Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = delamination suppression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6816 KB  
Article
Development of Graphene/Recycled Carbon Fiber-Reinforced PLA Composites for MEX Printing and Dry Machinability Analysis
by Abdullah Yahia AlFaify, Mustafa Saleh, Saqib Anwar, Abdulrahman M. Al-Ahmari and Abd Elaty E. AbdElgawad
Polymers 2025, 17(17), 2372; https://doi.org/10.3390/polym17172372 (registering DOI) - 31 Aug 2025
Abstract
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high [...] Read more.
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high due to the process-related layering nature and the materials’ properties. This study explores RPC development for MEX printing and the potential of dry milling post-processing to enhance the MEX-printed part’s surface quality. RPC MEX filaments were developed by incorporating graphene nanoplatelets (GNPs) and/or recycled-carbon fibers (rCFs) into a polylactic acid (PLA) matrix. The filaments, including pure PLA and various GNPs-PLA composites, rCF-PLA, and rCF-GNPs-PLA, were developed through ball mill mixing and melt extrusion. Tensile tests were performed to assess the mechanical properties of the developed materials. Dry milling post-processing was carried out to assess the machinability, with the aim of enhancing the MEX-printed part’s surface quality. The results revealed that adding GNPs into PLA showed no considerable enhancements in the tensile properties of the fabricated RPCs, which is contrary to several existing studies. Dry milling showed an enhanced surface quality of MEX-printed parts in terms of surface roughness (Sa and Sz) and the absence of defects such as delamination and layer lines. Adding GNPs into PLA facilitated the dry machining of PLA, resulting in reduced surface asperities compared to pure PLA. Also, there was no observation of pulled-out, realigned, or naked rCFs, which indicates good machinability. Adding GNPs also suppressed the formation of voids around the rCFs during the dry milling. This study provides insights into machining 3D-printed polymer composites to enhance their surface quality. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

0 pages, 13337 KB  
Article
Machinability of Basalt and Glass Fiber Hybrid Composites in Dry Drilling Using TiN/TiAlN-Coated Drill Bits
by Mehmet İskender Özsoy, Satılmış Ürgün, Sinan Fidan, Eser Yarar, Erman Güleç and Mustafa Özgür Bora
Polymers 2025, 17(16), 2172; https://doi.org/10.3390/polym17162172 - 8 Aug 2025
Viewed by 464
Abstract
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm [...] Read more.
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm twist drills at 1520 revolutions per minute and 0.10 mm rev−1 under dry running with an uncoated high-speed steel (HSS-R), grind-coated high-speed steel (HSS-G) or physical vapor deposition-coated (high-speed steel coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN)) drill bits. The hybrid sheets were deliberately incorporated to clarify how alternating basalt–glass architectures redistribute interlaminar stresses during drilling, while the hard, low-friction TiN and TiAlN ceramic coatings enhance cutting performance by forming a heat-resistant tribological barrier that lowers tool–workpiece adhesion, reduces interface temperature, and thereby suppresses thrust-induced delamination. Replacement of an uncoated, grind-coated, high-speed-steel drill (HSS-G) with the latter coats lowered the mechanical and thermal loads substantially: mean thrust fell from 79–94 N to 24–30 N, and peak workpiece temperatures from 112 °C to 74 °C. Accordingly, entry/exit oversize fell from 2.5–4.7% to under 0.6% and, from the surface, the SEM image displayed clean fiber severance rather than pull-out and matrix smear. By analysis of variance (ANOVA), 92.7% of the variance of thrust and 86.6% of that of temperature could be accounted for by the drill-bit factor, thus confirming that the coatings overwhelm the laminate structure and hybrid stacking simply redistribute, but cannot overcome, the former influence. Regression models and an artificial neural network optimized via meta-heuristic optimization foretold thrust, temperature and delamination with an R2 value of 0.94 or higher, providing an instant-screening device with which to explore industrial application. The work reveals TiAlN- and TiN-coated drills as financially competitive alternatives with which to achieve ±1% dimensional accuracy and minimum subsurface damage during multi-material composite machining. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

22 pages, 6962 KB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Viewed by 563
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

