Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,162)

Search Parameters:
Keywords = cycle number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 764 KB  
Article
The Combined Effect of Acute Interval and Cognitive Training on Visual-Spatial Abilities in Women: Preliminary Insights for Health Promotion
by Christel Galvani, Sabrina Demarie, Ester Tommasini, Alessandro Antonietti, Thomas Zandonai and Paolo Bruseghini
Int. J. Environ. Res. Public Health 2025, 22(10), 1524; https://doi.org/10.3390/ijerph22101524 (registering DOI) - 5 Oct 2025
Abstract
Different sports require elevated visual-spatial and related cognitive abilities, which are increasingly recognized as crucial not only for athletic performance but also for broader public health implications. Sex-related differences in these abilities have often been explained through both biological and sociocultural factors, with [...] Read more.
Different sports require elevated visual-spatial and related cognitive abilities, which are increasingly recognized as crucial not only for athletic performance but also for broader public health implications. Sex-related differences in these abilities have often been explained through both biological and sociocultural factors, with males traditionally described as having superior visual-spatial skills. However, fewer studies have investigated how targeted physical training can enhance these abilities in women. This study aimed to analyze the influence of two different cycling interval training exercises on visual-spatial ability in women. Seventy-two healthy, active, and young women engaged in (1) a High-Intensity Interval Training (HIIT) session followed by a cognitive training (CT); or (2) a Low-Volume Interval Training (LVIT) session followed by a CT; or (3) a cognitive (COG) session, consisting of listening to music followed by a CT; or (4) a control (CTRL) session, consisting of solely listening to music. Cognitive performance was assessed at baseline and after the training sessions using the Metzler and Shepard Test (MS), the Paper Folding and Cutting Test (PFC), and the Mental Rotation Test (MRT). No significant between-group differences were observed. However, in all groups the time to complete the PFC and MRT tests was significantly lower and the number of errors was significantly smaller for the PFC test in the post-test compared with the pre-test. These findings expand the current literature by demonstrating that interval training, whether high intensity or low volume, when combined with cognitive training, may improve certain aspects of visual-spatial cognitive performance in healthy, active, young women. These findings highlight the potential of combining structured exercise with cognitive challenges. Such interventions may promote cognitive health in women and contribute to long-term public health outcomes. Full article
Show Figures

Figure 1

17 pages, 1935 KB  
Article
Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020
by Elvira Kovač-Andrić, Vlatka Gvozdić, Brunislav Matasović, Nikola Sakač and Amaury de Souza
Atmosphere 2025, 16(10), 1159; https://doi.org/10.3390/atmos16101159 - 3 Oct 2025
Abstract
This study analyses the stratospheric concentrations of ozone (O3) and nitrogen dioxide (NO2) over a 16-year period (2005 to 2020) over central Brazil using satellite data with the aim of determining the influence of NO2 on ozone distribution [...] Read more.
This study analyses the stratospheric concentrations of ozone (O3) and nitrogen dioxide (NO2) over a 16-year period (2005 to 2020) over central Brazil using satellite data with the aim of determining the influence of NO2 on ozone distribution and the impact of fires and volcanic eruptions on these gases. The analysis shows that ozone and NO2 follow seasonal patterns, with the highest concentrations occurring in September and October and the lowest from January to June. A positive correlation was found between the concentrations of ozone and NO2, and the results of the Fourier analysis indicate semi-annual and annual cycles in the concentrations of these gases. Although there was an increase in the number of fires in the last 11 years of the study, this increase did not lead to significant changes in ozone or NO2 concentrations, indicating the stability of these parameters in the observed area. It is presumed that the reason for the lack of changes is lower intensity of fires despite their increased number. Regarding wind patterns, it is observed that they do not differ much either which is in accordance with the fact that the monitored area is fairly close to the equator. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

