Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = complex generic drug products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1678 KiB  
Review
Progress in Pseudotyping Lentiviral Vectors Towards Cell-Specific Gene Delivery In Vivo
by Ariana Arduini, Harshita Katiyar and Chen Liang
Viruses 2025, 17(6), 802; https://doi.org/10.3390/v17060802 - 31 May 2025
Viewed by 353
Abstract
Lentiviral vectors (LVs) have become a fundamental tool in gene therapy due to their unique ability to transduce both dividing and non-dividing cells, transfer large genes of up to 10 kb, and facilitate stable, long-term expression of therapeutic genes into target cells. A [...] Read more.
Lentiviral vectors (LVs) have become a fundamental tool in gene therapy due to their unique ability to transduce both dividing and non-dividing cells, transfer large genes of up to 10 kb, and facilitate stable, long-term expression of therapeutic genes into target cells. A key application of LVs is the ex vivo genetic modification of patient-derived cells, such as the production of CAR-T cells by transducing isolated T cells with LVs to express the CAR gene, enabling them to target and destroy cancer cells once infused back into the patient. However, these ex vivo gene therapy drugs are often dismally unaffordable due to the complex procedures involved, including cell isolation, genetic modification, and expansion, along with the significant risks associated with immune conditioning to ensure successful engraftment. To overcome these barriers, direct in vivo transgene delivery to physiologically relevant cells has been explored, bypassing the need for ex vivo manipulations and reducing costs. Yet, a major challenge in this approach is engineering LV cell tropism to ensure the precise targeting of specific cells while avoiding off-target effects. Recent advances in modifying LV surface proteins have shown promise, including the successful in vivo generation of CAR T cells and ensuing clinical trials. This review is aimed at providing an up-to-date account of the progress in engineering LV tropism, covering the utility of different heterologous viral envelopes and their engineering to achieve cell-type-specific delivery and host immune evasion, and highlighting the potential of in vivo gene therapy to improve the affordability and accessibility of life-saving treatments. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

18 pages, 2158 KiB  
Article
Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell
by Jingjing Hao, Haoqian Liao, Shuhong Meng, Yan Guo, Li Zhu, Hengliang Wang and Yufei Lyu
Life 2025, 15(6), 858; https://doi.org/10.3390/life15060858 - 26 May 2025
Viewed by 236
Abstract
Escherichia coli and Klebsiella pneumoniae are major contributors to the global challenge of antimicrobial resistance, posing serious threats to public health. Among current preventive strategies, conjugate vaccines that utilize bacterial surface polysaccharides have emerged as a promising and effective approach to counter multidrug-resistant [...] Read more.
Escherichia coli and Klebsiella pneumoniae are major contributors to the global challenge of antimicrobial resistance, posing serious threats to public health. Among current preventive strategies, conjugate vaccines that utilize bacterial surface polysaccharides have emerged as a promising and effective approach to counter multidrug-resistant strains. In this study, both the Wzy/Wzx-dependent and ABC transporter-dependent biosynthetic pathways for antigenic polysaccharides were introduced into E. coli W3110 cells. This dual-pathway engineering enabled the simultaneous biosynthesis of two structurally distinct polysaccharides within a single host, offering a streamlined and potentially scalable strategy for vaccine development. Experimental findings confirmed that both polysaccharide types were successfully produced in the engineered strains, although co-expression levels were moderately reduced. A weak competitive interaction was noted during the initial phase of induction, which may be attributed to competition for membrane space or the shared use of activated monosaccharide precursors. Interestingly, despite a reduction in plasmid copy number and transcriptional activity of the biosynthetic gene clusters over time, the overall polysaccharide yield remained stable with prolonged induction. This suggests that extended induction does not adversely affect final product output. Additionally, two glycoproteins were efficiently generated through in vivo bioconjugation of the synthesized polysaccharides with carrier proteins, all within the same cellular environment. This one-cell production system simplifies the workflow and enhances the feasibility of generating complex glycoprotein vaccines. Whole-cell proteomic profiling followed by MFUZZ clustering and Gene Ontology analysis revealed that core biosynthetic genes were grouped into two functional clusters. These genes were predominantly localized to the cytoplasm and were enriched in pathways related to translation and protein binding. Such insights not only validate the engineered biosynthetic routes but also provide a molecular basis for optimizing future constructs. Collectively, this study presents a robust synthetic biology platform for the co-expression of multiple polysaccharides in a single bacterial host. The approach holds significant promise for the rational design and production of multivalent conjugate vaccines targeting drug-resistant pathogens. Full article
(This article belongs to the Special Issue Microorganisms Engineering and Gene-Editing Methods)
Show Figures

