Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = controlled-release fertiliser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 914 KB  
Article
Response of Oats to Fertilisation with Compost and Mineral Nitrogen in a Pot Experiment
by Wacław Jarecki, Joanna Korczyk-Szabó, Milan Macák, Anita Zapałowska, Puchooa Daneshwar and Miroslav Habán
Nitrogen 2025, 6(3), 76; https://doi.org/10.3390/nitrogen6030076 - 1 Sep 2025
Viewed by 515
Abstract
Organic fertilisers release nutrients more slowly than mineral fertilisers, which is why combining organic and mineral fertilisation gives good results in crop cultivation. In the conducted pot experiment, the reaction of oats to compost fertilisation with or without additional nitrogen mineral fertilisation was [...] Read more.
Organic fertilisers release nutrients more slowly than mineral fertilisers, which is why combining organic and mineral fertilisation gives good results in crop cultivation. In the conducted pot experiment, the reaction of oats to compost fertilisation with or without additional nitrogen mineral fertilisation was examined. The following treatments were used: A, control (no fertilisation); B, compost (sewage sludge 80% + sawdust 20%); C, compost (garden and park waste 80% + sawdust 20%); D, compost (sewage sludge 40% + garden and park waste 40% + sawdust 20%); E, compost B with nitrogen fertilisation (30 N kg ha−1); F, compost C with nitrogen fertilisation (30 N kg ha−1); and G, compost D with nitrogen fertilisation (30 N kg ha−1). The study results indicated that the composts used had an altering impact on the soil’s chemical composition by the end of the experiment. Overall, the lowest levels of nutrients were recorded in the control group, indicating that the composts increased soil fertility. Oat plants were better nourished (SPAD—soil–plant analysis development) after fertilisation with sewage sludge composts than garden and park waste composts. However, the most favourable results were obtained in the treatments where organic fertilisation (composts) was combined with mineral fertilisation (nitrogen). All fertilisation treatments significantly enhanced plant height and the number of panicles in the pot compared to the control. The highest values for the number of grains in the panicle, thousand-grain weight, grain mass from the pot, and protein content in the grain were observed after applying organic–mineral fertilisation. Therefore, fertilisation with composts, especially composts combined with mineral nitrogen, can be recommended for oat cultivation. Full article
Show Figures

Figure 1

15 pages, 2891 KB  
Article
Polysaccharide Hydrogels with Waste Wool Fibre as Matrix for Potential Use as CRF Fertiliser
by Ewa Szczepanik, Edyta Molik and Kinga Pielichowska
Molecules 2025, 30(13), 2885; https://doi.org/10.3390/molecules30132885 - 7 Jul 2025
Viewed by 493
Abstract
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a [...] Read more.
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a hydrogel to obtain a stable material that could improve water retention and could serve as a fertiliser material matrix. Wool fibres and hydrogel were chosen because of their ability to store water and their degradability. An evaluation of the swelling degree of different alginate-based hydrogel matrices was performed to select the matrix. The stability and water bonding of hydrogels with different wool fibre content were analysed and evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The microstructure and the effect of fibres on the uniformity of the hydrogel were assessed using SEM and optical microscopy. The degree of water retention in the soil was also evaluated. The results showed that it is possible to incorporate wool fibres into the hydrogel matrix and the wool fibres make the composite porous, which allows water penetration into the material much more easily. This research has shown the possibility of using waste wool fibres as an active ingredient in sustainable fertiliser materials. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