18 pages, 6513 KB  
Article
Analysis of Grain Growth Behavior of Intermetallic Compounds on Plated Pure Sn for Micropump Solder Caps
by Hwa-Sun Park, Chang-Yun Na, Jong-Wook Kim, Woon-Seok Jung, Jae-Hyuk Park, Jong-Woo Lim and Youn-Goo Yang
Materials 2025, 18(19), 4602; https://doi.org/10.3390/ma18194602 - 3 Oct 2025
Abstract
We evaluated for the morphology and growth behavior of IMC grain according to number of reflows of solder cap pure Sn microbumps. In the structure of Ni barrier/Cu layer between Cu pillar and pure Sn, solder cap pure Sn on the top layer [...] Read more.
We evaluated for the morphology and growth behavior of IMC grain according to number of reflows of solder cap pure Sn microbumps. In the structure of Ni barrier/Cu layer between Cu pillar and pure Sn, solder cap pure Sn on the top layer was analyzed for the behavior change of IMC grain according to the number of reflows. The height and diameter of the bumps on the wafer were designed to be 40 μm and 30 μm, respectively. The vertical structure of the microbump consisted of Ti/Cu (1000 Å/2000 Å), Cu pillar (20 µm), Ni barrier (3 µm), and Cu (1 µm). The overall height of the bump is about 40 μm. Additionally, the height of the solder cap pure Sn as the last layer is 20 μm. The diameter of the bump is 30 μm. It was formed using plating. After plating to solder cap Sn, it was finally formed for the microbump using reflow. Samples were prepared according to the number of reflows (1, 3, 5, 7, and 9). To observe the grain morphology of the IMC, the pure Sn on the upper layer (solder cap) was removed using SupraBond RO-22 etchant. In the removed state, the morphology of the IMC grain was evaluated to the inside surface of bump using SEM and a 3D scope. The average number of IMC grains decreased linearly during reflow cycles 1 to 5 and then gradually decreased during reflow cycles 7 to 10. The average surface area of IMC grains was 18.243 μm when reflow was performed once. The average surface area of IMC grains increased proportionally for reflow cycles 1 to 10. Based on the experimental results, when the count of reflow was performed more than 10 times, it was confirmed that the solder cap pure Sn was reduced by more than 50% due to the increase in the area of IMC grain. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 2994 KB  
Article
Stiffness Degradation of Expansive Soil Stabilized with Construction and Demolition Waste Under Wetting–Drying Cycles
by Haodong Xu and Chao Huang
Coatings 2025, 15(10), 1154; https://doi.org/10.3390/coatings15101154 - 3 Oct 2025
Abstract
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical [...] Read more.
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical and swelling tests identified an optimal CDW incorporation of about 40%, which was then used to prepare specimens subjected to controlled. Wetting–drying cycles (0, 1, 3, 6, 10) and multistage cyclic triaxial loading across confining and deviatoric stress combinations. Mr increased monotonically with both stresses, with stronger confinement hardening at higher deviatoric levels; with cycling, Mr exhibited a rapid then gradual degradation, and for most stress combinations, the ten-cycle loss was 20%–30%, slightly mitigated by higher confinement. Grey relational analysis ranked influence as follows: the number of wetting–drying cycles > deviatoric stress > confining pressure. A Lytton model, based on a modified prediction method, accurately predicted Mr across conditions (R2 ≈ 0.95–0.98). These results integrate stress dependence with environmental degradation, offering guidance on material selection (approximately 40% incorporation), construction (adequate compaction), and maintenance (priority control of early moisture fluctuations), and provide theoretical support for durable expansive soil subgrades in humid–hot regions. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