Figure 1

15 pages, 3357 KiB  
Article
Delivery Systems for Curcumin Derivatives Based on Calcium Carbonate Structures for Biomedical Applications
by Alina Raditoiu, Valentin Raditoiu, Maria Grapin, Radu Claudiu Fierascu, Cristian Andi Nicolae and Monica Florentina Raduly
Crystals 2025, 15(6), 508; https://doi.org/10.3390/cryst15060508 - 26 May 2025
Viewed by 211
Abstract
One of the most researched minerals in terms of how to produce it and the range of uses for it is calcium carbonate. This work describes how to generate hybrid materials by co-precipitating calcium carbonate loaded with either bis-dehydroxycurcumin (CCOH) or the calcium [...] Read more.
One of the most researched minerals in terms of how to produce it and the range of uses for it is calcium carbonate. This work describes how to generate hybrid materials by co-precipitating calcium carbonate loaded with either bis-dehydroxycurcumin (CCOH) or the calcium complex of bis-dehydroxycurcumin (Ca(CCOH)2). Composite materials with various morphologies were produced when calcium carbonate and different amounts of curcumin derivatives were precipitated in alcoholic media. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used for structural and morphologic characterization of the materials, while thermal stability was verified by thermal-gravimetric analysis (TGA), and porosity analysis was performed to evaluate surfaces and pore sizes. The hybrid materials were embedded in a cosmetic matrix lacking a sun protective effect in order to assess the UV-shielding properties. The transmittance spectra were subsequently measured in the 290–400 nm region, and the sun protection factor (SPF) was calculated. Thus, the co-precipitation approach produced hybrid materials loaded with curcumin derivatives, which were further evaluated for possible applications in the medical field for the delivery of drugs or in skincare products. Full article
Show Figures

Figure 1

18 pages, 845 KiB  
Review
What Do We Know About Staphylococcus aureus and Oxidative Stress? Resistance, Virulence, New Targets, and Therapeutic Alternatives
by Mírian Letícia Carmo Bastos, Gleison Gonçalves Ferreira, Isis de Oliveira Kosmiscky, Ieda Maria Louzada Guedes, José Augusto Pereira Carneiro Muniz, Liliane Almeida Carneiro, Ísis Lins de Carvalho Peralta, Marcia Nazaré Miranda Bahia, Cintya de Oliveira Souza and Maria Fâni Dolabela
Toxics 2025, 13(5), 390; https://doi.org/10.3390/toxics13050390 - 13 May 2025
Viewed by 342
Abstract
Staphylococcus aureus is associated with human infections, being a resistant bacterium involved in serious infections, and its virulence and resistance are linked to oxidative stress. In this study, we review the role of oxidative stress in the pathogenesis of this bacterium and its [...] Read more.
Staphylococcus aureus is associated with human infections, being a resistant bacterium involved in serious infections, and its virulence and resistance are linked to oxidative stress. In this study, we review the role of oxidative stress in the pathogenesis of this bacterium and its influence on immune system evasion, antibiotic resistance, and pharmacological targeting. S. aureus infection generates an intense inflammatory response in the host, evidenced by the activation of pro-inflammatory pathways, the exacerbated production of reactive oxygen species (ROS), and cellular oxidative stress. However, the bacterium develops protective mechanisms against damage, including the production of endogenous antioxidants, the formation of biofilms, and the regulation of redox metabolism, favoring pathogenicity and drug resistance. Resistance seems to be related to alterations in redox metabolism, which influences the sensitization of the immune system. Modulation of the redox response has emerged as a promising approach for developing new antibiotics and formulating more effective combination therapies to combat resistant infections. Natural compounds, including flavonoids, terpenes, and quinones, have demonstrated antibacterial properties by inducing oxidative stress in S. aureus. In summary, the involvement of oxidative stress is complex, with an increase in ROS in the infection and a reduction in immune system evasion and resistance, which could be an interesting therapeutic target. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