27 pages, 7525 KB  
Article
Coupled Thermo-Mechanical Modeling of Crack-Induced Stress Fields in Thermal Barrier Coatings with Varying Crack Geometries
by Linxi Zhang, Ruifeng Dou, Ningning Liu, Jian Sun, Xunliang Liu and Zhi Wen
Coatings 2025, 15(7), 785; https://doi.org/10.3390/coatings15070785 - 3 Jul 2025
Viewed by 481
Abstract
Under service conditions, randomly distributed cracks in the top coat (TC) layer of thermal barrier coatings (TBCs) lead to local stress concentrations, which serve as the primary drivers of crack propagation and coating delamination. This study systematically analyzes the influence of crack defects [...] Read more.
Under service conditions, randomly distributed cracks in the top coat (TC) layer of thermal barrier coatings (TBCs) lead to local stress concentrations, which serve as the primary drivers of crack propagation and coating delamination. This study systematically analyzes the influence of crack defects on the thermal stress distribution in TBCs, based on their microstructural characteristics, using a multi-physics-coupled finite element model. Numerical analysis of crack characteristics reveals that crack length significantly influences the stress distribution in the coatings, with the maximum tensile stress at the crack tip increasing from 104.02 to 238.51 MPa as the crack half-length extends from 400 to 1000 μm. Shorter cracks induce lower tensile stresses, thereby retarding crack propagation and delaying coating delamination. Crack depth also influences the stress distribution, with the maximum tensile stress decreasing from 205.88 to 101.65 MPa as the crack is buried deeper, from 50 to 200 μm, indicating a more stable stress state less prone to propagation in deeper cracks. For inclined cracks, increasing the inclination angle induces a shift in stress from tensile to compressive, with larger inclination angles exhibiting greater stability. Accordingly, this study proposes a laser scribing strategy to mitigate crack-tip stress concentration, which is validated through comparison with two-dimensional crack models. Laser scribing shortens crack length by interrupting crack continuity, relieves localized thermal expansion strain, effectively suppresses crack growth, and significantly enhances the crack resistance and thermal shock stability of the coating. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

37 pages, 5280 KB  
Review
Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review
by Seung-Hoon Lee, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Electronics 2025, 14(13), 2682; https://doi.org/10.3390/electronics14132682 - 2 Jul 2025
Viewed by 4352
Abstract
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass [...] Read more.
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass Reflow Molded Underfill (MR MUF) underfills lower but do not eliminate the internal thermal resistance that rises sharply beyond 12layer stacks. We then synthesize recent hybrid bonding studies, showing that an optimized Cu pad density, interface characteristic, and mechanical treatments can cut junction-to-junction thermal resistance by between 22.8% and 47%, raise vertical thermal conductivity by up to three times, and shrink the stack height by more than 15%. A meta-analysis identifies design thresholds such as at least 20% Cu coverage that balances heat flow, interfacial stress, and reliability. The review next traces the chain from Coefficient of Thermal Expansion (CTE) mismatch to Cu protrusion, delamination, and warpage and classifies mitigation strategies into (i) material selection including SiCN dielectrics, nano twinned Cu, and polymer composites, (ii) process technologies such as sub-200 °C plasma-activated bonding and Chemical Mechanical Polishing (CMP) anneal co-optimization, and (iii) the structural design, including staggered stack and filleted corners. Integrating these levers suppresses stress hotspots and extends fatigue life in more than 16layer stacks. Finally, we outline a research roadmap combining a multiscale simulation with high layer prototyping to co-optimize thermal, mechanical, and electrical metrics for next-generation 20-layer HBM. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

