at this dosage. At a 2% fiber volume, the failure mode shifted from shear to flexure. These findings highlight the critical influence of fiber type and dosage on the shear behavior of UHPC I-beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 4524 KB  
Article
Experimental Study on Engineering Properties of Guilin Red Clay Improved by PASS Composite LBG
by Yanshuo Cui, Kuiliang Han, Zhigao Xie, Haofeng Zhou and Bai Yang
Buildings 2025, 15(18), 3291; https://doi.org/10.3390/buildings15183291 - 11 Sep 2025
Viewed by 235
Abstract
To improve the engineering properties of red clay, sodium polyacrylate (PAAS) and locust bean gum (LBG) were used as modifiers, either singly or in combination. The modified soils were subjected to variable head permeability tests, triaxial compression tests, and scanning electron microscopy (SEM) [...] Read more.
To improve the engineering properties of red clay, sodium polyacrylate (PAAS) and locust bean gum (LBG) were used as modifiers, either singly or in combination. The modified soils were subjected to variable head permeability tests, triaxial compression tests, and scanning electron microscopy (SEM) tests to analyze the effects of different modifiers on the permeability and shear strength of the red clay and systematically explore the modification mechanism. The results showed that both PAAS and LBG significantly reduced the permeability of the red clay, with PAAS having a more pronounced effect. This mechanism is attributed to PAAS swelling upon water absorption, forming a hydrogel network that fills micropores and forms ionic bonds with clay particles. LBG, on the other hand, encapsulates the particles in a highly viscous colloid, enhancing their aggregation. Regarding shear strength, both PAAS and LBG improved soil cohesion, with PAAS exhibiting a superior combined improvement in cohesion and internal friction angle compared to LBG. The PAAS-LBG composite modification exhibits a significant synergistic effect: PAAS forms a continuous hydrogel network as the primary skeletal structure of the soil, while LBG supplements the pores and increases bonding, resulting in a denser soil structure. Microscopic analysis further confirms that the PAAS-LBG composite modification significantly reduces porosity and enhances interparticle interlocking, thereby simultaneously improving both the impermeability and shear strength of the red clay. This research can provide a reference for sustainable development and red clay modification in red clay regions. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

25 pages, 9252 KB  
Article
Mechanical Performance and Parameter Sensitivity Analysis of Small-Diameter Lead-Rubber Bearings
by Guorong Cao, Zhaoqun Chang, Guizhi Deng, Wenbo Ma and Boquan Liu
Buildings 2025, 15(18), 3284; https://doi.org/10.3390/buildings15183284 - 11 Sep 2025
Viewed by 306
Abstract
Small-diameter lead-rubber bearings (LRBs) are widely employed in shaking table tests of isolated structures, particularly reinforced concrete base-isolated structures. Accurately determining their mechanical properties and identifying their restoring force model parameters are essential for seismic response analysis and numerical simulation of scaled models. [...] Read more.
Small-diameter lead-rubber bearings (LRBs) are widely employed in shaking table tests of isolated structures, particularly reinforced concrete base-isolated structures. Accurately determining their mechanical properties and identifying their restoring force model parameters are essential for seismic response analysis and numerical simulation of scaled models. In this study, quasi-static tests and shaking table tests were conducted to obtain the compression–shear hysteresis curves of LRBs under various loading amplitudes and frequencies, as well as the hysteresis curves under seismic wave excitation. The variation patterns of mechanical performance indicators were systematically analyzed. A parameter identification method was developed to determine the restoring force model of small-diameter LRBs using a genetic algorithm, and the effects of pre-yield stiffness and yield force of the isolation layer on structural response were investigated based on an equivalent two-degree-of-freedom model. By incorporating appropriately identified restoring force model parameters, a damping modeling method for the reinforced concrete high-rise over-track structures with an inter-story isolation system was proposed. The results indicate that, when the maximum bearing deformation reached 150% shear strain, the post-yield stiffness and horizontal equivalent stiffness under seismic excitation increased by 11.97% and 19.40%, respectively, compared with the compression–shear test results, while the equivalent damping ratio increased by 18.18%. Directly adopting mechanical parameters obtained from quasi-static tests would lead to an overestimation of the isolation layer displacement response. The discrepancies in the mechanical indicators of the small-diameter LRB between the theoretical hysteresis curve, obtained using the identified Bouc–Wen model parameters, and the compression–shear test results are less than 10%. In OpenSees, the seismic response of the scaled model can be accurately simulated by combining a segmented damping model with an isolation-layer hysteresis model in which the pre-yield stiffness is amplified by a factor of 1.15. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