13 pages, 4571 KiB  
Article
Evaluation of PAMAM Dendrimer-Stabilized Gold Nanoparticles: Two-Stage Procedure Synthesis and Toxicity Assessment in MCF-7 Breast Cancer Cells
by Agnieszka Maria Kołodziejczyk, Magdalena Grala and Łukasz Kołodziejczyk
Molecules 2025, 30(9), 2024; https://doi.org/10.3390/molecules30092024 - 2 May 2025
Viewed by 453
Abstract
Gold nanoparticles stabilized with polyamidoamine dendrimers are one of the potential candidates for use as a contrast agent in computed tomography and a drug delivery agent. This work demonstrates a rapid, two-step synthesis of such complexes, which are size-stable for up to 18 [...] Read more.
Gold nanoparticles stabilized with polyamidoamine dendrimers are one of the potential candidates for use as a contrast agent in computed tomography and a drug delivery agent. This work demonstrates a rapid, two-step synthesis of such complexes, which are size-stable for up to 18 months. The first step of the synthesis involves a short sonication of gold (III) chloride hydrate with polyamidoamine dendrimers of the fourth generation, while the second step uses microwaves to reduce gold (III) chloride hydrate with sodium citrate. The developed synthesis method enables rapid production of spherical and monodisperse gold nanoparticles stabilized with polyamidoamine dendrimers. Physicochemical characterization of the gold nanoparticle-polyamidoamine dendrimers complexes was performed using ultraviolet-visible spectroscopy, dynamic light scattering technique, infrared spectroscopy, atomic force microscopy, and transmission electron microscopy. The toxicity of synthesized complexes on the breast cancer MCF-7 cell line has been studied using the tetrazolium salt reduction test. The produced gold nanoparticles revealed lower toxicity levels on the MCF-7 cell line after 18 months from synthesis compared with newly synthesized colloids. Synthesized gold nanoparticles stabilized with dendrimers and commercially available gold nanoparticles stabilized with sodium citrate show similar toxicity levels on breast cancer cells. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

36 pages, 2313 KiB  
Review
PLGA Implants for Controlled Drug Delivery and Regenerative Medicine: Advances, Challenges, and Clinical Potential
by Hossein Omidian and Renae L. Wilson
Pharmaceuticals 2025, 18(5), 631; https://doi.org/10.3390/ph18050631 - 27 Apr 2025
Viewed by 766
Abstract
Poly(lactide-co-glycolide) (PLGA) implants have become a cornerstone in drug delivery and regenerative medicine due to their biocompatibility, tunable degradation, and capacity for sustained, localized therapeutic release. Recent innovations in polymer design, fabrication methods, and functional modifications have expanded their utility across [...] Read more.
Poly(lactide-co-glycolide) (PLGA) implants have become a cornerstone in drug delivery and regenerative medicine due to their biocompatibility, tunable degradation, and capacity for sustained, localized therapeutic release. Recent innovations in polymer design, fabrication methods, and functional modifications have expanded their utility across diverse clinical domains, including oncology, neurology, orthopedics, and ophthalmology. This review provides a comprehensive analysis of PLGA implant properties, fabrication strategies, and biomedical applications, while addressing key challenges such as burst release, incomplete drug release, manufacturing complexity, and inflammatory responses. Emerging solutions—such as 3D printing, in situ forming systems, predictive modeling, and patient-specific customization—are improving implant performance and clinical translation. Emphasis is placed on scalable production, long-term biocompatibility, and personalized design to support the next generation of precision therapeutics. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

