Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (228)

Search Parameters:
Keywords = continental subduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19543 KB  
Article
Detrital Zircon U-Pb Age Data and Geochemistry of Clastic Rocks in the Xiahe–Hezuo Area: Implications for the Late Paleozoic–Mesozoic Tectonic Evolution of the West Qinling Orogen
by Hang Li, Kang Yan, Kangning Li, Ke Yang, Baocheng Fan, Zhongkai Xue, Li Chen and Haomin Guo
Geosciences 2025, 15(10), 384; https://doi.org/10.3390/geosciences15100384 - 3 Oct 2025
Viewed by 243
Abstract
The West Qinling Orogenic Belt (WQOB) contains a sedimentary succession that is approximately 15 km thick, spanning from the Carboniferous to the Jurassic period. This succession offers critical insights into the tectonic evolution of the Paleo-Tethys Ocean. While previous models have suggested various [...] Read more.
The West Qinling Orogenic Belt (WQOB) contains a sedimentary succession that is approximately 15 km thick, spanning from the Carboniferous to the Jurassic period. This succession offers critical insights into the tectonic evolution of the Paleo-Tethys Ocean. While previous models have suggested various depositional environments, the late Paleozoic to Mesozoic tectonic evolution of the WQOB is still not fully understood. In this study, we incorporate new detrital zircon U-Pb age data and whole-rock geochemical analyses from six stratigraphic units, dating back to the Carboniferous to Triassic periods in the Xiahe–Hezuo region, alongside existing datasets. The detrital zircon age spectra from the WQOB reveal three distinct groups: Devonian–Carboniferous strata exhibit dominant Neoproterozoic (~800–900 Ma) zircon populations, whereas Permian–Triassic rock samples show prominent Paleoproterozoic (1840–1880 Ma) and Archean (2450–2500 Ma) peaks. A minor Neoproterozoic component in Permian spectra disappears by the Triassic, while Jurassic–Cretaceous assemblages lack Precambrian grains. These trends reflect evolving source terranes linked to Paleo-Tethyan subduction dynamics. Furthermore, the geochemical signatures of the Devonian–Triassic clastic rocks align with the composition of upper continental crust, indicating a tectonic relationship with continental island arcs and active continental margins. By synthesizing these findings with established detrital zircon ages, magmatic records, and geophysical data, we propose that the WQOB underwent pre-Triassic tectonic evolution that was marked by pre-Triassic subduction and localized extension during the process of continental underthrusting. Full article
(This article belongs to the Special Issue Detrital Minerals Geochronology and Sedimentary Provenance)
Show Figures

Figure 1

16 pages, 9887 KB  
Article
Differences in Mesozoic–Cenozoic Structural Deformation Between the Northern and Southern Parts of the East China Sea Shelf Basin and Their Dynamic Mechanisms
by Chuansheng Yang, Junlan Song, Yanqiu Yang, Luning Shang, Jing Liao and Yamei Zhou
J. Mar. Sci. Eng. 2025, 13(9), 1809; https://doi.org/10.3390/jmse13091809 - 18 Sep 2025
Viewed by 352
Abstract
The East China Sea Shelf Basin (ECSSB) and its adjacent areas, as key regions of the ocean–continent transition zone, have been affected by multiple complex plate collisions, subduction, and back-arc tension since the Mesozoic Era. The structural deformation provides a large amount of [...] Read more.
The East China Sea Shelf Basin (ECSSB) and its adjacent areas, as key regions of the ocean–continent transition zone, have been affected by multiple complex plate collisions, subduction, and back-arc tension since the Mesozoic Era. The structural deformation provides a large amount of geological information on the ocean–continent transition zone. There are significant spatiotemporal differences in the structural deformation within the basin. However, the research remains insufficient and understanding is inconsistent, especially regarding the systematic study of the differences and dynamic mechanisms of north–south structural deformation, which is relatively lacking. This study is based on two-dimensional multi-channel deep reflection seismic profiles spanning the southern and northern basin. Through an integrated re-analysis of gravity, magnetic, and OBS data, the deformation characteristics and processes of the Meso-Cenozoic structures in the basin are analyzed. The differences in structural deformation between the southern and northern basin are summarized, and the controlling effects of deep crust–mantle activity and the influencing factors of shallow structural deformation are explored. Based on deep reflection seismic profiles, the structural deformation characteristics of the Yushan–Kume fault are revealed for the first time, and it is proposed that NW faults, represented by the Yushan–Kume fault, have important tuning effects on the north–south structural differential deformation in the ECSSB. The thermal subsidence of the lithosphere is the direct cause of the development of the Mesozoic ECSSB, while the subduction of the Paleo-Pacific plate is one of the important factors contributing to it. The combined effect of the two has led to significant differences between the northern and southern Mesozoic basin. During the Cenozoic Era, the alternating subduction and changes in the direction of subduction of the Pacific Plate led to spatiotemporal differences in structural deformation within the ECSSB. The development of NW faults was a key factor in the differences in structural deformation between the northern and southern basin. The study of structural deformation differences in the ECSSB not only deepens our understanding of the tectonic evolution in the East Asian continental margin region, but also has important significance for the exploration and evaluation of deep hydrocarbon resources in the ECSSB. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