17 pages, 6085 KB  
Article
Experimental and Finite Element Investigation of Bond Strength of Earthen Mortar–Brick Interfaces in Historic Masonry Structures
by Tian Zhang, Jianyang Xue, Chenwei Wu, Yan Sui and Yuanshen Feng
Buildings 2025, 15(18), 3278; https://doi.org/10.3390/buildings15183278 - 11 Sep 2025
Viewed by 344
Abstract
This study aims to investigate the bond behavior at earthen mortar–brick interfaces in historic masonry structures. To that end, a series of combined compression–shear tests were conducted to systematically assess the influence of varying water–soil ratios and applied lateral compression on interfacial bond [...] Read more.
This study aims to investigate the bond behavior at earthen mortar–brick interfaces in historic masonry structures. To that end, a series of combined compression–shear tests were conducted to systematically assess the influence of varying water–soil ratios and applied lateral compression on interfacial bond behavior. A fully decoupled microscopic finite element (FE) framework employing cohesive elements was developed to simulate the bond strength of earthen mortar–brick interfaces and validated using Spearman correlation analysis. The results indicate that increasing lateral compression markedly enhances both the peak displacement and shear strength, although it also reduces inter-specimen correlation by 18%. Notably, even under high lateral compression, the finite element predictions maintained a strong correlation with experimental data (R = 0.86), with a maximum deviation of less than 5%, demonstrating the model’s capability to accurately simulate the bond behavior of loess earthen mortar in masonry. These findings provide essential data and a robust computational framework for the preventive conservation of historic masonry structures. Full article
(This article belongs to the Special Issue Structural Assessment and Strengthening of Masonry Structures)
Show Figures

Figure 1

22 pages, 30478 KB  
Article
Influence of Multiaxial Loading and Temperature on the Fatigue Behaviour of 2D Braided Thick-Walled Composite Structures
by Tim Luplow, Jonas Drummer, Richard Protz, Linus Littner, Eckart Kunze, Sebastian Heimbs, Bodo Fiedler, Maik Gude and Marc Kreutzbruck
J. Compos. Sci. 2025, 9(9), 481; https://doi.org/10.3390/jcs9090481 - 4 Sep 2025
Viewed by 528
Abstract
While size effects in composite structures have been widely studied under quasi-static uniaxial loading, their influence under fatigue conditions, particularly in the presence of multiaxial stress states and elevated temperatures, remains insufficiently understood. This study investigates the fatigue behaviour of thick-walled [...] Read more.
While size effects in composite structures have been widely studied under quasi-static uniaxial loading, their influence under fatigue conditions, particularly in the presence of multiaxial stress states and elevated temperatures, remains insufficiently understood. This study investigates the fatigue behaviour of thick-walled ±45 braided glass fibre-reinforced polyurethane composite box structures under varying temperature and loading conditions. A combined experimental approach is adopted, coupling quasi-static and fatigue tests on large-scale structures with reference data from standardised coupon specimens. The influence of temperature (23–80 °C) and multiaxial shear–compression loading is systematically evaluated. The results demonstrate a significant temperature-dependent decrease in compressive strength and fatigue life, with a linear degradation trend that aligns closely between the box structure and coupon data. Under moderate multiaxial conditions, the fatigue life of box structures is not significantly impaired compared to uniaxial test coupon specimens. Complementary non-destructive testing using air-coupled ultrasound confirms these trends, demonstrating that guided-wave phase-velocity measurements capture the evolution of anisotropic damage and are therefore suitable for in situ structural health monitoring applications. Furthermore, these findings highlight that (i) the temperature-dependent fatigue behaviour of thick-walled composites can be predicted using small-scale coupon data and (ii) small shear components have a limited impact on fatigue life within the studied loading regime. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Graphical abstract