24 pages, 2742 KiB  
Article
Mono-CYP CHO Model: A Recombinant Chinese Hamster Ovary Cell Platform for Investigating CYP-Specific Tamoxifen Metabolism
by Christian Schulz, Sarah Stegen, Friedrich Jung and Jan-Heiner Küpper
Int. J. Mol. Sci. 2025, 26(9), 3992; https://doi.org/10.3390/ijms26093992 - 23 Apr 2025
Viewed by 398
Abstract
The metabolism of drugs and foreign substances in humans typically involves multiple enzymatic steps, particularly in phase-1 biotransformation in the liver, where various cytochrome P450 monooxygenases (CYPs) play crucial roles. This complexity can lead to a wide range of metabolites. Understanding the contributions [...] Read more.
The metabolism of drugs and foreign substances in humans typically involves multiple enzymatic steps, particularly in phase-1 biotransformation in the liver, where various cytochrome P450 monooxygenases (CYPs) play crucial roles. This complexity can lead to a wide range of metabolites. Understanding the contributions of individual CYPs and their interactions within these intricate enzyme cascades can be challenging. We recently developed an in vitro biotransformation platform employing various Chinese Hamster Ovarian (CHO) cell clones. These clones express human cytochrome P450 oxidoreductase (CPR), and each is defined by a specific human CYP enzyme expression, thus exhibiting no detectable endogenous CYP enzyme activity (mono-CYP CHO platform). In this study, we investigated whether the mono-CYP CHO platform is a suitable tool for modeling complex drug metabolization reactions in vitro. Tamoxifen (TAM) was selected as a model substance due to its role as a prodrug widely used in breast cancer therapy, where its main active metabolite, endoxifen, arises from a two-step metabolism primarily involving the CYP system. Specifically, the combined activity of CYP3A4 and CYP2D6 is believed to be essential for efficient endoxifen production. However, the physiological metabolization pathway of TAM is more complex and interconnected, and the reasons for TAM’s therapeutic success and variability among patients are not yet fully understood. Analogous to our recently introduced mono-CYP3A4 CHO cells, we generated a CHO cell line expressing human CPR and CYP2D6, including analysis of CYP2D6 expression and specific activity. Comparative studies on the metabolization of TAM were performed with both mono-CYP CHO models individually and in co-culture with intact cells as well as with isolated microsomes. Supernatants were analyzed by HPLC to calculate individual CYP activity for each metabolite. All the picked mono-CYP2D6 clones expressed similar CYP2D6 protein amounts but showed different enzyme activities. Mono-CYP2D6 clone 18 was selected as the most suitable for TAM metabolization based on microsomal activity assays. TAM conversion with mono-CYP2D6 and -3A4 clones, as well as the combination of both, resulted in the formation of the expected main metabolites. Mono-CYP2D6 cells and microsomes produced the highest detected amounts of 4-hydroxytamoxifen and endoxifen, along with N-desmethyltamoxifen and small amounts of N,N-didesmethyltamoxifen. N-desmethyltamoxifen was the only TAM metabolite detected in notable quantities in mono-CYP3A4, while 4-hydroxytamoxifen and endoxifen were present only in trace amounts. In CYP2D6/3A4 co-culture and equal mixtures of both CYP microsomes, all metabolites were detected at concentrations around 50% of those in individual clones, indicating no significant synergistic effects. In conclusion, our mono-CYP CHO model confirmed the essential role of CYP2D6 in synthesizing the active TAM metabolite endoxifen and indicated that CYP2D6 is also involved in producing the by-metabolite N,N-didesmethyltamoxifen. The differences in metabolite spectra between the two mono-CYP models highlight the CYP specificity and sensitivity of our in vitro system. Full article
Show Figures