20 pages, 2511 KB  
Article
Oocyte Exposure to Low Levels of Triclosan Has a Significant Impact on Subsequent Embryo Physiology
by Vasiliki Papachristofi, Paul J. McKeegan, Henry J. Leese, Jeanette M. Rotchell and Roger G. Sturmey
Int. J. Environ. Res. Public Health 2025, 22(7), 1031; https://doi.org/10.3390/ijerph22071031 - 28 Jun 2025
Viewed by 800
Abstract
Triclosan (TCS) is an antimicrobial agent in a wide range of health care products. It has been found in various human bodily fluids and is a potential reproductive toxicant. However, the effect of TCS on early embryo development in mammalian species is limited. [...] Read more.
Triclosan (TCS) is an antimicrobial agent in a wide range of health care products. It has been found in various human bodily fluids and is a potential reproductive toxicant. However, the effect of TCS on early embryo development in mammalian species is limited. We therefore asked whether exposure to TCS affects mammalian cumulus–oocyte complexes (COCs), and if so, whether the effects persist into the early embryo. COCs, isolated from abattoir-derived bovine ovaries, were exposed to two environmentally relevant doses of TCS (1 and 10 nM) during in vitro maturation. When exposed to 1 nM TCS during in vitro maturation, progesterone release from bovine oocytes was elevated. Furthermore, altered pyruvate metabolism and mitochondrial dysfunction were also observed; specifically, O2 consumption coupled to ATP production was significantly decreased in COCs after acute exposure to TCS prior to maturation, whereas proton leak from the respiratory chain was increased. Subsequently, TCS-exposed COCs were fertilised. Fewer oocytes were able to develop to blastocyst when exposed to 1 nM TCS during maturation compared to the Control group, and those that did reach the blastocyst displayed impaired glycolytic and amino acid metabolic activity. These findings indicate for the first time that oocytes exposed to TCS during the final stages of maturation give rise to embryos with impaired mitochondrial function, altered steroidogenesis, and disrupted metabolic activity. Full article
Show Figures

Figure 1

17 pages, 2851 KB  
Article
The Effect of Complexed, Nanosized, and Conventional Zinc Sources Applied at Varying Rates to an Acidic Mediterranean Soil on Two Successive Lettuce Crops
by Marina de Francisco, Raquel Ortiz, Ana Obrador, Demetrio Gonzalez, Gabriel Gascó and Patricia Almendros
Agronomy 2025, 15(4), 896; https://doi.org/10.3390/agronomy15040896 - 3 Apr 2025
Viewed by 776
Abstract
This study investigates the current application and ageing effects of various Zn sources on acidic Mediterranean soil. Two successive lettuce crops were grown in soil fertilised with 0, 15, 30, 60, and 140 mg Zn kg−1 using commercial ZnO nanoparticles, Zn complex, [...] Read more.
This study investigates the current application and ageing effects of various Zn sources on acidic Mediterranean soil. Two successive lettuce crops were grown in soil fertilised with 0, 15, 30, 60, and 140 mg Zn kg−1 using commercial ZnO nanoparticles, Zn complex, and Zn sulphate. Plant growth, Zn biofortification, dietary implications, human health, and the soil Zn status were evaluated. Zinc bioavailability was influenced by the source, application rate, and chemical ageing. The bioavailability of Zn in the soil increased from 4.60 to 66.7 compared to the control treatment. Zinc applied in the form of ZnSO4 was the most bioavailable form in the first year of cultivation. Advanced specialty fertilisers such as ZnO nanoparticles and Zn-lignosulfonate, along with the conventional fertiliser ZnSO4, demonstrated a residual effect allowing effective Zn uptake by plants in the second crop. Zn concentrations in lettuce leaves were 3.33–34.6 times higher than the control treatment. Application of 30 mg Zn kg−1 and higher of commercial ZnO nanoparticles, Zn complex, and Zn sulphate heptahydrate resulted in some toxicity. Higher application rates of these sources may pose a potential risk to the population, as indicated by the health risk index. These Zn sources represent a promising alternative for enhancing plant growth and providing a sustained release of Zn in several successive crops, making them a potential alternative to conventional fertilisers. Their unique properties can optimise nutrient management strategies and promote sustainable crop production. Full article
Show Figures