27 pages, 8872 KB  
Article
Drilling Machinability of Glass, Basalt, and Hybrid Epoxy Composites: Thrust Force, Thermal Load, and Hole Quality
by Eser Yarar, Mehmet İskender Özsoy, Sinan Fidan, Satılmış Ürgün and Mustafa Özgür Bora
Polymers 2025, 17(12), 1643; https://doi.org/10.3390/polym17121643 - 13 Jun 2025
Cited by 1 | Viewed by 628
Abstract
The drilling machinability of glass fiber G14, basalt fiber B14, and two hybrid laminates (B4G6B4, G4B6G4) was evaluated through 36 full-factorial experiments employing an HSS-G drill, three [...] Read more.
The drilling machinability of glass fiber G14, basalt fiber B14, and two hybrid laminates (B4G6B4, G4B6G4) was evaluated through 36 full-factorial experiments employing an HSS-G drill, three spindle speeds (715, 1520, 3030 rpm), and three feed rates (0.1–0.3 mm rev−1). Peak thrust force varied from 65.8 N for B14 at 0.1 mm rev−1 to 174.3 N for G14 at 0.3 mm rev−1; hybrids occupied the intermediate range of 101–163 N. Infra-red thermography recorded maximum drill temperatures of 110–120 °C for G14, almost double those of B14, while both hybrids attenuated hotspots to below 90 °C. ANOVA attributed 73.4% of thrust force variance to feed rate, with material type and spindle speed contributing 15.5% and 1.7%, respectively; for temperature, material type governed 41.5% of variability versus 17.0% for speed. Dimensional quality tests revealed that the symmetric hybrid G4B6G4 maintained entrance and exit diameters within ±2% of the nominal 6 mm, whereas B4G6B4 over-expansion exceeded 8% at the lowest feed and G14 exit diameters grew to 6.1 mm at 0.3 mm rev−1. Integrating basalt compliance with glass stiffness, therefore, halves thrust force relative to G14, suppresses delamination and overheating, and offers a practical strategy to prolong tool life and improve hole quality in multi-material composite structures. These insights guide parameter selection for lightweight hybrid composites in aerospace, renewable-energy installations, and marine components worldwide. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 7135 KB  
Article
Effects of Nanofiber Interleaving on the Strength and Failure Behavior of Co-Cured Composite Joints with Fiber Orientation Mismatch
by Abdul Bari Abdul Raheman, Kaan Bilge and Melih Papila
J. Compos. Sci. 2025, 9(6), 285; https://doi.org/10.3390/jcs9060285 - 2 Jun 2025
Viewed by 840
Abstract
This study investigates the effect of nanofiber interleaving on the mechanical performance of co-cured composite lap joints with effective fiber orientation mismatch at the joint interface. Joint configurations were defined by dominant yarn orientations at the bond line—denoted as (lower-substrate|upper-substrate)—and tested in (0|0), [...] Read more.
This study investigates the effect of nanofiber interleaving on the mechanical performance of co-cured composite lap joints with effective fiber orientation mismatch at the joint interface. Joint configurations were defined by dominant yarn orientations at the bond line—denoted as (lower-substrate|upper-substrate)—and tested in (0|0), (90|90), and mismatched (0|90) setups using an 8-harness satin (8HS) fabric architecture, with and without nanofiber interlayers. Mechanical testing revealed an over ~25% reduction in lap shear strength for the (0|90) configuration relative to the matched (0|0) and (90|90) joints. Nanofiber interleaving effectively restored this loss, achieving strength levels comparable to the matched cases. Statistical analysis using two-way ANOVA and ANOM confirmed that both fiber orientation and nanofiber interleaving significantly influence joint strength, with a notable interaction effect (p < 0.001). Fractographic analysis further showed that nanofibers enhanced delamination resistance by stabilizing crack paths and suppressing crack jumps at crimping sites, especially in (0|90) joints where 0/90 yarn intersections are prone to early failure. These findings underscore the role of nanofiber interleaving in mitigating mismatch-induced failure mechanisms and improving the structural integrity of composite bonded interfaces. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

26 pages, 6091 KB  
Article
Performance of Composite Precast Assembled Concrete Utility Tunnels Subjected to Internal Gas Explosions: A Numerical Parametric Study
by Yushu Lin and Baijian Tang
Processes 2025, 13(6), 1621; https://doi.org/10.3390/pr13061621 - 22 May 2025
Viewed by 418
Abstract
To address the research gap in gas blast resistance of composite precast assembled utility tunnels, this study investigates structural damage evolution and the mechanisms influencing parameters through validated numerical simulations. A three-dimensional numerical model, incorporating the Karagozian & Case (K&C) concrete damage model [...] Read more.
To address the research gap in gas blast resistance of composite precast assembled utility tunnels, this study investigates structural damage evolution and the mechanisms influencing parameters through validated numerical simulations. A three-dimensional numerical model, incorporating the Karagozian & Case (K&C) concrete damage model and tie-break contact algorithm, was developed using LS-DYNA. The first validation against composite precast concrete slab explosion tests confirmed the model’s reliability, with displacement peak errors below 10%. The second validation focuses on the blast resistance test conducted on an underground utility tunnel, revealing an error margin of less than 10%. Results indicate that the utility tunnel exhibits a progressive failure mode of “joint cracking-interface damage-midspan cracking” under explosive loads, with stiffness degradation observed in joint regions at a loading pressure of 700 kPa. Increasing the normal strength of the interface to 5 MPa suppresses 90% of interface delamination, whereas completely neglecting interface strength results in a 9.0% increase in midspan displacement. Concrete strength shows minimal impact (<2.5%) on displacement under high loading conditions (≥0.9 MPa), and increasing the reinforcement ratio from 0.44% to 0.56% reduces displacement of the roof slab by 10.5%. These findings of address the research gap in the gas explosion response of composite precast assembled utility tunnels and could have significant implications for enhancing the disaster resistance of urban underground spaces. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