Figure 1

18 pages, 5038 KiB  
Article
From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus®-Driven Framework for Generic Candesartan Cilexetil Tablets
by Hao Ruan, Xiaoting Geng, Zijing Situ, Qian Shen, Tianjian Ye, Xin Chen and Weike Su
Pharmaceuticals 2025, 18(4), 562; https://doi.org/10.3390/ph18040562 - 11 Apr 2025
Viewed by 535
Abstract
Background: Candesartan cilexetil, a Biopharmaceutics Classification System (BCS) II prodrug, demonstrates compromised bioavailability attributable to its limited aqueous solubility coupled with P-glycoprotein (P-gp)-mediated efflux and hepatic first-pass metabolism, thereby introducing complexities in generic drug bioequivalence assessments. With the rapid advancement of computational [...] Read more.
Background: Candesartan cilexetil, a Biopharmaceutics Classification System (BCS) II prodrug, demonstrates compromised bioavailability attributable to its limited aqueous solubility coupled with P-glycoprotein (P-gp)-mediated efflux and hepatic first-pass metabolism, thereby introducing complexities in generic drug bioequivalence assessments. With the rapid advancement of computational technologies, the integration of biorelevant dissolution methodologies with physiologically based pharmacokinetic (PBPK) modeling is emerging as a transformative paradigm in advancing bioequivalence evaluation strategies for generic drug products. This study presents a GastroPlus®-driven framework integrating in vivo predictive dissolution (IPD) and virtual bioequivalence (VBE) to evaluate the quality consistency of generic candesartan cilexetil tablets. Methods: By developing an oral PBPK model in GastroPlus®, we established an IPD method using a phosphate-buffer-based flow-through cell dissolution apparatus. In vitro dissolution profiles of generic tablets from four manufacturers were measured and incorporated into the model to perform VBE simulations. Results: The results demonstrated that only the product from Company A achieved virtual bioequivalence with the reference product, aligning with real-world quality consistency assessments. Conclusions: The proposed framework exhibited robust predictive capability, bridging in vitro dissolution data to in vivo bioequivalence outcomes, thereby offering a cost-effective and efficient strategy for formulation optimization and preclinical bioequivalence evaluation of generic drugs. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

22 pages, 1958 KiB  
Review
Regulation of Ergosterol Biosynthesis in Pathogenic Fungi: Opportunities for Therapeutic Development
by Lingyun Song, Sha Wang, Hang Zou, Xiaokang Yi, Shihan Jia, Rongpeng Li and Jinxing Song
Microorganisms 2025, 13(4), 862; https://doi.org/10.3390/microorganisms13040862 - 10 Apr 2025
Viewed by 887
Abstract
Ergosterol plays a dual role in fungal pathogenesis and azole resistance, driving key advancements in the understanding of its biosynthesis regulation. This review integrates the latest research progress on the regulation of fungal ergosterol biosynthesis and its role in drug resistance and pathogenicity. [...] Read more.
Ergosterol plays a dual role in fungal pathogenesis and azole resistance, driving key advancements in the understanding of its biosynthesis regulation. This review integrates the latest research progress on the regulation of fungal ergosterol biosynthesis and its role in drug resistance and pathogenicity. We comprehensively discuss the functions of key enzymes (such as Erg11p/Cyp51A, Erg6p, Erg3p, and Erg25p) in the mevalonate, late, and alternative pathways. Notably, we highlight the complex regulation of cyp51A expression by factors such as SrbA, AtrR, CBC, HapX, and NCT in Aspergillus fumigatus, and elucidate the distinctive roles of Upc2, Adr1, and Rpn4 in Candida species. Importantly, we summarize recent discoveries on the CprA-dependent regulation of Cyp51A/Erg11p and heme-mediated stability control. Based on these findings, we propose innovative antifungal strategies, including dual-target inhibition and multi-enzyme inhibition by natural products, which provide novel insights and potential directions for the development of next-generation antifungal therapies. Full article
Show Figures