Figure 1

16 pages, 1879 KB  
Article
Sustainable Biochar Fertiliser Production Using Melt Adsorption and Optimisation
by Xia Zhang, Yiyang Wang, Panjie Su, Weida Zeng, Jingzhe Zhu and Zongshou Cai
Sustainability 2025, 17(5), 1963; https://doi.org/10.3390/su17051963 - 25 Feb 2025
Cited by 1 | Viewed by 920
Abstract
The global production of coffee generates substantial waste in the form of coffee husks, presenting an opportunity for sustainable resource utilisation. This study investigates the conversion of coffee husks into biochar-based fertilisers using an optimised pyrolysis process and the melt adsorption method, with [...] Read more.
The global production of coffee generates substantial waste in the form of coffee husks, presenting an opportunity for sustainable resource utilisation. This study investigates the conversion of coffee husks into biochar-based fertilisers using an optimised pyrolysis process and the melt adsorption method, with the aim of improving slow-release nutrient characteristics. Coffee husks were pyrolysed under controlled conditions, and the resulting biochar was blended with urea in a 1:1 ratio to produce the fertiliser. The nutrient release rates of the fertiliser were evaluated through soil column leaching experiments. For slow-release fertilisers, less release in a period means better performance, and the optimal nutrient release rate is the minimum in the experiment. Single-factor experiments assessed the effects of critical process parameters, including raw material particle size (0.25–2.8 mm), pyrolysis atmosphere (CO2 to N2 ratios ranging from 0% to 100%), pyrolysis temperature (400–800 °C), heating rate (10–30 °C min−1), and pyrolysis time (20–100 min). Orthogonal experiments were subsequently conducted to analyse the interactions between selected parameters of pyrolysis temperature, CO2 to N2 ratio, heating rate, and pyrolysis time using regression analysis. The optimal process conditions determined through MATLAB optimisation were a pyrolysis temperature of 591 °C, a heating rate of 15.4 °C∙min⁻1, and a pyrolysis time of 44.4 min, resulting in the minimum nutrient release rate of 40%. The sequence of process parameters influencing the slow-release characteristics was found to be heating rate > pyrolysis time > pyrolysis temperature > CO2 to N2 ratio. This study provides a framework for transforming agricultural residues into high-performance biochar-based fertilisers, aligning with sustainable resource management and pollution control strategies. Full article
(This article belongs to the Topic Biomass Transformation: Sustainable Development)
Show Figures

Figure 1

15 pages, 5786 KB  
Article
Analysis of Slow-Released Fertilisers as a Source of Microplastics
by Vladimir Isakov, Elena Vlasova, Vladislav Forer, Jose Kenny and Sergey Lyulin
Land 2025, 14(1), 38; https://doi.org/10.3390/land14010038 - 28 Dec 2024
Cited by 4 | Viewed by 2291
Abstract
One of the main strategies for improving the efficiency of agricultural production is the use of fertilisers with slow or controlled release of nutrients, in which the granules of mineral fertilisers are covered with polymeric shells. The composition of the polymer coatings of [...] Read more.
One of the main strategies for improving the efficiency of agricultural production is the use of fertilisers with slow or controlled release of nutrients, in which the granules of mineral fertilisers are covered with polymeric shells. The composition of the polymer coatings of mineral fertiliser granules with slow or controlled release of two widespread manufacturers and their ability to adsorb some heavy metal ions on their surface were examined in this study. It was found that the base polymers used to encapsulate the fertilisers studied are the co-polymer polyethylene–polyacrylic acid in the Brand A, and polyacrylamide, polyacrylic acid, and its esters in the Brand B fertiliser coating. The maximum adsorption rate of heavy metal ions on the surface of the polymer coatings with the rest of the mineral filler of Brand A and Brand B fertilisers was 54.64 and 28.90 mg/g for Cd(II) ions, 30.77 and 14.03 mg/g for Pb(II) ions, respectively. Therefore, the solution to the problem of increasing the efficiency of agricultural production through the use of fertilisers with slow or controlled release of nutrients leads to environmental pollution by microplastics remaining in the soil after fertiliser application, which are also capable of adsorbing from the soil various toxic pollutants. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

