Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = dean flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2921 KiB  
Article
Application of Inertial Microfluidics for Isolation and Removal of Round Spermatids from a Spermatogenic Cell Sample to Assist In-Vitro Human Spermatogenesis
by Sabin Nepal, Joey Casalini, Alex Jafek and Bruce Gale
Micromachines 2025, 16(5), 500; https://doi.org/10.3390/mi16050500 - 25 Apr 2025
Viewed by 262
Abstract
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though [...] Read more.
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though somewhat effective, it requires bulky, expensive equipment and significant time. In contrast, the method of inertial microfluidics offers a compact, cost-effective, and faster alternative. In this study, we designed, fabricated, and tested a microfluidic spiral channel for isolating round spermatids and purifying spermatogenic cells. A commercially available spiral device close to the calculated specifications was tested for rapid prototyping, achieving 79% purity for non-spermatid cells in a single pass, with ability to achieve higher purity through repeated passes. However, the commercial device’s narrow outlets caused clogging, prompting the fabrication of a custom polydimethylsiloxane device matching the calculated specifications. This custom device demonstrated significant improvements, achieving 86% purity in a single pass compared to STA-PUT’s 38%, and that without any clogging issues. Further purification could be attained by repeated passes, as shown in earlier studies. This work underscores the efficacy of inertial microfluidics for efficient, high-purity cell separation, with the potential to revolutionize workflows in in-vitro spermatogenesis research. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Biology)
Show Figures

Figure 1

17 pages, 7918 KiB  
Article
A Method for Measuring the Rheology of a Non-Newtonian Fluid Based on the Analysis of the Recirculation Angle of Secondary Flows in a Curved U-Shaped Channel
by Alexander S. Lobasov, Andrey V. Minakov and Sergey A. Filimonov
Fluids 2025, 10(3), 65; https://doi.org/10.3390/fluids10030065 - 8 Mar 2025
Viewed by 2089
Abstract
The field of hydrodynamics, specifically microfluidics, is currently undergoing rapid development, with significant progress being made in the creation of new devices and technologies that outperform their macroscopic counterparts. Concurrently, determining the parameters of a non-Newtonian fluid is becoming an important task in [...] Read more.
The field of hydrodynamics, specifically microfluidics, is currently undergoing rapid development, with significant progress being made in the creation of new devices and technologies that outperform their macroscopic counterparts. Concurrently, determining the parameters of a non-Newtonian fluid is becoming an important task in many areas of industry and production, particularly in the oil industry. Both the drilling fluids (needed to create wells) and the polymer-based displacers and surfactants (needed to extract oil) have non-Newtonian properties. This paper presents a method for determining the indices of consistency and flow behaviour of the non-Newtonian fluid (power-law model) based on the analysis of secondary Dean vortices generated in a curved channel. This phenomenon is conveniently described using the recirculation angle. The structure of the flow of non-Newtonian fluids in a U-shaped micromixer has been studied. The dependence of the recirculation angle on the fluid flow rate was obtained for different fluid parameters. A universal correlation was proposed to describe the dependence of the inverse Dean number on the recirculation angle of the flow. The consistency and flow behaviour indices of the power-law model of non-Newtonian fluids found using the above correlation can be measured in the experiments. Full article
Show Figures