Figure 1

31 pages, 1237 KiB  
Review
Celiac Disease—Narrative Review on Progress in Celiac Disease
by Marek K. Kowalski, Danuta Domżał-Magrowska and Ewa Małecka-Wojciesko
Foods 2025, 14(6), 959; https://doi.org/10.3390/foods14060959 - 11 Mar 2025
Viewed by 2675
Abstract
Celiac disease is defined as a systemic immunological disorder caused by gluten (gliadin and other prolamin) in genetically predisposed individuals, who present with a variety of gluten-dependent symptoms, specific antibodies, the presence of the HLA DQ2 and DQ8 histocompatibility antigen, and enteropathy. Its [...] Read more.
Celiac disease is defined as a systemic immunological disorder caused by gluten (gliadin and other prolamin) in genetically predisposed individuals, who present with a variety of gluten-dependent symptoms, specific antibodies, the presence of the HLA DQ2 and DQ8 histocompatibility antigen, and enteropathy. Its prevalence, depending on the studied population and methodology, is estimated at 0.75–1.6% of the general population. During the complex immune reaction it induces, most cells involved in inflammatory processes are activated, which leads to the gradual atrophy of intestinal villi and the proliferation of enterocytes within intestinal crypts. The pathogenesis of celiac disease is extremely complicated and is still the subject of research. According to the current diagnostic guidelines, the following criteria should be taken into account: clinical symptoms (intestinal and extraintestinal), the presence of antibodies against tissue transglutaminase in the IgA class, the level of total IgA, and the presence of typical histological changes in duodenal biopsies. Diet-resistant celiac disease is one of the most important clinical challenges, causing serious complications. Currently, the basic method for treating celiac disease is an elimination diet (i.e., the exclusion of products that may contain gluten from the diet), however, new therapeutic strategies are still being sought, mainly based on supplementation with exogenous endopeptidases, modification of the immune response, and the use of zonulin inhibitors and transglutaminase 2 inhibitors. Clinical trials of new drugs are ongoing. The gradually expanding knowledge about the pathogenesis of celiac disease may allow for the development of new therapeutic strategies for both patients with a mild disease course, as well as those that are diet-resistant. Full article
(This article belongs to the Special Issue Gluten-Free Food and Celiac Disease: 2nd Edition)
Show Figures

Figure 1

26 pages, 2605 KiB  
Article
A Formulation–Process–Product Integrated Design Method for Accelerating Pharmaceutical Tablet Development via the High-Shear Wet Granulation and Tableting Route
by Zichen Liang, Xuefang Tang, Liping Chen, Yifei Liu, Shuying Zhao, Xiao Ma, Gan Luo and Bing Xu
Pharmaceutics 2025, 17(3), 322; https://doi.org/10.3390/pharmaceutics17030322 - 2 Mar 2025
Viewed by 1102
Abstract
Background/Objectives: Tablet is the most popular oral solid dosage form, and high-shear wet granulation and tableting (HSWGT) is a versatile technique for manufacturing tablets. The conventional pharmaceutical development for HSWGT is carried out in a step-by-step mode, which is inefficient and may [...] Read more.
Background/Objectives: Tablet is the most popular oral solid dosage form, and high-shear wet granulation and tableting (HSWGT) is a versatile technique for manufacturing tablets. The conventional pharmaceutical development for HSWGT is carried out in a step-by-step mode, which is inefficient and may result in local optimal solutions. Inspired by the co-design philosophy, a formulation–process–product integrated design (FPPID) framework is innovatively brought forward to enable the target-oriented and simultaneous exploration of the formulation design space and the process design space. Methods: A combination of strategies, such as a material library, model-driven design (MDD), and simulation-supported solution generation, are used to manage the complexity of the multi-step development processes of HSWGT. The process model was developed at the intermediate level by incorporating dimensionless parameters from the wet granulation regime map approach into the process of the partial least square (PLS) model. The tablets tensile strength (TS) and solid fraction (SF) could be predicted from the starting materials’ properties and process parameters. The material library was used to diversify the model input and improve the model’s generalization ability. Furtherly, the mixture properties calculation model and the process model were interconnected. Results: A four-step FPPID methodology including the target definition, the formulation simulation, the process simulation, and the solution generation was implemented. The performance of FPPID was demonstrated through the efficient development of high-drug-loading tablets. Conclusions: As a holistic design method, the proposed FPPID offers great opportunity for designers to handle the complex interplay in the sequential development stages, facilitate instant decisions, and accelerate product development. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