16 pages, 3427 KB  
Systematic Review
Slow-Release Fertilisers Control N Losses but Negatively Impact on Agronomic Performances of Pasture: Evidence from a Meta-Analysis
by Gunaratnam Abhiram
Nitrogen 2024, 5(4), 1058-1073; https://doi.org/10.3390/nitrogen5040068 - 17 Nov 2024
Cited by 2 | Viewed by 1729
Abstract
High nitrogen (N) losses and low nitrogen utilisation efficiency (NUE) of conventional-nitrogen fertilisers (CNFs) are due to a mismatch between N-delivery and plant demand; thus, slow-release N fertilisers (SRNFs) are designed to improve the match. A quantitative synthesis is lacking to provide the [...] Read more.
High nitrogen (N) losses and low nitrogen utilisation efficiency (NUE) of conventional-nitrogen fertilisers (CNFs) are due to a mismatch between N-delivery and plant demand; thus, slow-release N fertilisers (SRNFs) are designed to improve the match. A quantitative synthesis is lacking to provide the overall assessment of SRNFs on pasture. This meta-analysis analyses application rate and type of SRNFs on N losses and agronomic performances with 65 data points from 14 studies in seven countries. Standardized mean difference of SRNFs for nitrate leaching losses and N2O emission were −0.87 and −0.69, respectively, indicating their effectiveness in controlling losses. Undesirably, SRNFs had a more negative impact on dry matter (DM) yield and NUE than CNFs. Subgroup analysis showed that SRNF type and application rate had an impact on all tested parameters. The biodegradable coating-type of SRNF outperformed other types in controlling N losses and improving agronomic performances. High application rates (>100 kg N ha−1) of SRNFs are more effective in controlling N losses. In conclusion, SRNFs are more conducive to controlling N losses, but they showed a negative impact on yield and NUE in pasture. Further studies are recommended to assess the efficacy of SRNFs developed using advanced technologies to understand their impact on pastoral agriculture. Full article
Show Figures

Figure 1

17 pages, 2237 KB  
Article
Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions
by Abu Taher Mohammad Anwarul Islam Mondol, Md. Akhter Hossain Chowdhury, Sharif Ahmed and Md Khairul Alam
Nitrogen 2024, 5(3), 746-762; https://doi.org/10.3390/nitrogen5030049 - 23 Aug 2024
Cited by 3 | Viewed by 1622
Abstract
Determining nutrient-release patterns of organic manures can give an estimate of the potential amount of nutrients that a given material can contribute to crops along with chemical fertiliser. Nutrients released from organic manure depend on several factors, and temperature is one of them. [...] Read more.
Determining nutrient-release patterns of organic manures can give an estimate of the potential amount of nutrients that a given material can contribute to crops along with chemical fertiliser. Nutrients released from organic manure depend on several factors, and temperature is one of them. To evaluate how different types of conventional organic manures release nitrogen (N) under varying temperature conditions, an incubation study was conducted at the Bangladesh Agricultural Research Institute. Six organic manures—poultry manure (PM), vermicompost (VC), bio-slurry (BS), cowdung (CD), water-hyacinth compost (WHC), and rice straw compost (RSC)—were evaluated at three temperature regimes (15, 25, and 35 °C) to study the dynamics of N incubated for 330 days. The N release was significantly influenced by the interaction of organic manures and temperature regimes. Poultry manure-treated soil incubated at 35 °C had the highest mineralisation of all parameters than other manures. The mineralisation of N followed the order: PM > VC > BS > CD > WHC > RSC > control and 35 °C > 25 °C > 15 °C. Across different temperatures, the mineralisation rate of PM was 15–55% higher than that of other manures. At 35 °C, the mineralisation rate was 10% and 20% higher compared to 25 °C and 15 °C, respectively. The first-order kinetic models predicted the organic N release from manures satisfactorily. The findings of the present study enrich the understanding of N-release patterns under different temperature regimes that prevail in different crop growing seasons in Indo-Gangetic Plains, providing valuable data for researchers and policymakers interested in sustainable integrated nutrient management practices. Full article
Show Figures