26 pages, 4811 KB  
Article
Ginkgo Biloba and Green Tea Polyphenols Captured into Collagen–Lipid Nanocarriers: A Promising Synergistically Approach for Apoptosis Activation and Tumoral Cell Cycle Arrest
by Mirela Mihaila, Nicoleta Badea, Marionela Birliga, Marinela Bostan, Madalina Georgiana Albu Kaya and Ioana Lacatusu
Int. J. Mol. Sci. 2025, 26(19), 9648; https://doi.org/10.3390/ijms26199648 - 3 Oct 2025
Abstract
Considering the world’s growing interest in health-promoting phytochemicals, the current research investigated the development of a dual-captured Ginkgo Biloba and Green Tea Extract into Collagen-Nanostructured Lipid Nanocarriers (Col-NLC-GBil-GTE) for an enhanced therapeutic efficacy against hepatic, colon or breast cancer. NLC considerably [...] Read more.
Considering the world’s growing interest in health-promoting phytochemicals, the current research investigated the development of a dual-captured Ginkgo Biloba and Green Tea Extract into Collagen-Nanostructured Lipid Nanocarriers (Col-NLC-GBil-GTE) for an enhanced therapeutic efficacy against hepatic, colon or breast cancer. NLC considerably reduced cell viability; the most advanced cytotoxicity profile was determined on human colon adenocarcinoma cells (LoVo) and liver cancer cells (HepG2), e.g., tumor cell viability was 21.81% in the presence of Col-NLC-GBil-GTE, similar to that determined for Cisplatin. Col-NLC exhibited apoptosis in HepG2 and LoVo cells and no significant apoptosis induction in normal HUVECs. A 20% increase in apoptosis for HepG2 cells was registered for 100 μg/mL NLC-GBil-GTE compared to Cisplatin (Cis-Pt), e.g., a 63.4% total apoptosis for NLC-GBil-GTE versus a 52.6 apoptosis induced by 100 μg/mL of a chemotherapeutic drug. According to the cell cycle outcomes, an accumulation of hepatocyte HepG2 tumor cells in the G0/G1 phase was detected upon treatment with 100 mg/mL of NLC- and Col-NLC-GBil-GTE, simultaneously with a drastic decrease in the S phase, which may indicate a cell number reduction that enters in the division cycle. The simultaneous delivery of GBil and GTE by synchronizing their bioactivities offers several advantages; Col-NLC-GBil-GTE can be viewed as a noteworthy strategy for consideration in connection with antitumor therapeutic protocols. Full article
(This article belongs to the Special Issue Natural Products with Anti-Inflammatory and Anticancer Activity)
Show Figures

Figure 1

12 pages, 1302 KB  
Article
Construction and Characterization of Immortalized Skin Fibroblasts from Milu Deer
by Pan Zhang, Riujia Liu, Zhenyu Zhong, Yunfang Shan, Zhibin Cheng, Qingyun Guo, Hao Zhang, Frank Hailer and Jiade Bai
Animals 2025, 15(19), 2889; https://doi.org/10.3390/ani15192889 - 2 Oct 2025
Abstract
Somatic cell preservation is an effective strategy for conserving the genetic potential of endangered species. To contribute to the conservation of the Milu deer (Elaphurus davidianus), this study aimed to establish and characterize an immortalized skin fibroblast cell line (ML-iSFC). The [...] Read more.
Somatic cell preservation is an effective strategy for conserving the genetic potential of endangered species. To contribute to the conservation of the Milu deer (Elaphurus davidianus), this study aimed to establish and characterize an immortalized skin fibroblast cell line (ML-iSFC). The cell line is based on fibroblasts from the skin tissue of a male fawn of Milu deer. Optimal culture conditions were determined by supplementing the culture medium with different growth factors, and immortalization was achieved through simian virus 40 large T antigen (SV40T) transduction. Optimal culturing conditions for the cells were determined by adding a range of growth factors. The cellular morphology, growth characteristics, and marker expression of the cells were further evaluated. Cell cycle and proliferation were assessed by flow cytometry and CCK-8 assays, respectively. Chromosomes were determined by karyotype analysis. The highest cell growth rate was observed when the culture medium was supplemented with 3 ng/mL of FGF2. The fibroblast-specific marker vimentin (VIM) was expressed in both ML-SFC and ML-iSFC, while the epithelial marker keratin 18 (KRT18) was weakly expressed in ML-SFC cells. Cell proliferation and cell-cycle analysis revealed that ML-iSFC exhibited a higher growth rate and greater vitality compared to ML-SFC. Karyotype analysis showed that ML-iSFC maintained the same chromosome number and morphology as ML-SFC. In summary, this study reports the successful construction of an immortalized fibroblast cell line from Milu deer, which will serve as a valuable tool for Milu deer conservation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
16 pages, 4514 KB  
Article
LATP-Enhanced Polymer Electrolyte for an Integrated Solid-State Battery
by Xianzheng Liu, Nashrah Hani Jamadon, Liancheng Zheng, Rongji Tang and Xiangjun Ren
Polymers 2025, 17(19), 2673; https://doi.org/10.3390/polym17192673 - 2 Oct 2025
Abstract
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti [...] Read more.
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti1.7(PO4)3 fillers into a polyethylene oxide matrix, effectively reducing crystallinity, enhancing mechanical robustness, and providing additional Li+ transport channels. The PELT electrolyte exhibited an electrochemical stability window of 4.9 V, an ionic conductivity of 1.2 × 10−4 S·cm−1 at 60 °C, and a Li+ transference number (tLi+) of 0.46, supporting stable Li plating/stripping for over 600 h in symmetric batteries. More importantly, to address poor electrode–electrolyte contact in conventional layered cells, we proposed an integrated electrode–electrolyte architecture by in situ coating the PELT precursor directly onto LiFePO4 cathodes. This design minimized interfacial impedance, improved ion transport, and enhanced electrochemical stability. The integrated PELT/LFP battery retained 74% of its capacity after 200 cycles at 1 A·g−1 and showed superior rate capability compared with sandwich-type batteries. These results highlight that coupling LATP-enhanced polymer electrolytes with an integrated architecture is a promising pathway toward high-safety, high-performance solid-state lithium-ion batteries. Full article
Show Figures