19 pages, 804 KiB  
Review
The Potential of Cannabidiol for Treating Canine Atopic Dermatitis
by Ana F. Bizarro, Vanessa M. Schmidt, Beatriz Fernandes, Marta Pinto, Hugo Pereira, Joana Marto and Ana M. Lourenço
Vet. Sci. 2025, 12(2), 159; https://doi.org/10.3390/vetsci12020159 - 12 Feb 2025
Viewed by 1661
Abstract
Atopic dermatitis is prevalent in humans (hAD) and dogs (cAD) and profoundly impacts the patients’ quality of life. The increasing number of new drugs in development for atopic dermatitis indicates both the need and potential for precision medicine to generate an optimised benefit–risk [...] Read more.
Atopic dermatitis is prevalent in humans (hAD) and dogs (cAD) and profoundly impacts the patients’ quality of life. The increasing number of new drugs in development for atopic dermatitis indicates both the need and potential for precision medicine to generate an optimised benefit–risk therapeutic plan. Cannabidiol (CBD), known for its potential anti-inflammatory and antipruritic properties, shows promise in hAD and cAD management, prompting the exploration of cannabinoids (CBs) and CBD as therapeutic tools. In fact, encouraging results on the benefits of using CBD in cAD have been published, along with safety evaluations that reveal that CBD is generally well tolerated in dogs. However, limited placebo-controlled trials and dosage variations in dogs pose barriers that hinder definitive conclusions. Challenges in product stability, inconsistent formulations, and legal ambiguities highlight the need for standardised CBD-based products for both research and commercial uses. The complex legal landscape further complicates accessibility and regulation. Despite these challenges, CBD is emerging as a potential avenue for cAD management, urging further high-quality research, standardised formulations, and legal clarity. This brief review provides valuable insights into the therapeutic potential of CBs and CBD in cAD, compared to hAD, emphasising the importance of rigorous research and unambiguous regulation for successful integration into veterinary dermatology. Full article
Show Figures

Figure 1

18 pages, 2580 KiB  
Article
Avermectins Inhibit Replication of Parvovirus B19 by Disrupting the Interaction Between Importin α and Non-Structural Protein 1
by Gualtiero Alvisi, Elisabetta Manaresi, Silvia Pavan, David A. Jans, Kylie M. Wagstaff and Giorgio Gallinella
Viruses 2025, 17(2), 220; https://doi.org/10.3390/v17020220 - 3 Feb 2025
Viewed by 1199
Abstract
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized [...] Read more.
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized the interaction between NS1 classical nuclear localization signal (cNLS: GACHAKKPRIT-182) and host cell importin (IMP)α and proposed it as a potential target for antiviral drug development. Here, we further extend on such findings. First, we demonstrate that NS1 nuclear localization is required for viral production since introducing the K177T substitution in a cloned, infectious viral genome resulted in a non-viable virus. Secondly, we demonstrate that the antiparasitic drug ivermectin (IVM), known to inhibit the IMPα/β dependent nuclear import pathway, could impair the NS1-NLS:IMPα interaction and suppress viral replication in UT7/EpoS1 cells in a dose-dependent manner. We also show that a panel of structurally related avermectins (AVMs) can dissociate the NS1-NLS:IMPα complex with half-maximal inhibitory concentrations in the nanomolar range. Among them, Eprinomectin emerged as the most selective inhibitor of B19V replication, with a selectivity index of c. 5.0. However, when tested in EPCs generated from peripheral blood mononuclear cells, which constitute a cellular population close to the natural target cells in bone marrow, the inhibitory effect of IVM and Eprinomectin was demonstrated to a lesser extent, and both compounds exhibited high toxicity, thus highlighting the need for more specific inhibitors of the NS1-NLS:IMPα interaction. Full article
(This article belongs to the Special Issue Advances in Parvovirus Research 2024)
Show Figures