24 pages, 9686 KB  
Article
The Petrogenesis of Early Permian Granodiorites in the Northern Segment of the Changning-Menglian Suture Zone, Western Yunnan, and Their Tectonic Implications
by Jiajia Liu, Zhen Jia, Jiyuan Wang, Feng Zhao, Junbao Luo, Feiyang Xu and Fuchuan Chen
Minerals 2025, 15(9), 894; https://doi.org/10.3390/min15090894 - 23 Aug 2025
Viewed by 691
Abstract
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 [...] Read more.
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 Ma) Wayao granodiorite in the northern segment remain unclear, hindering our understanding of the timing of subduction initiation and processes of the Paleo-Tethyan Ocean in the Changning-Menglian suture zone. This study presents systematic petrographic, zircon U-Pb geochronological, whole-rock major and trace element geochemical, and Sr-Nd-Hf isotopic analyses on the newly discovered Early Permian granodiorite in the Wayao area, northern segment of the Changning-Menglian suture zone, western Yunnan. Zircon U-Pb dating yields a crystallization age of ca. 280 Ma, confirming its emplacement during the Early Permian. The petrogeochemical characteristics indicate that it belongs to the metaluminous, calc-alkaline series of I-type granite. It is enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th, U, La, Pb) and depleted in high-field-strength elements (HFSEs; e.g., Ba, Nb, Sr, Ti), exhibiting a pronounced negative Eu anomaly. Whole-rock Sr-Nd isotopes (εNd(t) = −5.6–−6.1) and zircon Hf isotopes (εHf(t) = −1.34–−10.01) suggest that the magma was predominantly derived from the partial melting of ancient crustal material (primarily metamorphosed basic rocks, such as amphibolite), with a minor addition of mantle-derived components (magma mixing). Combined with petrogeochemical discriminant diagrams (e.g., Sr/Y vs. Y, Rb vs. Yb + Ta) and the regional geological context, this granodiorite is interpreted to have formed in an active continental margin tectonic setting associated with the eastward subduction of the Paleo-Tethys Ocean (represented by the Changning-Menglian Ocean). This discovery fills the gap in the record of Early Permian subduction-related magmatic rocks in the northern segment of the Changning-Menglian suture zone. It provides crucial petrological evidence constraining that the eastward subduction and consumption of the northern Paleo-Tethys Ocean had already commenced by the Early Permian. Full article
Show Figures