Figure 1

20 pages, 12909 KB  
Article
Corrosion Behavior and Failure Mechanism of (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 Double-Ceramic Thermal Barrier Coatings in Na2SO4 + V2O5 Environment
by Chunman Wang, Hao Mei, Yong Shang, Xunxun Hu, Huidong Wu, Haiyuan Yu, Keke Chang, Jian Sun, Guanghua Liu, Guijuan Zhou, Chunlei Wan and Shengkai Gong
Coatings 2025, 15(10), 1147; https://doi.org/10.3390/coatings15101147 - 2 Oct 2025
Abstract
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the [...] Read more.
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the double-ceramic TBCs with (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 (RHZ) as the outer layer and YSZ as the inner layer; thermal cycling corrosion tests (1000 °C, Na2SO4 + V2O5 molten salt) were conducted to compare its performance with traditional single-layer YSZ. The results showed that the YSZ corrosion products were m-ZrO2 and YVO4, while RHZ/YSZ produced rare-earth vanadates, m-(Zr,Hf)O2, and t′-(Zr,Hf)O2, and corrosion degree was positively correlated with salt concentration (which was more impactful) and the number of cycles. Both coatings failed via molten salt penetration, thermochemical reaction, and crack-induced spallation. The corrosion mechanism between the RHZ/YSZ coating and the mixed salt can be explained based on the Lewis acid–base theory and the optical basicity. The RHZ layer on the surface of RHZ/YSZ coatings indeed hinders the penetration of corrosive molten salts into the underlying YSZ layer to some extent. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
27 pages, 8112 KB  
Article
Detection of Abiotic Stress in Potato and Sweet Potato Plants Using Hyperspectral Imaging and Machine Learning
by Min-Seok Park, Mohammad Akbar Faqeerzada, Sung Hyuk Jang, Hangi Kim, Hoonsoo Lee, Geonwoo Kim, Young-Son Cho, Woon-Ha Hwang, Moon S. Kim, Insuck Baek and Byoung-Kwan Cho
Plants 2025, 14(19), 3049; https://doi.org/10.3390/plants14193049 - 2 Oct 2025
Abstract
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to [...] Read more.
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to environmental stressors throughout their life cycles. In this study, plants were monitored from the initial onset of seasonal stressors, including spring drought, heat, and episodes of excessive rainfall, through to harvest, capturing the full range of physiological and biochemical responses under seasonal, simulated conditions in greenhouses. The spectral data were obtained from regions of interest (ROIs) of each cultivar’s leaves, with over 3000 data points extracted per cultivar; these data were subsequently used for model development. A comprehensive classification framework was established by employing machine learning models, Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Partial Least Squares-Discriminant Analysis (PLS-DA), to detect stress across various growth stages. Furthermore, severity levels were objectively defined using photoreflectance indices and principal component analysis (PCA) data visualizations, which enabled consistent and reliable classification of stress responses in both individual cultivars and combined datasets. All models achieved high classification accuracy (90–98%) on independent test sets. The application of the Successive Projections Algorithm (SPA) for variable selection significantly reduced the number of wavelengths required for robust stress classification, with SPA-PLS-DA models maintaining high accuracy (90–96%) using only a subset of informative bands. Furthermore, SPA-PLS-DA-based chemical imaging enabled spatial mapping of stress severity within plant tissues, providing early, non-invasive insights into physiological and biochemical status. These findings highlight the potential of integrating hyperspectral imaging and machine learning for precise, real-time crop monitoring, thereby contributing to sustainable agricultural management and reduced yield losses. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