Figure 1

13 pages, 1206 KB  
Article
Effects of Reducing Chemical Fertilisers Application on Tea Production and Soils Quality: An In Situ Field Experiment in Jiangsu, China
by Zhenmin Hu, Huan Li, Lingfei Ji and Yiyang Yang
Agronomy 2024, 14(8), 1864; https://doi.org/10.3390/agronomy14081864 - 22 Aug 2024
Cited by 1 | Viewed by 1701
Abstract
In order to achieve sustainable development of the tea industry in China, it is necessary to reduce the use of chemical fertiliser rationally. With conventional fertilisation (CF) treatment as the control, five different chemical fertiliser-reduced regimes, including tea-specific formula fertiliser (T1), T1 + [...] Read more.
In order to achieve sustainable development of the tea industry in China, it is necessary to reduce the use of chemical fertiliser rationally. With conventional fertilisation (CF) treatment as the control, five different chemical fertiliser-reduced regimes, including tea-specific formula fertiliser (T1), T1 + acidification amendment (T2), organic substitution based on T1 (T3), urea formaldehyde slow-release fertiliser (T4) and carbon-based organic fertiliser (T5), were conducted and evaluated on a green tea plantation from 2018 to 2021. The results showed that the spring tea yield of T1–T5 increased by 4.65–28.67%, while the free amino acids, tea polyphenols and sensory evaluation scores did not remarkably decrease. In addition, the T1–T5 treatments had a slight effect on soil acidification mitigation (except T2) and maintained the essential nutrients for tea production. Nutrient use efficiency improved, with agronomic efficiency (AE) increasing by 0.01–0.08 kg kg−1, shoot nutrient use efficiency (NUE) by 0.14–0.70% and partial factor productivity (PFP) by 0.05–0.18 kg kg−1. The net economic benefits also improved, with T1 showing a 135.28% increase, followed by T3 (67.53%), T2 (48.65%), T4 (38.07%) and T5 (33.35%). Overall, our results indicated that the T1 treatment could maintain the tea yield and quality while reducing the chemical fertiliser input and maximising the net economic benefit and AE. Full article
Show Figures