22 pages, 3041 KB  
Article
Experimental and Numerical Study Assessing the Synergistic Effect of Metakaolin and Waste Glass on the Concrete Mechanical and Structural Properties
by Ali Jahami, Hektor Frangieh, Joseph Assaad, Ahmad Alkhatib, Cigdem Avci-Karatas and Nicola Chieffo
Buildings 2025, 15(17), 3185; https://doi.org/10.3390/buildings15173185 - 4 Sep 2025
Viewed by 483
Abstract
This study presents a rigorous experimental and numerical investigation of the synergistic effect of metakaolin (MK) and waste glass (WG) on the structural performance of reinforced concrete (RC) beams without stirrups. A two-phase methodology was adopted: (i) optimization of MK and WG replacement [...] Read more.
This study presents a rigorous experimental and numerical investigation of the synergistic effect of metakaolin (MK) and waste glass (WG) on the structural performance of reinforced concrete (RC) beams without stirrups. A two-phase methodology was adopted: (i) optimization of MK and WG replacement levels through concrete-equivalent mortar mixtures and (ii) evaluation of the fresh and hardened properties of concrete, including compressive and tensile strengths, elastic modulus, sorptivity, and beam shear capacity. Five beam groups incorporating up to 30% MK, 15% WG, and 1% steel fiber were tested under four-point bending. The results demonstrated that MK enhanced compressive strength (up to 22%), WG improved workability but reduced ductility, and the combined system achieved a 13% increase in shear strength relative to the control. Steel fibers further restored ductility, increasing the ductility index from 1.338 for WG-only beams to 2.489. Finite Element Modeling (FEM) using ABAQUS with the Concrete Damage Plasticity (CDP) model reproduced experimental (EXP) load–deflection responses, peak loads, and crack evolution with high fidelity. This confirmed the predictive capability of the numerical framework. By integrating material-level optimization, structural-scale testing, and validated FEM simulations, this study provides robust evidence that MK–WG concrete, especially when fiber-reinforced, delivers mechanical, durability, and structural performance improvements. These findings establish a reliable pathway for incorporating sustainable cementitious blends into design-oriented applications, with direct implications for the advancement of performance-based structural codes. Full article
Show Figures

Figure 1

17 pages, 4855 KB  
Article
The Combined Use of Fly Ash and Lime to Stabilize a Clayey Soil: A Sustainable and Promising Approach
by Marta Di Sante, Muhammad Khizar Khan, Luca Calò, Evelina Fratalocchi and Francesco Mazzieri
Geosciences 2025, 15(9), 346; https://doi.org/10.3390/geosciences15090346 - 3 Sep 2025
Viewed by 583
Abstract
The aim of the present note is to contribute to the search for sustainable binders to be used for soil stabilization purposes. Fly ash and quicklime are added to a clayey soil of low plasticity in different proportions; samples were prepared by wet [...] Read more.
The aim of the present note is to contribute to the search for sustainable binders to be used for soil stabilization purposes. Fly ash and quicklime are added to a clayey soil of low plasticity in different proportions; samples were prepared by wet mixing and Standard Proctor compaction of the soil–water–binder mixture. Permeability tests were carried out for the first 28 days of curing, varying the moulding water content of the investigated samples. Compressibility was evaluated through one-dimensional consolidation tests performed after 7 days of curing and shear strength was investigated at the same curing time. Reactions development was successfully monitored by measuring pH and small strain shear modulus by means of bender elements testing for the first 28 days of curing. Microstructural investigation through scanning electron microscope and Energy dispersive X-Ray Spectroscopy revealed the presence of pozzolanic products in the mixture, reflecting the reduction in compressibility and the improvement in the mechanical characteristics of the soil of concern, after the treatment. The addition of the combination of fly ash and quicklime allowed to enhance the draining capability of the mixtures, especially when the mixture is compacted at optimum water content. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

24 pages, 5245 KB  
Article
Analysis of Mechanical Properties and Energy Evolution of Through-Double-Joint Sandy Slate Under Three-Axis Loading and Unloading Conditions
by Yang Wang, Chuanxin Rong, Hao Shi, Zhensen Wang, Yanzhe Li and Runze Zhang
Appl. Sci. 2025, 15(17), 9570; https://doi.org/10.3390/app15179570 - 30 Aug 2025
Viewed by 397
Abstract
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing [...] Read more.
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing research has insufficiently explored the joint inclination angle effect, damage evolution mechanism, and energy distribution characteristics of this type of rock mass under the path of increasing axial pressure and removing confining pressure. Based on this, in this study, uniaxial compression, conventional triaxial compression and increasing axial pressure, and removing confining pressure tests were conducted on four types of rock-like materials with prefabricated 0°, 30°, 60°, and 90° through-double-joint inclinations under different confining pressures. The axial stress/strain curve, failure characteristics, and energy evolution law were comprehensively analyzed, and damage variables based on dissipated energy were proposed. The test results show that the joint inclination angle significantly affects the bearing capacity of the specimen, and the peak strength shows a trend of first increasing and then decreasing with the increase in the inclination angle. In terms of failure modes, the specimens under conventional triaxial compression exhibit progressive compression/shear failure (accompanied by rock bridge fracture zones), while under increased axial compression and relief of confining pressure, a combined tensioning and shear failure is induced. Moreover, brittleness is more pronounced under high confining pressure, and the joint inclination angle also has a significant control effect on the failure path. In terms of energy, under the same confining pressure, as the joint inclination angle increases, the dissipated energy and total energy of the cemented filling body at the end of triaxial compression first decrease and then increase. The triaxial compression damage constitutive model of jointed rock mass established based on dissipated energy can divide the damage evolution into three stages: initial damage, damage development, and accelerated damage growth. Verified by experimental data, this model can well describe the damage evolution characteristics of rock masses with different joint inclination angles. Moreover, an increase in the joint inclination angle will lead to varying degrees of damage during the loading process of the rock mass. The research results can provide key theoretical support and design basis for the stability assessment of surrounding rock in deep and high-stress plateau tunnels, the optimization of support parameters for jointed rock masses, and early warning of rockburst disasters. Full article
Show Figures