25 pages, 8960 KB  
Article
Analysis on Durability of Bentonite Slurry–Steel Slag Foam Concrete Under Wet–Dry Cycles
by Guosheng Xiang, Feiyang Shao, Hongri Zhang, Yunze Bai, Yuan Fang, Youjun Li, Ling Li and Yang Ming
Buildings 2025, 15(19), 3550; https://doi.org/10.3390/buildings15193550 - 2 Oct 2025
Abstract
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming [...] Read more.
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming method. Based on 7-day unconfined compressive strength tests with different mix proportions, the optimal mix proportion was determined as follows: mass ratio of bentonite to water 1:15, steel slag content 10%, and mass fraction of bentonite slurry 5%. Based on this optimal mix proportion, dry–wet cycle tests were carried out in both water and salt solution environments to systematically analyze the improvement effect of steel slag and bentonite slurry on the durability of foam concrete. The results show the following: steel slag can act as fine aggregate to play a skeleton role; after fully mixing with cement paste, it wraps the outer wall of foam, which not only reduces foam breakage but also inhibits the formation of large pores inside the specimen; bentonite slurry can densify the interface transition zone, improve the toughness of foam concrete, and inhibit the initiation and propagation of matrix cracks during the dry–wet cycle process; the composite addition of the two can significantly enhance the water erosion resistance and salt solution erosion resistance of foam concrete. The dry–wet cycle in the salt solution environment causes more severe erosion damage to foam concrete. The main reason is that, after chloride ions invade the cement matrix, they erode hydration products and generate expansive substances, thereby aggravating the matrix damage. Scanning Electron Microscopy (SEM) analysis shows that, whether in water environment or salt solution environment, the fractal dimension of foam concrete decreased slightly with an increasing number of wet–dry cycle times. Based on fractal theory, this study established a compressive strength–porosity prediction model and a dense concrete compressive strength–dry–wet cycle times prediction model, and both models were validated against experimental data from other researchers. The research results can provide technical support for the development of durable foam concrete in harsh environments and the high-value utilization of steel slag solid waste, and are applicable to civil engineering lightweight porous material application scenarios requiring resistance to dry–wet cycle erosion, such as wall bodies and subgrade filling. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 1914 KB  
Article
The Role of Delayed Interval Debulking Surgery (DIDS) in the Surgical Treatment of Advanced Epithelial Ovarian Cancer: A Retrospective Cohort from an ESGO-Certified Center
by Dimitrios Zouzoulas, Iliana Sofianou, Panagiotis Tzitzis, Vasilis Theodoulidis, Kimon Chatzistamatiou, Eleni Timotheadou, Grigoris Grimbizis and Dimitrios Tsolakidis
Med. Sci. 2025, 13(4), 217; https://doi.org/10.3390/medsci13040217 - 2 Oct 2025
Abstract
Background/Objectives: Patients with advanced ovarian cancer with a high tumor burden typically undergo neoadjuvant chemotherapy (NACT) followed by interval debulking surgery. The optimal number of NACT cycles remains undefined: although three to four cycles are considered gold-standard, in real-world practice, five or [...] Read more.
Background/Objectives: Patients with advanced ovarian cancer with a high tumor burden typically undergo neoadjuvant chemotherapy (NACT) followed by interval debulking surgery. The optimal number of NACT cycles remains undefined: although three to four cycles are considered gold-standard, in real-world practice, five or more cycles are frequently administrated. This study aims to evaluate the impact of delayed interval debulking surgery (DIDS) after ≥5 cycles of NACT on the survival rates. Methods: We conducted a retrospective analysis of women with advanced ovarian cancer that underwent surgery in the 1st Department of Obstetrics–Gynecology Clinic from 2012 to 2022. Patient characteristics, oncological, and follow-up information were collected. Results: A total of 125 patients met the inclusion criteria and were divided into two groups: Group A (77 patients) received 3–4 of NACT cycles, and Group B (48 patients) ≥5 cycles. No statistically significant difference was observed between the groups concerning age, BMI, comorbidities, Aletti score, FIGO stage, pre-operative CA-125 values, surgery duration, rate of postoperative complications, hospital stay, ICU admittance, and complete gross resection (RD = 0). However, patients undergoing DIDS experienced significantly greater intraoperative blood loss. Progression-free survival did not differ between groups (IDS: 17 vs. DIDS: 18 months, p = 0.561), whereas overall survival was significantly lower in the DIDS group (IDS: 52 vs. DIDS: 36 months, p = 0.00873). This statistical significance persisted after controlling for residual disease, but was lost after adjusting for FIGO stage. Conclusions: DIDS may be considered for advanced ovarian cancer patients with a high tumor burden, when complete gross resection (RD = 0) cannot be achieved during IDS. Further prospective randomized trials are necessary to evaluate its oncological safety and morbidity. Full article
Show Figures