Figure 1

33 pages, 8120 KB  
Article
Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
by Robert Nowak, Chad Deering and Espree Essig
Minerals 2025, 15(8), 871; https://doi.org/10.3390/min15080871 - 18 Aug 2025
Viewed by 873
Abstract
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published [...] Read more.
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published datasets (bulk-rock, mineral chemistry, and isotopic analyses) to examine major, minor, and trace element trends of both Midcontinent rift-related alkaline and tholeiitic intrusions. In addition, we compare the geochemical data to local kimberlite-hosted lower-crustal xenoliths and local igneous (Archean) and sedimentary (Paleoproterozoic) country rocks. We found the peridotite magma compositions dominantly consist of primitive mantle compositions with varying abundances of subduction-related components, alkaline-transitional melts, and local country rock contaminates (e.g., Baraga and Animikie Basin sediments). The subduction-related components are interpreted to be derived from previous Archean and Paleoproterozoic subduction events and likely hosted within the sub-continental lithospheric mantle. Importantly, these subduction-related components are also interpreted to have acted as oxidizing agents within the melt, stabilizing sulfate (+2 FMQ (fayalite–magnetite–quartz) to FMQ) while inhibiting sulfide crystallization as the magma ascended through ~50 km of the Superior craton. This study largely corroborates the previous findings with respect to the contribution of local country rock contamination to the Eagle–Tamarack peridotite host rocks, which is estimated to be minimal (<5%). However, the incorporation of <5% reductive pelitic siltstone contamination results in strong shifts in the oxygen fugacity of the peridotite melt, from +2 FMQ to slightly below FMQ, as determined from spinel Fe3+/∑Fe ratios. This shift in oxygen fugacity resulted in the transition from total sulfate (+2 FMQ) to sulfate + sulfide (<+2 FMQ to FMQ) to total sulfide (<FMQ). This shift in oxygen fugacity is a key contributor to the formation of Ni-Cu-PGE-rich massive sulfides within the Eagle peridotite. This study presents an expanded geochemical interpretation for the exploration of Midcontinent rift-related Ni-Cu-PGE deposits to include peridotites with subduction-like signatures and contaminated via <5% reductive sedimentary country rocks. Full article
Show Figures

Graphical abstract

20 pages, 9529 KB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 374
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

32 pages, 32586 KB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 2182
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 10834 KB  
Article
Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean
by Qing Liu, Cui Liu, Jixu Liu, Jinfu Deng and Shipan Tian
Appl. Sci. 2025, 15(15), 8139; https://doi.org/10.3390/app15158139 - 22 Jul 2025
Viewed by 385
Abstract
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow [...] Read more.
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow basalt from Dadingzi Mountain yields a concordant age of 117.5 ± 2.1 Ma (MSWD = 3.6). Integrating previous studies, we identify three distinct basalt phases. The Late Triassic basalt (210 Ma–230 Ma) is characterized as komatites–melilitite, exhibiting features of island arc basalt, as well as some characteristics of E-MORB. It also contains high-magnesium lava, suggesting that it may be a product of a juvenile arc. The Middle Jurassic basalt (around 159 Ma–172 Ma) consists of a combination of basalt and magnesium andesite, displaying features of oceanic island basalt and mid-ocean ridge basalt. Considering the contemporaneous sedimentary rocks as hemipelagic continental slope deposits, it is inferred that these basalts were formed in an arc environment associated with oceanic subduction, likely as a result of subduction of the young oceanic crust. The Early Cretaceous basalt (around 117 Ma) occurs in pillow structures, exhibiting some characteristics of oceanic island basalt but also showing transitional features towards a continental arc. Considering the regional distribution of the rocks, it is inferred that this basalt likely formed in a back-arc basin. Integrating the formation ages, nature, and tectonic attributes of the various structural units within the RSAC, as well as previous research, it is inferred that subduction of the Paleo-Pacific Ocean had already begun during the Late Triassic and continued into the Early Cretaceous without cessation. Full article
Show Figures

Figure 1

29 pages, 14630 KB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 613
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