Figure 1

19 pages, 2649 KB  
Article
Fertilising Maize with Bio-Based Mineral Fertilisers Gives Similar Growth to Conventional Fertilisers and Does Not Alter Soil Microbiome
by Marcia Barquero, Cinta Cazador, Noemí Ortiz-Liébana, Maurizio Zotti, Javier Brañas and Fernando González-Andrés
Agronomy 2024, 14(5), 916; https://doi.org/10.3390/agronomy14050916 - 26 Apr 2024
Cited by 5 | Viewed by 2742
Abstract
The production of mineral fertilisers relies heavily on mineral deposits that are becoming depleted or is based on processes that are highly energy demanding. In this context, and in line with the circular economy and the European Green Deal, the recovery of nitrogen [...] Read more.
The production of mineral fertilisers relies heavily on mineral deposits that are becoming depleted or is based on processes that are highly energy demanding. In this context, and in line with the circular economy and the European Green Deal, the recovery of nitrogen (N), phosphorus (P), and potassium (K) from organic wastes using chemical technologies is an important strategy to produce secondary raw materials for incorporation into mineral fertilisers, partially replacing the traditional sources of N, P, and K. However, there are very few studies on the agronomic and environmental effects of such substitution. The aim of this work was to evaluate plant growth under microcosm conditions and the effect on the soil microbiome of mineral fertilisers in which part of the N, P, or K content comes from bio-based materials (BBMFs), namely ash, struvite, and a patented chemical process. The crop was maize, and a metataxonomic approach was used to assess the effect on the soil microbiome. The BBMF treatments were compared with a control treated with a conventional mineral fertiliser. The conventional fertiliser performed significantly better than the bio-based fertilisers in terms of maize biomass production at the first sampling point 60 days after sowing (DAS), but at the last sampling point, 90 DAS, the BBMFs showed comparable or even better biomass production than the conventional one. This suggests that BBMFs may have a slightly slower nutrient release rate. The use of fertiliser, whether conventional or BBMF, resulted in a significant increase in microbiome biodiversity (Shannon index), while it did not affect species richness. Interestingly, the use of fertilisers modulated the composition of the bacterial community, increasing the abundance of beneficial bacterial taxa considered to be plant-growth-promoting bacteria, without significant differences between the conventional mineral fertilisers and the BBMFs. The predominance of PGPRs in the rhizosphere of crops when BBMFs are used could be part of the reason why BBMFs perform similarly or even better than conventional fertilisers, even if the rate of nutrient release is slower. This hypothesis will be tested in future field trials. Thus, BBMFs are an interesting option to make the food chain more sustainable. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 6641 KB  
Article
Physiological Nitrogen Uptake and Utilisation Responses in Two Native Plants from the Qinghai-Tibet Plateau under Different Water and Fertiliser Conditions
by Xiangtao Wang, Chao Zhang, Ningning Zhao, Xingrong Sun, Shuai Hou and Puchang Wang
Agronomy 2024, 14(3), 440; https://doi.org/10.3390/agronomy14030440 - 23 Feb 2024
Cited by 8 | Viewed by 1601
Abstract
Drought and poor soil quality are the main characteristics of extreme environments in arctic–alpine areas. Understanding how herbaceous plants in alpine grasslands maintain the normal supply and utilisation of nutrients under different rainfall conditions is key to maintaining population stability. In the present [...] Read more.
Drought and poor soil quality are the main characteristics of extreme environments in arctic–alpine areas. Understanding how herbaceous plants in alpine grasslands maintain the normal supply and utilisation of nutrients under different rainfall conditions is key to maintaining population stability. In the present study, the native plants Poa crymophila and Stipa purpurea of the Qinghai–Tibet Plateau were used to conduct a controlled experiment involving water and fertiliser to analyse their physiological responses in terms of nutrient uptake and utilisation. The results showed that decreased soil moisture increased proline and non-structural carbohydrates in P. crymophila, mainly accumulating in the leaves and stems. Nitrogen (N) addition promoted proline accumulation, whereas nonstructural carbohydrate content decreased. However, the proline and non-structural carbohydrate contents of S. purpurea were less affected by water and fertiliser. Additionally, drought restricted rhizospheric and non-rhizospheric alkaline-hydrolysed N release, increased rapidly available phosphorus (RAP) content in rhizospheric soil, limited root growth, and reduced surface area, root length, and root volume. Both aboveground and underground N fertiliser utilisation rates decreased. Under well-hydrated conditions (WH), high N levels increased rhizospheric alkaline-hydrolysed N and urease activity while inhibiting RAP and activity of alkaline phosphatase contents, thereby limiting root growth and reducing N fertiliser utilisation. The results indicate that both plant species have relatively low overall nutrient requirements that are limited mainly by water availability. The addition of low amounts of fertiliser is beneficial for nutrient release and utilisation, improving their adaptability to arctic–alpine environments and their suitability and superiority in the community. This study has significant implications for nutrient management and ecological restoration measures in arctic–alpine grasslands. Full article
(This article belongs to the Special Issue Interactions between Plants and Soil Microbes in Natural Ecosystem)
Show Figures

Figure 1

24 pages, 2814 KB  
Article
Optimizing Sustainability in Malting Barley: A Practical Approach to Nitrogen Management for Enhanced Environmental, Agronomic, and Economic Benefits
by Petros Vahamidis, Angeliki Stefopoulou and Vassilis Kotoulas
Agriculture 2023, 13(12), 2272; https://doi.org/10.3390/agriculture13122272 - 14 Dec 2023
Cited by 1 | Viewed by 3050
Abstract
Nitrogen (N) fertilisers used in barley production serve as the primary contributors to total greenhouse gas (GHG) emissions. Consequently, to lower the carbon footprint (CF) and GHG emissions, it is imperative to either reduce N fertiliser rates or enhance grain yield and improve [...] Read more.
Nitrogen (N) fertilisers used in barley production serve as the primary contributors to total greenhouse gas (GHG) emissions. Consequently, to lower the carbon footprint (CF) and GHG emissions, it is imperative to either reduce N fertiliser rates or enhance grain yield and improve nitrogen use efficiency (NUE). To address this challenge, we combined two strategies related to N: (1) a 34% reduction in the total N rate compared to the control (total N rate 108–110 kg N ha−1), and (2) testing two types of N fertilisers for topdressing against the control (common sulfur urea). These types included (a) a mixture comprising controlled-release fertiliser (CRF) combined with ammonium sulfate nitrate fertiliser in a 40:60 ratio (CRF + Nitro) and (b) ammonium sulfate nitrate (Nitro). Experiments were conducted in two distinct areas of Greece specialising in cereal production, aiming to unveil the effects of these strategies on all sustainability aspects of malting barley production. The results showed that although a 34% reduction in N rate did not result in yield penalties or a decrease in grain size, it did have a negative impact on grain protein content (GPC). CRF + Nitro not only reduced CF by approximately 30% compared to the control but also increased N agronomic efficiency by 51.5% and net profit by 7.1%. Additionally, it was demonstrated that the maximum achievable reduction in total GHG emissions and CF, by excluding N fertilisation from the crop system, ranged from 68.5% to 74.3% for GHG emissions and 53.8% to 67.1% for CF. Full article
Show Figures