Figure 1

11 pages, 3416 KiB  
Article
Efficient Particle Manipulation Using Contraction–Expansion Microchannels Embedded with Hook-Shaped Arrays
by Di Huang, Yan Zhao, Chao Cao and Jiyun Zhao
Micromachines 2025, 16(1), 83; https://doi.org/10.3390/mi16010083 - 13 Jan 2025
Cited by 1 | Viewed by 773
Abstract
Inertial microfluidics, as an efficient method for the manipulation of micro-/nanoparticles, has garnered significant attention due to its advantages of high throughput, structural simplicity, no need for external fields, and sheathless operation. Common structures include straight channels, contraction–expansion array (CEA) channels, spiral channels, [...] Read more.
Inertial microfluidics, as an efficient method for the manipulation of micro-/nanoparticles, has garnered significant attention due to its advantages of high throughput, structural simplicity, no need for external fields, and sheathless operation. Common structures include straight channels, contraction–expansion array (CEA) channels, spiral channels, and serpentine channels. In this study, we developed a CEA channel embedded with hook-shaped microstructures to modify the characteristics of vortices. Through experimental studies, we investigated the particles’ migration mechanisms within the proposed structure. The findings indicated that, in comparison to conventional rectangular microstructures, the particles within the hook-shaped microstructured CEA channels experienced a more pronounced influence from inertial lift forces. Moreover, the magnitude of the second flow within the novel configuration was directly proportional to the channel width, the length of the expansion segment, and the embedding depth of the microstructure. The innovative structure was subsequently employed for particle trapping, focusing, and separation. The experimental outcomes revealed focusing efficiency of up to 99.1% and sorting efficiency of up to 97%. This research holds the potential to enhance the foundational theory of Dean flows and broaden the application spectrum of inertial contraction–expansion microfluidic chips. Full article
Show Figures

Figure 1

14 pages, 1928 KiB  
Article
Comparison of Microfluidic Synthesis of Silver Nanoparticles in Flow and Drop Reactors at Low Dean Numbers
by Konstantia Nathanael, Nina M. Kovalchuk and Mark J. H. Simmons
Micromachines 2025, 16(1), 75; https://doi.org/10.3390/mi16010075 - 10 Jan 2025
Cited by 1 | Viewed by 983
Abstract
This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices [...] Read more.
This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase. Aqueous solutions of reagents were supplied through two different channels merging just before the drops were formed. In the continuous flow device, the reagents merged at a Tee junction, and the reaction was carried out in the outlet tube. Although continuous flow systems may face challenges such as particle concentration reduction due to deposition on the channel wall or fouling, they are often more practical for research due to their operational simplicity, primarily through the elimination of the need to separate the aqueous nanoparticle dispersion from the oil phase. The results demonstrate that both microfluidic approaches produced AgNPs of similar sizes when the hydrodynamic conditions defined by the values of De and the residence time within the reactor were similar. Full article
(This article belongs to the Special Issue Microfluidic Nanoparticle Synthesis)
Show Figures

Figure 1

19 pages, 4916 KiB  
Article
Consistent Evaluation Methods for Microfluidic Mixers
by Oliver Blaschke, Jonas Kluitmann, Jakob Elsner, Xie Xie and Klaus Stefan Drese
Micromachines 2024, 15(11), 1312; https://doi.org/10.3390/mi15111312 - 29 Oct 2024
Viewed by 1166
Abstract
The study presents a unifying methodology for characterizing micromixers, integrating both experimental and simulation techniques. Focusing on Dean mixer designs, it employs an optical evaluation for experiments and a modified Sobolev norm for simulations, yielding a unified dimensionless characteristic parameter for the whole [...] Read more.
The study presents a unifying methodology for characterizing micromixers, integrating both experimental and simulation techniques. Focusing on Dean mixer designs, it employs an optical evaluation for experiments and a modified Sobolev norm for simulations, yielding a unified dimensionless characteristic parameter for the whole mixer at a given Reynolds number. The results demonstrate consistent mixing performance trends across both methods for various operation points. This paper also proposes enhancements in the evaluation process to improve accuracy and reduce noise impact. This approach provides a valuable framework for optimizing micromixer designs, essential in advancing microfluidic technologies. Full article
Show Figures