26 pages, 4302 KB  
Article
Volcanic Rocks from Western Limnos Island, Greece: Petrography, Magnetite Geochemistry, and Magnetic Susceptibility Constraints
by Christos L. Stergiou, Vasilios Melfos, Lambrini Papadopoulou, Anastasios Dimitrios Ladas and Elina Aidona
Minerals 2025, 15(7), 673; https://doi.org/10.3390/min15070673 - 23 Jun 2025
Cited by 1 | Viewed by 415
Abstract
This study contributes new mineralogical, whole-rock geochemical, and magnetic susceptibility data to the well-established petrogenesis of the Miocene of Limnos volcanic rocks in the Aegean region. The combined examination of volcanic samples from the Katalakon, Romanou, and Myrina units demonstrates that they belong [...] Read more.
This study contributes new mineralogical, whole-rock geochemical, and magnetic susceptibility data to the well-established petrogenesis of the Miocene of Limnos volcanic rocks in the Aegean region. The combined examination of volcanic samples from the Katalakon, Romanou, and Myrina units demonstrates that they belong to a genetically related high-K calc-alkaline to shoshonitic suite that was formed by fractional crystallization in a continental arc setting and derived from a subduction-modified mantle source, contaminated by continental sediments. Different magmatic processes and crystallization conditions are reflected in modest compositional differences in magnetite (Ti, Al substitution) and ilmenite (Mg, Al, Fe–Ti ratios), as well as variations in trace elements between the units (e.g., elevated Nb–Zr in Romanou, high LREE in Myrina, and Ba in Katalakon). According to the magnetic data, bulk magnetic susceptibility is largely determined by magnetite abundance, whereas magnetic domain states are influenced by the grain size and shape, as euhedral grains are associated with stronger responses. The coupled geochemical and magnetic results indicate the diversified and transitional character of the Agios Ioannis Subunit in the Katalakon Unit. Full article
Show Figures

Figure 1

22 pages, 6644 KB  
Article
Geochronology, Geochemistry, and Tectonic Significance of Early Carboniferous Volcanic Rocks from the Ulanhot Region in the Central Great Xing’an Range
by Yanqing Zang, Tao Qin, Cheng Qian, Chao Zhang, Jingsheng Chen and Wei Sun
Minerals 2025, 15(6), 610; https://doi.org/10.3390/min15060610 - 5 Jun 2025
Viewed by 588
Abstract
The attributes of Late Paleozoic magmatic events are of paramount significance in elucidating the tectonic evolution of the Ulanhot region, which is located in the middle of the Hegenshan–Heihe tectonic belt (HHTB). This study undertook a comprehensive investigation of the petrography, LA–ICP–MS zircon [...] Read more.
The attributes of Late Paleozoic magmatic events are of paramount significance in elucidating the tectonic evolution of the Ulanhot region, which is located in the middle of the Hegenshan–Heihe tectonic belt (HHTB). This study undertook a comprehensive investigation of the petrography, LA–ICP–MS zircon U–Pb dating, whole rock geochemistry, and zircon Hf isotopes of the Early Carboniferous volcanic rocks. The volcanic rocks are predominantly composed of andesite, schist (which protolith is rhyolitic tuff), and rhyolitic tuff. The results of zircon U–Pb dating reveal that the formation ages of volcanic rocks are Early Carboniferous (343–347.4 Ma). Geochemical characteristics indicate that the andesites possess a comparatively elevated concentration of Al2O3, alongside diminished levels of MgO and TiO2, belonging to the high-K calc-alkaline series. The zircon εHf(t) of the andesites range from −13 to 9.4, while the two-stage Hf model ages span from 697 to 1937 Ma. The felsic volcanic rocks have high contents of SiO2 and Na2O + K2O, low contents of MgO and TiO2, and belong to high-K to normal calc-alkaline series. The zircon εHf(t) values of the felsic volcanic rocks range from −12.8 to 10, while the two-stage Hf model ages span from 693 to 2158 Ma. The Early Carboniferous volcanic rocks exhibit a notable enrichment in large ion lithophile elements (LILEs, such as Rb, K, Ba) and light rare earth elements (LREEs), depletion in high-field-strength elements (HFSEs, including Nb, Ta, Ti, Hf), as well as heavy rare earth elements (HREEs). The distribution patterns of the rare earth elements (REEs) demonstrate a conspicuous right-leaning tendency, accompanied by weak negative Eu anomalies. These characteristics indicate that the andesites represent products of multistage mixing and interaction between crustal and mantle materials in a subduction zone setting. The felsic volcanic rocks originated from the partial melting of crustal materials. Early Carboniferous igneous rocks formed in a volcanic arc setting are characteristic of an active continental margin. The identification of Early Carboniferous arc volcanic rocks in the Central Great Xing’an Range suggests that this region was under the subduction background of the oceanic plate subduction before the collision and amalgamation of the Erguna–Xing’an Block and the Songnen Block in the Early Carboniferous. Full article
Show Figures