Figure 1

21 pages, 7268 KB  
Article
Effect of Specimen Dimensions and Strain Rate on the Longitudinal Compressive Strength of Chimonobambusa utilis
by Xudan Wang, Meng Zhang, Chunnan Liu, Bo Xu, Wei Li, Yonghong Deng, Yu Zhang, Chunlei Dong and Qingwen Zhang
Materials 2025, 18(17), 4013; https://doi.org/10.3390/ma18174013 - 27 Aug 2025
Viewed by 367
Abstract
The combined influence of specimen size and strain rate on the mechanical behaviour of small-diameter bamboo culms remains insufficiently characterised. This study investigates the longitudinal compressive strength of Chimonobambusa utilis through axial compression tests on specimens measuring 15 × 15 × 5 mm, [...] Read more.
The combined influence of specimen size and strain rate on the mechanical behaviour of small-diameter bamboo culms remains insufficiently characterised. This study investigates the longitudinal compressive strength of Chimonobambusa utilis through axial compression tests on specimens measuring 15 × 15 × 5 mm, 18 × 18 × 6 mm, and 21 × 21 × 7 mm under strain rates of 10−4, 10−3, and 10−2 s−1. Coupling experimental data with theoretical analysis, this study develops a size–strain rate interaction model to quantitatively assess the effects of specimen size and strain rate on the compressive strength of small-diameter bamboo. Increasing specimen size reduced strength and shifted failure modes from shear to buckling and splitting. At a strain rate of 10−4 s−1, strength decreased from 73.35 MPa for the 15 × 15 × 5 mm specimens to 62.84 MPa for the 21 × 21 × 7 mm specimens. Conversely, increasing the strain rate from 10−4 s−1 to 10−2 s−1 for the 15 × 15 × 5 mm specimens increased strength from 73.35 MPa to 80.27 MPa, indicating suppressed crack propagation. The Type II Weibull model exhibited higher predictive accuracy and parameter stability than the Type I variant. Coupling the Type II Weibull function with a power-law strain rate term and an interaction exponent developed a predictive equation, achieving relative errors below 5%. The findings demonstrate that specimen size predominantly governs strength, whereas strain rate exerts a secondary but enhancing influence. The proposed coupling model enables reliable axial load prediction for small-diameter bamboo culms, supporting material selection and dimensional optimisation in structural applications. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

28 pages, 7481 KB  
Article
Mechanical Properties Testing and Numerical Modeling and Simulations of a Nozzle Cover Made of Expanded Polystyrene
by Jianyong Jiang, Zhixuan Zhang, Jian Zheng, Kehui Shu and Wenhao Zhu
Materials 2025, 18(16), 3835; https://doi.org/10.3390/ma18163835 - 15 Aug 2025
Viewed by 445
Abstract
Expandable polystyrene (EPS) nozzle covers can be used to replace traditional metal nozzle covers due to their excellent mechanical properties, as well as being lightweight and ablatable. As an important part of the solid rocket motor, the nozzle cover needs to be designed [...] Read more.
Expandable polystyrene (EPS) nozzle covers can be used to replace traditional metal nozzle covers due to their excellent mechanical properties, as well as being lightweight and ablatable. As an important part of the solid rocket motor, the nozzle cover needs to be designed according to the requirements of the overall system. This study lays a theoretical foundation for the engineering design and performance optimization of the EPS nozzle cover. In this paper, the method of combining test research and numerical simulation is used to explore the pressure bearing capacity of EPS nozzle covers with different thicknesses under linear load. Firstly, the quasi-static tensile, compression and shear tests of EPS materials were carried out by universal testing machine, and the key parameters such as stress-strain curve, elastic modulus and yield strength were obtained; Based on the experimental data, the constitutive model of EPS material with respect to density is fitted and modified; The VUMAT subroutine of the material was written in Fortran language, and the mechanical properties of the nozzle cover with different material model distribution schemes and different thicknesses were explored by ABAQUS finite element numerical simulation technology. The results indicate that the EPS nozzle cover design based on the two material model allocation schemes better aligns with practical conditions; when the end thickness of the EPS nozzle cover exceeds 3 mm, the opening pressure formula for the cover based on the pure shear theory of thin-walled circular plates becomes inapplicable; the EPS nozzle cover exhibits excellent pressure-bearing capacity and performance, with its pressure-bearing capacity showing a positive correlation with its end thickness, and an EPS nozzle cover with a 9 mm end thickness can withstand a pressure of 7.58 MPa (under internal pressure conditions); the pressure-bearing capacity of the EPS nozzle cover under internal pressure conditions is higher than under external pressure conditions, and when the end pressure-bearing surface thickness increases to 9 mm, the internal pressure-bearing capacity is 3.13 MPa higher than under external pressure conditions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