Figure 1

14 pages, 2979 KiB  
Article
Ethanol Production Using Zymomonas mobilis and In Situ Extraction in a Capillary Microreactor
by Julia Surkamp, Lennart Wellmann, Stephan Lütz, Katrin Rosenthal and Norbert Kockmann
Micromachines 2024, 15(10), 1255; https://doi.org/10.3390/mi15101255 - 13 Oct 2024
Cited by 1 | Viewed by 1582
Abstract
The bacterium Zymomonas mobilis is investigated as a model organism for the cultivation and separation of ethanol as a product by in situ extraction in continuous flow microreactors. The considered microreactor is the Coiled Flow Inverter (CFI), which consists of a capillary coiled [...] Read more.
The bacterium Zymomonas mobilis is investigated as a model organism for the cultivation and separation of ethanol as a product by in situ extraction in continuous flow microreactors. The considered microreactor is the Coiled Flow Inverter (CFI), which consists of a capillary coiled onto a support structure. Like other microreactors, the CFI benefits from a high surface-to-volume ratio, which enhances mass and heat transfer. Compared to many other microreactors, the CFI offers the advantage of operating without internal structures, which are often used to ensure good mixing. The simplicity of the design makes the CFI particularly suitable for biochemical applications as cells do not get stuck or damaged by internal structures. Despite this simplicity, good mixing is achieved through flow vortices caused by Taylor and Dean vortices. The reaction system consists of two phases, in which the aqueous phase carries the bacterium and an oleyl alcohol phase is used to extract the ethanol produced. Key parameters for evaluation are bacteria growth and the amount of ethanol produced by the microorganism. The results show the suitability of the CFI for microbial production of valuable compounds. A maximum ethanol concentration of 1.26 g L−1 was achieved for the experiment in the CFI. Overall, the cultivation in the CFI led to faster growth of Z. mobilis, resulting in 25% higher ethanol production than in conducted batch experiments. Full article
Show Figures

Figure 1

22 pages, 4326 KiB  
Article
Numerical Study of Heat Transfer Enhancement Using Nano-Encapsulated Phase Change (NPC) Slurries in Wavy Microchannels
by Myo Min Zaw, Liang Zhu and Ronghui Ma
Fluids 2024, 9(10), 236; https://doi.org/10.3390/fluids9100236 - 9 Oct 2024
Cited by 2 | Viewed by 1028
Abstract
Researchers have attempted to improve heat transfer in mini/microchannel heat sinks by dispersing nano-encapsulated phase change (NPC) materials in base coolants. While NPC slurries have demonstrated improved heat transfer performance, their applications are limited by decreasing enhancement at increased flow rates. To address [...] Read more.
Researchers have attempted to improve heat transfer in mini/microchannel heat sinks by dispersing nano-encapsulated phase change (NPC) materials in base coolants. While NPC slurries have demonstrated improved heat transfer performance, their applications are limited by decreasing enhancement at increased flow rates. To address this challenge, the present study numerically investigates the effects of wavy channels on the performance of NPC slurries. Simulation results reveal that a wavy channel induces Dean vortices that intensify the mixing of the working fluid and enlarge the melting fractions of the NPC material, thus offering a significantly higher heat transfer efficiency than a straight channel. Moreover, heat transfer enhancement by NPC slurries varies with the imposed heat flux and flow rate. Interestingly, the maximum heat transfer enhancement obtained with the wavy channel not only exceeds the straight one, but also occurs at a higher heat flux and faster flow rate. This finding demonstrates the advantage of wavy channels in management of intensive heat fluxes with NPC slurries. The study also investigates wavy channels with varying amplitude and wavelength. Increasing the wave aspect ratio from 0.2 to 0.588 strengthens Dean vortices and consequently increases the Nusselt number, optimal heat flux, and overall thermal performance factor. Full article
(This article belongs to the Special Issue Physics and Applications of Microfluidics)
Show Figures