Figure 1

22 pages, 12129 KB  
Article
Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry
by Zhongjie Yang, Yuandong Zhao, Cangjiang Zhang, Chuantao Ren, Qun Yang and Long Zhang
Minerals 2025, 15(6), 582; https://doi.org/10.3390/min15060582 - 29 May 2025
Viewed by 577
Abstract
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily [...] Read more.
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily occurs within the monzonite granite and monzonite rock mass in the Haigou area and is controlled by fault structures trending northeast, northwest, and near north-south. In order to constrain the age and tectonic setting of quartz vein-type gold mineralization, we conducted a detailed underground investigation and collected samples of monzonite granite and pyroxene diorite porphyrite veins related to quartz-vein-type gold mineralization for LA-ICP-MS zircon U-Pb dating and whole-rock main trace element data testing to confirm that monzonite granite is closely related to gold mineralization. Pyroxene diorite porphyry and gold mineralization were found in parallel veins. The zircon U-Pb weighted mean ages of monzonite and pyroxene diorite porphyrite veins are 317.1 ± 3.5 Ma and 308.8 ± 3.0 Ma, respectively, indicating that gold mineralization in monzonite, pyroxene diorite porphyrite veins, and quartz veins occurred in the Late Carboniferous. The monzonite granite and pyroxene diorite porphyrite veins associated with quartz vein-type gold mineralization have high SiO2, high K, and high Al2O3 and are all metaluminous high-potassium calc-alkaline rock series. Both of them are relatively enriched in light rare earth elements (LREE) and macroionic lithophile elements (LILE: Rb, Ba, K, etc.), but deficient in heavy rare earth elements (HREE) and high field strength elements (HFSE: Nb, Ta, P, Ti, etc.), the monzonitic granite Eu is a weak positive anomaly (δEu = 1.15–1.46), the pyroxene diorite porphyre dyke Eu is a weak positive anomaly (δEu = 1.09–1.13), and the Nb and Ta are negative anomalies. The Th/Nb values are 0.28–0.73 and 1.48–2.05, and La/Nb are 2.61–4.74 and 4.59–5.43, respectively, suggesting that diagenetic mineralization is the product of subduction in an active continental margin environment. In recent years, scholarly research on Sr, Nd, and Pb isotopes in Haigou rock masses has indicated that the magmatic source region in the Haigou mining areas is complex. It is neither a singular crustal source nor a mantle source but rather a mixed crust-mantle source, primarily resulting from the partial melting of lower crustal materials, with additional contributions from mantle-derived materials. In summary, the metallogenic characteristics, chronology data, geochemical characteristics, and regional tectonic interpretation indicate that at least one phase of magmatic-hydrothermal gold mineralization was established in the Late Carboniferous as a result of the subduction of the Paleo-Asian ocean plate at the northern margin of the North China Craton. Full article
Show Figures