21 pages, 20458 KB  
Article
The Influence of Periodic Temperature on Salt Rock Acoustic Emission, Strength, and Deformation Characteristics
by Yuxi Guo, Yan Qin, Nengxiong Xu, Huayang Lei, Junhui Xu, Bin Zhang, Shuangxi Feng and Liuping Chen
Appl. Sci. 2025, 15(16), 8848; https://doi.org/10.3390/app15168848 - 11 Aug 2025
Viewed by 361
Abstract
During the long-term operation of salt cavern gas storage, multiple injections and extractions of gas will cause periodic temperature changes in the storage, resulting in thermal fatigue damage to the surrounding rock of the salt cavern and seriously affecting the stability of the [...] Read more.
During the long-term operation of salt cavern gas storage, multiple injections and extractions of gas will cause periodic temperature changes in the storage, resulting in thermal fatigue damage to the surrounding rock of the salt cavern and seriously affecting the stability of the storage. This article takes the salt rock samples after thermal fatigue treatment as the research object, adopts a uniaxial compression test, and combines DIC and Acoustic Emission (AE) technology to study the influence of different temperatures and cycle times on the mechanical properties of salt rock. The results indicate that as the number of cycles and upper limit temperature increase, thermal stress induces continuous propagation of microcracks, leading to continuous accumulation of structural damage, enhanced radial deformation, and intensified local displacement concentration, causing salt rock to enter the failure stage earlier. The initial stress for expansion and the volume expansion at the time of failure both show a decreasing trend. After 40 cycles, the compressive strength and elastic modulus decreased by 23.8% and 27.4%, respectively, and the crack failure mode gradually shifted from tension-dominated to tension-shear composite. At the same time, salt rock exhibits typical “elastic-plastic creep” behavior under uniaxial compression, but the uneven expansion and thermal fatigue effects caused by periodic temperature changes suppress plastic slip, resulting in an overall decrease in peak strain energy. The proportion of elastic strain energy increases from 21% to 38%, and the deformation process shows a trend of enhanced elastic dominant characteristics. The changes in the physical and mechanical properties of salt rock under periodic temperature effects revealed by this study can provide an important theoretical basis for the long-term safe operation of underground salt cavern storage facilities. Full article
(This article belongs to the Special Issue Effects of Temperature on Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 4974 KB  
Article
Investigation of the Evolution of Anisotropic Full-Field Strain Characteristics of Coal Samples Under Creep Loading Conditions
by Xuguang Li, Yu Wang, Xuefeng Yi and Xinyu Bai
Appl. Sci. 2025, 15(15), 8355; https://doi.org/10.3390/app15158355 - 27 Jul 2025
Viewed by 332
Abstract
This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal specimens [...] Read more.
This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal specimens with bedding angles of 0°, 30°, 60°, and 90°. Testing results show that the peak strength, peak strain, and the creep loading stage of coal are significantly influenced by the bedding angle. The peak strength initially decreases and then increases as the bedding angle increases. In addition, the creep failure of coal manifests as a process of instantaneous deformation, decelerating creep, steady-state creep, accelerating creep, and failure. Under graded creep loading conditions, coal specimens exhibit distinct creep characteristics at high stress levels. Moreover, the bedding angle significantly influences the strain field evolution of the coal samples. Finally, for coal specimens with bedding angles of 0° and 90°, the final macroscopic fracture pattern upon failure is characterized by longitudinal tensile splitting. In contrast, coal samples with bedding angles of 30° and 60° tend to exhibit failure along the bedding interfaces, forming tensile-shear fractures. The results of this study will provide theoretical guidance for the prevention, early warning, and safety management of coal mine disasters. Full article
(This article belongs to the Topic Failure Characteristics of Deep Rocks, Volume II)
Show Figures

Figure 1

Back to TopTop