22 pages, 7789 KB  
Article
Evaluating Effects of Wrinkle Defects on Impact Response and Residual Compressive Strength After Impact in CFRP
by Jian Wang, Huiming Ding, Shidi Zhang, Han Wang, Yunbo Bi and Zhengli Hua
Polymers 2025, 17(10), 1355; https://doi.org/10.3390/polym17101355 - 15 May 2025
Cited by 2 | Viewed by 430
Abstract
Carbon fiber-reinforced polymer (CFRP) has become widely applied in engineering fields such as aerospace and the automotive industries. Evaluating the damage tolerance of CFRP with manufacturing defects under impact loads is crucial in ensuring the reliable service of CFRP components. In this study, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) has become widely applied in engineering fields such as aerospace and the automotive industries. Evaluating the damage tolerance of CFRP with manufacturing defects under impact loads is crucial in ensuring the reliable service of CFRP components. In this study, four types of wrinkle defects are designed, and the effect mechanism is thoroughly discussed, focusing on the impact and compressive response. The results indicate that the wrinkle defects primarily affect the impact response via the wrinkle fibers being subjected to impact stress and wrinkle stress concentration. Notably, the first peak contact force of the specimen with a wrinkle at the 12th layer is reduced by approximately 20.00% compared to that of the specimen with a wrinkle at the third layer. Additionally, the first peak contact force of the specimen subjected to a reverse impact direction decreases by about 14.00% compared to that under a forward impact direction. The impact direction also plays a significant role in the impact response by altering the loading conditions of the wrinkle fibers during impact. Regarding the compressive performance after impact, specimens with a wrinkling layer close to the impact surface show a slight 4.80% increase in residual compressive strength, which is attributed to the greater suppression of impact damage by the wrinkle fibers. However, all other specimens with wrinkle defects demonstrate varying degrees of reduction in residual compressive strength after impact compared to the specimens without wrinkle defects. The maximum reduction is approximately 27.50% for specimens subjected to a reverse impact direction. Furthermore, the amplitude of the decrease in the residual compressive strength is mainly determined by the matrix damage and delamination that occur during impact. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

24 pages, 12327 KB  
Article
Thermomechanical Behavior and Experimental Study of Additive Manufactured Superalloy/Titanium Alloy Horizontal Multi-Material Structures
by Yanlu Huang, Tianyu Wang, Linqing Liu, Yang Li, Changjun Han, Hua Tan, Wei Zhou, Yongqiang Yang and Di Wang
Metals 2025, 15(4), 454; https://doi.org/10.3390/met15040454 - 17 Apr 2025
Cited by 1 | Viewed by 577
Abstract
In laser powder bed fusion (LPBF) forming multi-material structures, the thermal stress mismatch caused by the different thermophysical properties of different materials can cause interface cracking and delamination defects. An in-depth investigation of the complex interfacial thermomechanical behavior caused by it is of [...] Read more.
In laser powder bed fusion (LPBF) forming multi-material structures, the thermal stress mismatch caused by the different thermophysical properties of different materials can cause interface cracking and delamination defects. An in-depth investigation of the complex interfacial thermomechanical behavior caused by it is of great significance for reducing stress concentration, suppressing defects, and enhancing interfacial bond strength. In this study, the effects of scanning strategy and interface shape on the temperature distribution, thermal cycling, and thermal stress distribution at the interface are analyzed by the IN718-Ti6Al4V horizontal multi-material thermally coupled finite element model. The results show that the 45° scanning strategy is helpful for the uniform distribution of energy and the reduction of overheating and residual stress concentration. The maximum residual stress at the interface in the Ti6Al4V/IN718 structure is more than 700 MPa, which is higher than that in the IN718/Ti6Al4V structure. The first formation of Ti6Al4V will likely lead to higher residual stresses at the interface, which are difficult to release in subsequent printing. The analysis of different interface shapes shows that different interface shapes change the crack formation and extension paths. This study contributes to an in-depth understanding of improving the strength of horizontal multi-material interfacial bonding at the LPBF forming. It provides a reference for optimizing LPBF forming of difficult-to-bond materials. Full article
Show Figures