Figure 1

15 pages, 12382 KB  
Article
Origins of Zircon Xenocrysts in the Neoproterozoic South Anhui Ophiolite, Yangtze Block
by Ziming Sun, Junyong Li and Xiaolei Wang
Minerals 2025, 15(6), 563; https://doi.org/10.3390/min15060563 - 26 May 2025
Viewed by 506
Abstract
Zircon serves as a robust tracer for crustal recycling processes owing to its wide stability under diverse geological conditions. Its cryptic occurrence within ophiolites offers valuable insights into regional paleotectonic evolution. In this study, we identify a few zircon xenocrysts in both peridotite [...] Read more.
Zircon serves as a robust tracer for crustal recycling processes owing to its wide stability under diverse geological conditions. Its cryptic occurrence within ophiolites offers valuable insights into regional paleotectonic evolution. In this study, we identify a few zircon xenocrysts in both peridotite and basalt units from the Neoproterozoic South Anhui Ophiolite (SAO) in the southeastern Yangtze Block, South China. Zircon xenocrysts within the peridotite yield U-Pb ages ranging from ca. 2.7 to 1.0 Ga (n = 21), with three peaks of 2.8–2.5 Ga, 2.2–1.8 Ga, and 1.2–1.0 Ga. Comparative analysis of age spectra suggests these xenocrysts likely originated from recycled subducted continental materials within the Yangtze Block. In the basaltic rocks, zircon xenocrysts exhibit ages of ca. 2.1–0.9 Ga (n = 27), with peaks of 1.1–0.9 Ga, 1.5–1.4 Ga, and 2.1–1.7 Ga. These zircons are interpreted to have been inherited from wall rocks through crustal contamination during magma ascent, as their age spectra closely resemble those of the surrounding basement strata. Collectively, these findings support that the SAO possibly formed in a back-arc basin setting, characterized by significant crust–mantle interactions. Full article
Show Figures

Figure 1

17 pages, 7133 KB  
Article
Subduction Dynamics of the Paleo-Pacific Plate: New Constraints from Quartz Diorites in the Fudong Region
by Jijie Song, Yidan Zhu and Xiangzhong Chen
Minerals 2025, 15(6), 562; https://doi.org/10.3390/min15060562 - 25 May 2025
Viewed by 462
Abstract
The Yanbian area of Jilin Province is situated in the eastern segment of the southern margin of the Xing-Meng Orogenic Belt, representing a region that has been superimposed and reworked by the Paleo-Asian Ocean and Circum-Pacific tectonic event. To determine the emplacement age [...] Read more.
The Yanbian area of Jilin Province is situated in the eastern segment of the southern margin of the Xing-Meng Orogenic Belt, representing a region that has been superimposed and reworked by the Paleo-Asian Ocean and Circum-Pacific tectonic event. To determine the emplacement age and petrogenesis of the quartz diorite in the Fudong area of Yanbian, Jilin Province, and to investigate its tectonic setting, petrographic studies, zircon U-Pb geochronology, whole-rock Sr-Nd isotopic analysis, zircon Hf isotopic analysis, and detailed geochemical investigations of this intrusion were carried out. The results indicate that the Fudong quartz diorite has: (1) A weighted mean zircon U-Pb age of 186 ± 1.7 Ma, corresponding to the Late Early Jurassic; (2) geochemically high concentrations of Sr (average: 1146 ppm) and Ba (average: 1213 ppm), and enrichment of light rare earth elements (LREE), along with notably high Th/Yb and Rb/Y ratios; (3) geochemically, the quartz diorite is enriched in large-ion lithophile elements (LILEs; e.g., Ba, K) and light rare earth elements (LREEs), while being depleted in high-field-strength elements (HFSEs; e.g., Ta, Ti). These features are consistent with magma formed in a subduction-related setting. In summary, the Fudong quartz diorite formed within an active continental margin tectonic environment associated with the subduction of the Paleo-Pacific Plate. Its primary magma likely originated from an enriched lithospheric mantle that had been metasomatized by fluids released from the subducted slab. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