Figure 1

15 pages, 2768 KiB  
Article
Parallelization of Curved Inertial Microfluidic Channels to Increase the Throughput of Simultaneous Microparticle Separation and Washing
by Nima Norouzy, Arsalan Nikdoost and Pouya Rezai
Micromachines 2024, 15(10), 1228; https://doi.org/10.3390/mi15101228 - 30 Sep 2024
Viewed by 1210
Abstract
The rising global need for clean water highlights the importance of efficient sample preparation methods to separate and wash various contaminants such as microparticles. Microfluidic methods for these purposes have emerged but they mostly deliver either separation or washing, with very low throughputs. [...] Read more.
The rising global need for clean water highlights the importance of efficient sample preparation methods to separate and wash various contaminants such as microparticles. Microfluidic methods for these purposes have emerged but they mostly deliver either separation or washing, with very low throughputs. Here, we investigate parallelization of a curved-channel particle separation and washing device in order to increase its throughput for sample preparation. A curved microchannel applies inertial forces to focus larger 10 µm microparticles at the inner wall of the channel and separate them from smaller 5 µm microparticles at the outer wall. At the same time, Dean flow recirculation is used to exchange the carrier solution of the large microparticles to a clean buffer (washing). We increased the number of curved channels in a stepwise manner from two to four to eight channels in two different arraying designs, i.e., rectangular and polar arrays. We examined efficient separation of target 10 µm particles from 5 µm particles, while transferring the larger microparticles into a clean buffer. Dean flow recirculation studies demonstrated that the rectangular arrayed device performs better, providing solution exchange efficiencies of more than 96% on average as compared to 89% for the polar array device. Our 8-curve rectangular array device provided a particle separation efficiency of 98.93 ± 0.91%, while maintaining a sample purity of 92.83 ± 1.47% at a high working flow rate of 12.8 mL/min. Moreover, the target particles were transferred into a clean buffer with a solution exchange efficiency of 96.81 ± 0.54% in our 8-curve device. Compared to the literature, our in-plane parallelization design of curved microchannels resulted in a 13-fold increase in the working flow rate of the setup while maintaining a very high performance in particle separation and washing. Our microfluidic device offers the potential to enhance the throughput and the separation and washing efficiencies in applications for biological and environmental samples. Full article
(This article belongs to the Special Issue Micro and Smart Devices and Systems, 3rd Edition)
Show Figures

Figure 1

32 pages, 10643 KiB  
Article
A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite–Arginine Nanoparticles
by Alireza Farahinia, Milad Khani, Tyler A. Morhart, Garth Wells, Ildiko Badea, Lee D. Wilson and Wenjun Zhang
Sensors 2024, 24(18), 6031; https://doi.org/10.3390/s24186031 - 18 Sep 2024
Cited by 2 | Viewed by 1724
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, [...] Read more.
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation. Full article
Show Figures

Figure 1

15 pages, 6892 KiB  
Article
Asymmetry Propagation in a Pipe Flow Downstream of a 90° Sharp Elbow Bend
by Blaž Mikuž, Klemen Cerkovnik and Iztok Tiselj
Appl. Sci. 2024, 14(17), 7895; https://doi.org/10.3390/app14177895 - 5 Sep 2024
Cited by 1 | Viewed by 1457
Abstract
Pipe bends disrupt the flow, resulting in an asymmetric velocity field across the pipe diameter (D). We examined the recovery length required for the flow to return to a symmetric velocity profile downstream of a sharp elbow. The wall-resolved Large Eddy Simulation (LES) [...] Read more.
Pipe bends disrupt the flow, resulting in an asymmetric velocity field across the pipe diameter (D). We examined the recovery length required for the flow to return to a symmetric velocity profile downstream of a sharp elbow. The wall-resolved Large Eddy Simulation (LES) approach was applied to reproduce turbulent fluid flow at Reynolds numbers (Re) of 5600 and 10,000. An additional case in the transitional laminar-turbulent-laminar regime was analyzed at Re=1400. This analysis explored the behavior of the Dean vortices downstream of the elbow and revealed that, in turbulent cases, these vortices reverse their vorticity direction in the region between 8 D and 10 D. However, they eventually decay in structure as far as 25 D from the elbow. Flow asymmetry was analyzed in a 100 D long pipe section downstream of the elbow using four different criteria: wall shear stress (WSS), streamwise velocity, its fluctuations, and vorticity fields. This study found that in turbulent flows, the distance required for flow recovery is a few tens of D and decreases with increasing Re. However, in the transitional case, the flow separation within the elbow induces instabilities that gradually diminish downstream, and flow asymmetry persists even longer than the 100 D length of our outlet pipe section. WSS proved sensitive for detecting asymmetry near walls, whereas flow profiles better revealed bulk asymmetry. It was also shown that asymmetry indicators derived from velocity fluctuations and vorticity were less sensitive than those obtained from streamwise velocity. Full article
(This article belongs to the Special Issue Applied Computational Fluid Dynamics and Thermodynamics)
Show Figures