Figure 1

26 pages, 8131 KB  
Article
Human-Specific Organization of Proliferation and Stemness in Squamous Epithelia: A Comparative Study to Elucidate Differences in Stem Cell Organization
by Ashlee Harris, Kaylee Burnham, Ram Pradhyumnan, Arthi Jaishankar, Lari Häkkinen, Rafael E. Góngora-Rosero, Yelena Piazza, Claudia D. Andl and Thomas Andl
Int. J. Mol. Sci. 2025, 26(7), 3144; https://doi.org/10.3390/ijms26073144 - 28 Mar 2025
Viewed by 935
Abstract
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals [...] Read more.
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals with varying lifespans. Humans are the only species with a quiescent basal stem cell layer that is distinctly physically separated from parabasal transit-amplifying cells. In addition to these stark differences in the organization of proliferation, human squamous epithelial stem cells express DNA repair-related markers, such as MECP2 and XPC, which are absent or low in mouse basal cells. Furthermore, we investigated whether the transition from basal to suprabasal is different between species. In humans, the parabasal cells seem to originate from cells detaching from the basement membrane, and these can already begin to proliferate while delaminating. In most other species, delaminating cells have been rare or their proliferation rate is different from that of their human counterparts, indicating an alternative mode of how stem cells maintain the tissue. In humans, the combination of an elevated cytoprotective signature and novel tissue organization may enhance resistance to aging and prevent cancer. Our results point to enhanced cellular cytoprotection and a tissue architecture which separates stemness and proliferation. These are both potential factors contributing to the increased fitness of human squamous epithelia to support longevity by suppressing tumorigenesis. However, the organization of canine oral mucosa shows some similarities to that of human tissue and may provide a useful model to understand the relationship between tissue architecture, gene expression regulation, tumor suppression, and longevity. Full article
(This article belongs to the Special Issue Stem Cell Biology in Health and Disease)
Show Figures

Figure 1

21 pages, 11881 KB  
Article
Analysis of Water-Based Polyurethane Properties in the Ballistic Behavior of Ultra-High Molecular Weight Polyethylene Fiber Composites
by Shuhao Yang, Shumao Zhai, Mingxing Piao, Xiao Wang, Haofei Shi and Chaolong Li
Polymers 2025, 17(7), 837; https://doi.org/10.3390/polym17070837 - 21 Mar 2025
Viewed by 1072
Abstract
The ballistic performance of fiber-reinforced polymer composites (FRPC) is influenced by the adhesive’s mechanical properties, such as stiffness, toughness, and energy dissipation. However, the specific contributions of these properties remain unclear. This study explores how varying the hard segment (HS) content in water-based [...] Read more.
The ballistic performance of fiber-reinforced polymer composites (FRPC) is influenced by the adhesive’s mechanical properties, such as stiffness, toughness, and energy dissipation. However, the specific contributions of these properties remain unclear. This study explores how varying the hard segment (HS) content in water-based polyurethane (WPU) impacts the thermal, mechanical, and ballistic performance of FRPCs. By increasing HS content, the storage modulus and tensile strength of WPU improved, while elongation at break decreased, transitioning the adhesive from soft and ductile to rigid and brittle. Quasi-static tests, ballistic experiments, and SEM analysis were conducted on UHMWPE fiber-reinforced WPU-HS% composites. Results reveal that adhesives with high hardness and modulus hinder fiber deformation, reducing energy dissipation and causing severe delamination, which diminishes ballistic performance. Conversely, soft and ductile adhesives allow deformation alongside fibers during bullet impact, suppress delamination, and absorb more kinetic energy while transferring load. Among the tested formulations, WPU with 45% HS content exhibited the best balance of mechanical properties, achieving the most significant improvement in ballistic performance by enhancing energy absorption and minimizing damage. This study establishes a clear relationship between WPU properties and composite protective behavior, providing insights for designing high-performance ballistic materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 4112 KB  
Article
Carbon-Coated CF-Si/Al Anodes for Improved Lithium-Ion Battery Performance
by Liangliang Zeng, Peng Li, Mi Ouyang, Shujuan Gao and Kun Liang
Batteries 2025, 11(3), 114; https://doi.org/10.3390/batteries11030114 - 18 Mar 2025
Viewed by 1249
Abstract
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling [...] Read more.
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling performance. An electrochemical evaluation reveals that the CF-Si/Al@C-500-1h composite exhibits marked enhancements in capacity retention (43.5% after 100 cycles at 0.6 A·g−1) and rate capability, maintaining 579.1 mAh·g−1 at 3 A·g−1 (1 C). The carbon layer enhances electrical conductivity, buffers volume expansion during lithiation/delithiation, and suppresses silicon aggregation and electrolyte side reactions. Coupled with an aluminum framework, this architecture ensures robust structural integrity and efficient lithium-ion transport. These advancements position CF-Si/Al@C-500-1h as a promising anode material for next-generation lithium-ion batteries, while insights into scalable fabrication and carbon integration strategies pave the way for practical applications. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