17 pages, 7715 KB  
Article
Petrogenesis and Tectonic Implications of the Early–Middle Ordovician Granodiorites in the Yaogou Area of the North Qilian Orogenic Belt
by Dechao Li, Yang Yang, Yao Xiao, Pengde Liu, Xijun Liu, Gang Chen, Xiao Liu, Rongguo Hu, Hao Tian and Yande Liu
Minerals 2025, 15(6), 551; https://doi.org/10.3390/min15060551 - 22 May 2025
Viewed by 519
Abstract
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. [...] Read more.
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. Zircon U-Pb dating reveals that the Yaogou granodiorites formed during the Early–Middle Ordovician (473–460 Ma). The Yaogou granodiorites have high SiO2 (63.3–71.1 wt.%), high Al2O3 (13.9–15.8 wt.%) contents, and low Zr (96–244 ppm), Nb (2.9–18 ppm), as well as low Ga/Al ratios (10,000 × Ga/Al ratios of 1.7–2.9) and FeOT/MgO ratios (1.9–3.2), and are characterized by elevated concentrations of light rare earth elements and large-ion lithophile elements such as Rb, Th, and U, coupled with significant depletion in heavy rare earth elements and high-field-strength elements including Nb, Ta, and Ti. Additionally, the presence of negative europium anomalies further reflects geochemical signatures typical of I-type granitic rocks. The zircon grains from these rocks display negative εHf(t) values (−14.6 to −10.7), with two-stage Hf model ages (TDM2) from 2129 to 1907 Ma. These characteristics suggest that the magmatic source of the Yaogou granodiorites likely originated from the partial melting of Paleoproterozoic basement-derived crustal materials within a tectonic environment associated with subduction in the North Qilian Ocean. Integrating regional geological data, we suggest that during the Early Paleozoic, the North Qilian Oceanic slab underwent double subduction: initially southward, followed by a northward shift. Due to the deep northward subduction of the Qaidam continental crust and oceanic crust along the southern margin of the Qilian Orogenic Belt, the southward subduction of the North Qilian ocean was obstructed, triggering a reversal in subduction polarity. This reversal likely decelerated the southward subduction and initiated northward subduction, ultimately leading to the formation of the Yaogou granodiorites. These findings enhance our understanding of the complex tectonic processes that shaped the North Qilian Orogenic Belt during the Early Paleozoic, emphasizing the role of subduction dynamics and continental interactions in the region’s geological evolution. Full article
(This article belongs to the Special Issue Geochronology and Geochemistry of Alkaline Rocks)
Show Figures

Figure 1

17 pages, 35407 KB  
Article
Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity
by Xiao Li, Xuanjie Zhang, Wan Zhang, Ruohan Wu, Yanyun Sun, Guotao Yao and Huaichun Wu
Appl. Sci. 2025, 15(10), 5564; https://doi.org/10.3390/app15105564 - 15 May 2025
Viewed by 763
Abstract
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the [...] Read more.
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the newest airborne gravity data of Hainan Island and its adjacent areas, this paper uses wavelet multiscale decomposition followed by power spectral analysis to estimate the average depth of each layer of the source field. We use the Parker–Oldenburg method to invert the Moho structure, incorporating constraints from seismic data to investigate the fine crustal structure and deformation characteristics to elucidate the deep seismogenic mechanism. The regional Moho depth decreases from 30 km in the northwest to 16 km in the southeast. The map of the Moho surface shows three Moho uplift zones, located in the northern Hainan Island, the southern Qiongdongnan Basin, and the southwestern tip of Hainan Island. The following findings are revealed: Firstly, a series of northeastward high-gravity anomaly strips are discovered for the first time in the middle and lower crust of Hainan Island, which may be the remnants within the continental crust of the ancient Pacific northwestward subduction during the Mesozoic era. Secondly, under the Leiqiong volcanic rocks, there is a pronounced northeastward high-value anomaly and shallower Moho depth, which may indicate the deep-seated mantle material that rose and intruded during the activity of the Hainan mantle plume. Thirdly, the seismogenic structure is discussed by combining the wavelet multiscale decomposition results with natural seismic data. The results show that earthquakes occur in the place where the NE-trending gravity anomaly is cut by the NW-trending fault in the upper crust. That place also lies in the gravity anomaly gradient or high-value anomaly in the middle and lower crust. These features reveal that the earthquakes on Hainan Island are controlled by the left strike-slip activity of the Red River Fault and deep mantle upwelling caused by Hainan Plume. Full article
Show Figures

Figure 1

Back to TopTop