Figure 1

29 pages, 6516 KiB  
Article
Investigating the Inhibitory Effects of Paliperidone on RAGEs: Docking, DFT, MD Simulations, MMPBSA, MTT, Apoptosis, and Immunoblotting Studies
by Akash Pratap Singh, Shaban Ahmad, Ahona Roy, Khalid Raza and Hemant K. Gautam
Int. J. Mol. Sci. 2025, 26(3), 1060; https://doi.org/10.3390/ijms26031060 - 26 Jan 2025
Viewed by 1013
Abstract
Chronic diseases such as diabetes and cancer are the leading causes of mortality worldwide. Receptors for Advanced Glycation End products (RAGEs) are ubiquitous factors that catalyse Advanced Glycation End products (AGEs), proteins, and lipids that become glycated from sugar ingestion. RAGEs are cell [...] Read more.
Chronic diseases such as diabetes and cancer are the leading causes of mortality worldwide. Receptors for Advanced Glycation End products (RAGEs) are ubiquitous factors that catalyse Advanced Glycation End products (AGEs), proteins, and lipids that become glycated from sugar ingestion. RAGEs are cell surface receptor proteins and play a broad role in mediating the effects of AGEs on cells, contributing to modifying biological macromolecules like proteins and lipids, which can cause Reactive Oxygen Species (ROS) generation, inflammation, and cancer. We targeted RAGE inhibition analysis and screening of United States Food and Drug Administration (FDA) libraries through molecular docking studies that identified the four most suitable FDA compounds: Zytiga, Paliperidone, Targretin, and Irinotecan. We compared them with the control substrate, Carboxymethyllysine, which showed good binding interaction through hydrogen bonding, hydrophobic interactions, and π-stacking at active site residues of the target protein. Following a 100 ns simulation run, the docked complex revealed that the Root Mean Square Deviation (RMSD) values of two drugs, Irinotecan (1.3 ± 0.2 nm) and Paliperidone (1.2 ± 0.3 nm), were relatively stable. Subsequently, the Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA) determined that the Paliperidone molecule had a high negative energy of −13.49 kcal/mol, and the Absorption, Distribution, Metabolism, and Excretion (ADME) properties were in control for use in the mentioned cases. We extended this with many in vitro studies, including an immunoblotting assay, which revealed that RAGEs with High Mobility Group Box 1 (HMGB1) showed higher expression, while RAGEs with Paliperidone showed lower expressions. Furthermore, cell proliferation assay and Apoptosis assay (Annexin-V/PI staining) results revealed that Paliperidone was an effective anti-glycation and anti-apoptotic drug—however, more extensive in vivo studies are needed before its use. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

22 pages, 1372 KiB  
Review
Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants
by Yanru Long, Houhui Shi, Jiatian Ye and Xiaorong Qi
Antioxidants 2025, 14(1), 114; https://doi.org/10.3390/antiox14010114 - 20 Jan 2025
Cited by 2 | Viewed by 1242
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes [...] Read more.
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions. Full article
(This article belongs to the Special Issue Redox Biomarkers in Cancer)
Show Figures

Figure 1

Back to TopTop