14 pages, 8632 KB  
Article
The Damage Evolution of a Cr2O3-TiO2 Coating Subjected to Cyclic Impact and Corrosive Environments and the Influence of a Nickel Intermediate Layer
by Huaxing Yang, Yang Zhao, Xudong Qin, Yixin Jin, Xinyang Zhao, Kailin Tian, Xiaoming Wang and Zhao Zhang
Coatings 2025, 15(1), 98; https://doi.org/10.3390/coatings15010098 - 16 Jan 2025
Cited by 1 | Viewed by 1089
Abstract
Cyclic impacts in corrosive environments significantly affect the service life of ceramic coatings, greatly increasing their susceptibility to cracking and delamination. This study investigated the damage evolution behavior of Cr2O3-TiO2 (CT) coatings under cyclic stress in a corrosive [...] Read more.
Cyclic impacts in corrosive environments significantly affect the service life of ceramic coatings, greatly increasing their susceptibility to cracking and delamination. This study investigated the damage evolution behavior of Cr2O3-TiO2 (CT) coatings under cyclic stress in a corrosive medium, and analyzed the effects of the nickel layer on coating stress, corrosion current, and crack propagation. The variations in corrosion potential and current were analyzed, and the formation patterns of interfacial corrosion cracks were observed. Pre-cracks were introduced on the ceramic coating surface using a Micro-Nano mechanical testing system, and cyclic impacts were applied to the samples in 5% diluted hydrochloric acid using SiC balls to induce damage evolution. The results indicate that the presence of the nickel interlayer reduced the corrosion current density from 9.197 × 10−6 A/cm2 to 8.088 × 10−6 A/cm2 and significantly decreased the stress between the coating and the substrate. The surface cracks gradually extended toward the interface under the coupling effect of corrosion and SiC ball impact. When cracks reached the interface, they provided channels for corrosive media, leading to stress corrosion cracking at the interface. The Ni intermediate layer suppressed the formation of interface cracks and greatly enhanced the impact damage resistance of the CT coating–substrate system in corrosive media. Full article
Show Figures

Figure 1

23 pages, 8708 KB  
Article
Development of a Passive Vibration Damping Structure for Large Solar Arrays Using a Superelastic Shape Memory Alloy with Multi-Layered Viscous Lamination
by Gi-Seong Woo, Jae-Hyeon Park, Sung-Woo Park and Hyun-Ung Oh
Aerospace 2025, 12(1), 29; https://doi.org/10.3390/aerospace12010029 - 2 Jan 2025
Cited by 2 | Viewed by 1169
Abstract
In the space environment, the elastic vibrations of satellite solar panels are caused by various factors that disturb satellite missions. Therefore, we propose a multi-layered high-damping yoke structure based on a passive control method. To optimize the proposed yoke structure, we performed a [...] Read more.
In the space environment, the elastic vibrations of satellite solar panels are caused by various factors that disturb satellite missions. Therefore, we propose a multi-layered high-damping yoke structure based on a passive control method. To optimize the proposed yoke structure, we performed a free vibration test on various multi-layered blade specimens and designed a yoke structure with the maximum damping performance based on the test results. This high-damping yoke structure was mounted on a dummy solar panel with flexible mode (0.79 Hz) and basic characteristic tests were performed to validate the effectiveness of the solar panel vibration suppression. The test results demonstrated that the proposed multi-layered high-damping yoke is effective in suppressing the vibrations of the first and second modes. In addition, a thermal vacuum test was performed to investigate the delamination between multi-layered structures, and the test results proved the applicability of the proposed yoke structure in an actual space environment. Full article
Show Figures

Figure 1

Back to TopTop