Figure 1

14 pages, 4629 KB  
Article
Zak-Phase Dislocations in Trimer Lattices
by Tileubek Uakhitov, Abdybek Urmanov, Serik E. Kumekov and Anton S. Desyatnikov
Symmetry 2025, 17(10), 1631; https://doi.org/10.3390/sym17101631 - 2 Oct 2025
Abstract
Wave propagation in periodic media is governed by energy–momentum relations and geometric phases characterizing band topology, such as Zak phase in one-dimensional lattices. We demonstrate that, in the off-diagonal trimer lattices, Zak phase carries quantized screw-type dislocations winding around degeneracies in parameter space. [...] Read more.
Wave propagation in periodic media is governed by energy–momentum relations and geometric phases characterizing band topology, such as Zak phase in one-dimensional lattices. We demonstrate that, in the off-diagonal trimer lattices, Zak phase carries quantized screw-type dislocations winding around degeneracies in parameter space. If the lattice evolves in time periodically, as in adiabatic Thouless pumps, the corresponding closed trajectory in parameter space is characterized by a Chern number equal to the negative total winding number of Zak phase dislocations enclosed by the trajectory. We discuss the correspondence between bulk Chern numbers and the edge states in a finite system evolving along various pumping cycles. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Topological Phases)
Show Figures