Figure 1

16 pages, 1897 KB  
Article
Impact of Adding Anaerobic Digestate to Soil and Consequences on Crop Performance
by Juana Hallat-Sanchez, Jo Smith and Gareth J. Norton
Agronomy 2023, 13(12), 2889; https://doi.org/10.3390/agronomy13122889 - 24 Nov 2023
Cited by 1 | Viewed by 1635
Abstract
Anaerobic digestate is proposed as an alternative to inorganic fertilisers, but a better understanding of how anaerobic digestates impact the soil and how plant growth is influenced is needed for wider acceptance. In this study, a series of pot experiments were conducted growing [...] Read more.
Anaerobic digestate is proposed as an alternative to inorganic fertilisers, but a better understanding of how anaerobic digestates impact the soil and how plant growth is influenced is needed for wider acceptance. In this study, a series of pot experiments were conducted growing spring barley (Hordeum vulgare L.) in a range of soils with the application of digestate or synthetic fertiliser. Two application rates corresponding to total nitrogen at 120 and 480 kg ha−1 were used together with unfertilised soil as a control. Growth characteristics were measured as plant height, number of tillers, straw biomass, grain biomass and total biomass. Most growth characteristics (tillering, and straw and grain yield) increased with increasing application rates of nitrogen. An increase of 7–20% in plant height was observed with anaerobic digestate compared to synthetic fertilisers. However, results differed depending on the source of digestate and soil type. The nitrogen balance index (the ratio of the chlorophyll to polyphenolic compounds, which is linked to the nitrogen status of the crop) showed an increase of 40–50% for digestate applied at a nitrogen rate of 480 kg ha−1 compared to the control. By measuring nitrogen as ammonium, nitrate and nitrite in the different soils over 35 days, differential nitrogen release was also demonstrated, with soil water concentrations of ammonium decreasing rapidly after an early peak in all the treatments, and nitrate peaking after days 3–4. Results suggest that digestate may be used to replace synthetic fertilisers when applied in a range of soils. Full article
Show Figures