Figure 1

12 pages, 2339 KiB  
Article
Experimental and Statistical Determination of Convective Heat and Mass Transfer Coefficients for Eucalyptus nitens Sawn Wood Drying
by Carlos Rozas, Oswaldo Erazo, Virna Ortiz-Araya, Rodrigo Linfati and Claudio Montero
Forests 2024, 15(8), 1287; https://doi.org/10.3390/f15081287 - 24 Jul 2024
Viewed by 894
Abstract
This study aimed to develop a model using experimentally obtained convective heat and mass transfer coefficients to predict the effect of temperature, humidity, and drying rate on wood drying. Tangential wood samples of Eucalyptus nitens (H. Deane & Maiden) were used in the [...] Read more.
This study aimed to develop a model using experimentally obtained convective heat and mass transfer coefficients to predict the effect of temperature, humidity, and drying rate on wood drying. Tangential wood samples of Eucalyptus nitens (H. Deane & Maiden) were used in the investigation. The experimental design consisted of two temperature levels (40 °C and 55 °C), two relative humidity levels (55% and 75%), and two air velocity settings (2 m·s−1 and 3 m·s−1). The experiments were conducted under a constant evaporation rate, spanning the maximum and critical moisture content in the wood. A statistical model using multivariate regression was created to predict the convective heat and mass transfer coefficients. The results indicated that the experimental data and empirical correlations exhibited an error margin of 37.77% and 37.86%, respectively. A significant positive correlation was found between the convective heat transfer coefficient and air velocity, temperature, and relative humidity, while the convective mass transfer coefficient showed a significant positive correlation only with air velocity and temperature. The model predicted the convective heat and mass transfer coefficients with high accuracy and statistical significance. Using the proposed method, we successfully obtained both convective coefficients, which enable accurate description of heat and mass flow during the convective drying of Eucalyptus nitens wood. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

15 pages, 7291 KiB  
Article
In Situ Study on the Structural Evolution of Flexible Ionic Gel Sensors
by Shujun Yan, Jun Tang, Angui Zhang, Nie Zhao, Fu Wang and Shaowei Sun
Coatings 2024, 14(5), 562; https://doi.org/10.3390/coatings14050562 - 1 May 2024
Viewed by 1811
Abstract
With the development of society, the demand for smart coatings is increasing. The development of flexible strain sensors using block copolymer self-assembled ionic gel materials provides a promising method for promoting the development of smart coatings. The ionic liquid in the ionic part [...] Read more.
With the development of society, the demand for smart coatings is increasing. The development of flexible strain sensors using block copolymer self-assembled ionic gel materials provides a promising method for promoting the development of smart coatings. The ionic liquid in the ionic part of the material is crucial for the performance of the sensor. In this study, the structural changes within FDA/dEAN (self-assembly of acrylated Pluronic F127 (F127-DA) in partially deuterated ethylammonium nitrate (dEAN)) triblock copolymer ionic gel during uniaxial tensile flow were characterized using an in situ SAXS technique. The results revealed that the characteristics of the responses of the ionic gel to strain resistance were intricately linked to the evolution of its microstructure during the tensile process. At low levels of strain, the face-centered cubic lattice arrangement of the micelles tended to remain unchanged. However, when subjected to higher strains, the molecular chains aligned along the stretching direction, resulting in a more ordered structure with reduced entropy. This alignment led to significant disruption in bridging structures within the material. Furthermore, this research explored the impact of the stretching rate on the relaxation process. It was observed that higher stretching rates led to decreases in the average relaxation time, indicating rate dependence in the microstructure’s behavior. These findings provide valuable insights into the behavior and performance of flexible strain sensors based on ionic gel materials in smart coatings. Full article
Show Figures