Figure 1

23 pages, 3872 KB  
Article
Research on the Design Method of Laminated Glass Bridge Deck for Vehicle Applications
by Baojun Zhao, Jiang Xing, Gao Cheng and Jufeng Su
Buildings 2025, 15(19), 3541; https://doi.org/10.3390/buildings15193541 - 1 Oct 2025
Abstract
Owing to the light-transmitting, energy-saving, and load-bearing properties of glass, laminated glass has gradually been adopted as vehicle lane surfaces in scenarios such as multi-storey commercial complexes, glass walkways roads, and underground parking lots. However, currently, a mature design system for vehicle-borne glass [...] Read more.
Owing to the light-transmitting, energy-saving, and load-bearing properties of glass, laminated glass has gradually been adopted as vehicle lane surfaces in scenarios such as multi-storey commercial complexes, glass walkways roads, and underground parking lots. However, currently, a mature design system for vehicle-borne glass bridge decks is still lacking, and the existing design system for pedestrian glass bridge decks cannot be directly applied to vehicle-borne scenarios. Combining domestic and international specifications and research, this study focused on material selection, structural configuration, and structural calculation of vehicle-borne glass bridge decks, proposed a targeted design method, and verified it with engineering examples. The key conclusions are as follows: (1) Laminated glass for bridge decks should preferably use homogenized tempered glass with SGP as the interlayer material; the number of glass layers should be controlled between 3 and 5, the aspect ratio of glass panels should be maintained between 1 and 2, the thickness of a single glass panel should not be less than 8 mm, and the interlayer thickness should be between 0.76 mm and 2.28 mm. (2) This study proposes design loads, load combination methods, calculation models, design criteria, and the equivalent thickness calculation method for vehicle-borne glass bridge decks; meanwhile, it incorporates the adverse working condition of single-layer glass breakage into design considerations. (3) The design method shows good agreement with numerical simulation results: both PVB and SGP-laminated glass can meet the load-bearing capacity requirements, but SGP-laminated glass has a larger safety redundancy under the same thickness; after single-layer glass breakage, the bridge deck still has sufficient load-bearing capacity; the calculation results of the design method are slightly more conservative than the finite element calculation results, but the calculation of stress and deflection for SGP-laminated glass is relatively accurate. (4) Future research will further deepen the study on the impact of the long-term performance of laminated glass on the full-life-cycle of vehicle-borne glass bridge decks and improve this design method. Full article
Show Figures

Figure 1

24 pages, 9060 KB  
Article
Uncertainty Propagation for Vibrometry-Based Acoustic Predictions Using Gaussian Process Regression
by Andreas Wurzinger and Stefan Schoder
Appl. Sci. 2025, 15(19), 10652; https://doi.org/10.3390/app151910652 - 1 Oct 2025
Abstract
Shell-like housing structures for motors and compressors can be found in everyday products. Consumers significantly evaluate acoustic emissions during the first usage of products. Unpleasant sounds may raise concerns and cause complaints to be issued. A prevention strategy is a holistic acoustic design, [...] Read more.
Shell-like housing structures for motors and compressors can be found in everyday products. Consumers significantly evaluate acoustic emissions during the first usage of products. Unpleasant sounds may raise concerns and cause complaints to be issued. A prevention strategy is a holistic acoustic design, which includes predicting the emitted sound power as part of end-of-line testing. The hybrid experimental-simulative sound power prediction based on laser scanning vibrometry (LSV) is ideal in acoustically harsh production environments. However, conducting vibroacoustic testing with laser scanning vibrometry is time-consuming, making it difficult to fit into the production cycle time. This contribution discusses how the time-consuming sampling process can be accelerated to estimate the radiated sound power, utilizing adaptive sampling. The goal is to predict the acoustic signature and its uncertainty from surface velocity data in seconds. Fulfilling this goal will enable integration into a product assembly unit and final acoustic quality control without the need for an acoustic chamber. The Gaussian process regression based on PyTorch 2.6.0 performed 60 times faster than the preliminary reference implementation, resulting in a regression estimation time of approximately one second for each frequency bin. In combination with the Equivalent Radiated Power prediction of the sound power, a statistical measure is available, indicating how the uncertainty of a limited number of surface velocity measurement points leads to predictions of the uncertainty inside the acoustical signal. An adaptive sampling algorithm reduces the prediction uncertainty in real-time during measurement. The method enables on-the-fly error analysis in production, assessing the risk of violating agreed-upon acoustic sound power thresholds, and thus provides valuable feedback to the product design units. Full article
Back to TopTop