Figure 1

17 pages, 12177 KB  
Article
Preparation, Features, and Efficiency of Nanocomposite Fertilisers Based on Glauconite and Ammonium Dihydrogen Phosphate
by Maxim Rudmin, Boris Makarov, Adrián López-Quirós, Prokopiy Maximov, Valeria Lokteva, Kanipa Ibraeva, Alexander Kurovsky, Yana Gummer and Alexey Ruban
Materials 2023, 16(18), 6080; https://doi.org/10.3390/ma16186080 - 5 Sep 2023
Cited by 7 | Viewed by 2373
Abstract
This paper studies the chemical and mechanochemical preparation of glauconite with ammonium dihydrogen phosphate (ADP) nanocomposites with a ratio of 9:1 in the vol.% and wt.%, respectively. The methods include X-ray diffraction analysis, scanning electron microscope with energy-dispersive X-ray spectroscopy, transmission electron microscopy, [...] Read more.
This paper studies the chemical and mechanochemical preparation of glauconite with ammonium dihydrogen phosphate (ADP) nanocomposites with a ratio of 9:1 in the vol.% and wt.%, respectively. The methods include X-ray diffraction analysis, scanning electron microscope with energy-dispersive X-ray spectroscopy, transmission electron microscopy, infrared spectroscopy, and differential thermal analysis with a quadruple mass spectrometer. The manufactured nanocomposites keep the flaky glauconite structure. Some glauconite unit structures have been thickened due to minimal nitrogen (ammonium) intercalation into the interlayer space. The globular, granular, or pellet mineral particles of nanocomposites can be preserved via chemical techniques. Globular and micro-aggregate particles in nanocomposites comprise a thin film of adsorbed ADP. The two-step mechanochemical method makes it possible to slightly increase the proportion of adsorbed (up to 3.2%) and intercalated (up to 6.0%) nutrients versus chemical ways. Nanocomposites prepared via chemical methods consist of glauconite (90%), adsorbed (1.8–3.6%), and intercalated (3.0–3.7%) substances of ADP. Through the use of a potassium-containing clay mineral as an inhibitor, nitrogen, phosphorus, and potassium (NPK), nanocomposite fertilisers of controlled action were obtained. Targeted and controlled release of nutrients such as phosphate, ammonium, and potassium are expected due to various forms of nutrients on the surface, in the micropores, and in the interlayer space of glauconite. This is confirmed via the stepwise dynamics of the release of ammonium, nitrate, potassium, and phosphate from their created nanocomposites. These features of nanocomposites contribute to the stimulation of plant growth and development when fertilisers are applied to the soil. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

11 pages, 1122 KB  
Article
Application of Reproductive Technologies to the Critically Endangered Baw Baw Frog, Philoria frosti
by Aimee J. Silla, Rebecca J. Hobbs, Deon J. Gilbert, Damian Goodall, Marissa L. Parrott, Adam Lee, Justine K. O’Brien and Phillip G. Byrne
Animals 2023, 13(13), 2232; https://doi.org/10.3390/ani13132232 - 7 Jul 2023
Cited by 2 | Viewed by 3367
Abstract
Reproductive technologies (RTs) can assist integrated conservation breeding programs to attain propagation targets and manage genetic diversity more effectively. While the application of RTs to enhance the conservation management of threatened amphibians has lagged behind that of other taxonomic groups, a recent surge [...] Read more.
Reproductive technologies (RTs) can assist integrated conservation breeding programs to attain propagation targets and manage genetic diversity more effectively. While the application of RTs to enhance the conservation management of threatened amphibians has lagged behind that of other taxonomic groups, a recent surge in research is narrowing the divide. The present study reports on the first application of RTs (hormone-induced spawning, hormone-induced sperm-release, and sperm cryopreservation) to the critically endangered Baw Baw frog, Philoria frosti. To determine the effect of hormone therapy on spawning success, male–female pairs were administered either 0 μg/g gonadotropin-releasing hormone agonist (GnRHa), 0.5 μg/g GnRHa, or 0.5 μg/g GnRHa + 10 μg/g metoclopramide (MET) (n = 6–7 pairs/treatment), and the number of pairs ovipositing, total eggs, and percent fertilisation success were quantified. To determine the effect of hormone therapy on sperm-release and to establish the peak time to collect sperm post-hormone administration, males were administered 0 IU/g (n = 4), or 20 IU/g hCG (n = 16). Total sperm, sperm concentration, and percent viability were quantified at 0, 2, 4, 6, 8, 10, and 12 h post-hormone administration. Overall, the percentage of pairs ovipositing was highest in the GnRHa + MET treatment, with 71% of pairs ovipositing, compared to 57% and 33% of pairs in the GnRHa and control treatments, respectively. The quantity of sperm released from males in response to hCG peaked at 4 h post-hormone administration, though it remained high up to 12 h. The percent sperm viability also peaked at 4 h post-administration (94.5%), exhibiting a steady decline thereafter, though viability remained above 77% throughout the 12 h collection period. The remaining sperm samples (n = 22) were cryopreserved using established protocols and biobanked for long-term storage and future conservation applications. The mean post-thaw sperm viability was 59%, and the percent total motility was 17%. The results from this preliminary study will direct further applications of RTs to the critically endangered Baw Baw frog to assist with species recovery. Full article
Show Figures

Figure 1

Back to TopTop