Figure 1

25 pages, 23569 KiB  
Article
Analyzing the Influence of Dean Number on an Accelerated Toroidal: Insights from Particle Imaging Velocimetry Gyroscope (PIVG)
by Ramy Elaswad, Naser El-Sheimy and Abdulmajeed Mohamad
Fluids 2024, 9(5), 103; https://doi.org/10.3390/fluids9050103 - 25 Apr 2024
Cited by 2 | Viewed by 1517
Abstract
Computational Fluid Dynamics (CFD) simulations were utilized in this study to comprehensively explore the fluid dynamics within an accelerated toroidal vessel, specifically those central to Particle Imaging Velocimetry Gyroscope (PIVG) technology. To ensure the robustness of our simulations, we systematically conducted grid convergence [...] Read more.
Computational Fluid Dynamics (CFD) simulations were utilized in this study to comprehensively explore the fluid dynamics within an accelerated toroidal vessel, specifically those central to Particle Imaging Velocimetry Gyroscope (PIVG) technology. To ensure the robustness of our simulations, we systematically conducted grid convergence studies and quantified uncertainties, affirming the stability, accuracy, and reliability of our computational grid and results. Comprehensive validation against experimental data further confirmed our simulations’ fidelity, emphasizing the model’s fidelity. As the PIVG is set up to address the primary flow through the toroidal pipe, we focused on the interaction between the primary and secondary flows to provide insights into the relevant dynamics of the fluid. In our investigation covering Dean numbers (De) from 10 to 70, we analyzed diverse aspects, including primary flow, secondary flow patterns, pressure distribution, and the interrelation between primary and secondary flows within toroidal structures, offering a comprehensive view across this range. Our research indicated stability and fully developed fluid dynamics within the toroidal pipe under accelerated angular velocity, particularly for low De. Furthermore, we identified an optimal Dean number of 11, which corresponded to ideal dimensions for the toroidal geometry with a curvature radius of 25 mm and a cross-sectional diameter of 5 mm. This study enhances our understanding of toroidal fluid dynamics and highlights the pivotal role of CFD in optimizing toroidal vessel design for advanced navigation technologies. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

10 pages, 3302 KiB  
Article
Prednisolone Nanoprecipitation with Dean Instability Microfluidics Mixer
by Yu Ching Wong, Siyu Yang and Weijia Wen
Nanomaterials 2024, 14(8), 652; https://doi.org/10.3390/nano14080652 - 9 Apr 2024
Cited by 1 | Viewed by 1163
Abstract
Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles [...] Read more.
Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles synthesis at De up to 198. The channel geometry (the tortuous channel) is optimized by simulation, in which the mixing efficiency is considered. With the optimized design, prednisolone nanoparticles are synthesized, and the size of the most abundant prednisolone nanoparticles is down to 100 nm with an increase in the Re and De and smallest size down to 46 nm. This work serves as an ice-breaker to the real application of Dean instability by demonstrating its ability in mixing and nanomaterials like nanoparticle synthesis. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

15 pages, 7944 KiB  
Article
Study on the Unsteady Flow Characteristics of a Pump Turbine in Pump Mode
by Fei Zhang, Zhenmu Chen, Shuangqian Han and Baoshan Zhu
Processes 2024, 12(1), 41; https://doi.org/10.3390/pr12010041 - 22 Dec 2023
Cited by 2 | Viewed by 1563
Abstract
Extensive research has been conducted on the performance of pump turbines, particularly focused on understanding the generation mechanism of S-shaped characteristics. However, there has been a lack of research on unsteady flow characteristics in hump characteristics with small guide vane openings. This study [...] Read more.
Extensive research has been conducted on the performance of pump turbines, particularly focused on understanding the generation mechanism of S-shaped characteristics. However, there has been a lack of research on unsteady flow characteristics in hump characteristics with small guide vane openings. This study focuses on the hump characteristics of a pump turbine in pump mode. The unsteady numerical simulation method is used along with experimental testing to examine the internal flow characteristics and induced pressure fluctuations under pump operating conditions. The results indicate that flow separation occurs in the impeller when the flow rate decreases to the valley operating condition, and recirculation flow occurs near the impeller inlet at the partial flow rate. Moreover, the unstable flow on the positive slope exhibits a low-frequency characteristic of 0.15fn. The pressure fluctuation from the hub to shroud areas of the guide vane region diminishes sequentially. Notably, distinct vortex structures emerge at the draft tube cone section under the valley operating condition. These structures extend toward the elbow section of the draft tube as the flow rate decreases. This phenomenon generates low-frequency pressure fluctuation originating from the primary frequency of the vortex and dean vortex on the surface, located at 0.4 D of the draft tube under conditions of low flow rate. Full article
Show Figures

Figure 1

Back to TopTop