Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = digital twins offsite construction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 6665 KB  
Review
AI-Driven Digital Twins in Industrialized Offsite Construction: A Systematic Review
by Mohammadreza Najafzadeh and Armin Yeganeh
Buildings 2025, 15(17), 2997; https://doi.org/10.3390/buildings15172997 - 23 Aug 2025
Viewed by 331
Abstract
The increasing adoption of industrialized offsite construction (IOC) offers substantial benefits in efficiency, quality, and sustainability, yet presents persistent challenges related to data fragmentation, real-time monitoring, and coordination. This systematic review investigates the transformative role of artificial intelligence (AI)-enhanced digital twins (DTs) in [...] Read more.
The increasing adoption of industrialized offsite construction (IOC) offers substantial benefits in efficiency, quality, and sustainability, yet presents persistent challenges related to data fragmentation, real-time monitoring, and coordination. This systematic review investigates the transformative role of artificial intelligence (AI)-enhanced digital twins (DTs) in addressing these challenges within IOC. Employing a hybrid re-view methodology—combining scientometric mapping and qualitative content analysis—52 relevant studies were analyzed to identify technological trends, implementation barriers, and emerging research themes. The findings reveal that AI-driven DTs enable dynamic scheduling, predictive maintenance, real-time quality control, and sustainable lifecycle management across all IOC phases. Seven thematic application clusters are identified, including logistics optimization, safety management, and data interoperability, supported by a layered architectural framework and key enabling technologies. This study contributes to the literature by providing an early synthesis that integrates technical, organizational, and strategic dimensions of AI-driven DT implementation in IOC context. It distinguishes DT applications in IOC from those in onsite construction and expands AI’s role beyond conventional data analytics toward agentive, autonomous decision-making. The proposed future research agenda offers strategic directions such as the development of DT maturity models, lifecycle-spanning integration strategies, scalable AI agent systems, and cost-effective DT solutions for small and medium enterprises. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 1049 KB  
Systematic Review
Modular Construction: A Comprehensive Review
by Mohammadamin Zohourian, Apurva Pamidimukkala, Sharareh Kermanshachi and Deema Almaskati
Buildings 2025, 15(12), 2020; https://doi.org/10.3390/buildings15122020 - 12 Jun 2025
Cited by 2 | Viewed by 4523
Abstract
Modular construction has the potential to transform the construction industry, as most (80–95%) of the modules, which are considered prefabricated buildings, are manufactured off-site, which is more efficient, safe, cost-effective, sustainable, productive, and faster than traditional construction. It is not without challenges, however, [...] Read more.
Modular construction has the potential to transform the construction industry, as most (80–95%) of the modules, which are considered prefabricated buildings, are manufactured off-site, which is more efficient, safe, cost-effective, sustainable, productive, and faster than traditional construction. It is not without challenges, however, as it requires detailed and comprehensive planning, high initial costs, and navigating transportation and design constraints. The goal of this study was to identify and categorize the benefits and challenges of modular construction and offer strategies for resolving the challenges. This study also provides a comprehensive review of modular construction methods, including permanent modular construction (PMC), movable modular construction (RMC), volumetric modular construction (VMC), and panelized construction, and examines the connectivity of the modules, as well as the integration of advanced technologies like artificial intelligence (AI). The results revealed that the most frequently cited benefits of modular construction were reducing construction time by up to 50%, 20% cost savings, and material waste reduction of up to 83%. The most common challenges included transportation complexity, limited design flexibility, and high initial costs. The results of this study will assist project managers, construction professionals, and company owners in evaluating modular construction by providing quantified benefits and challenges, a comparative analysis of different modular methods, and insights into effective mitigation strategies, allowing them to assess its suitability based on project timelines, budgets, design requirements, and logistical constraints. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

38 pages, 11460 KB  
Article
Simulation-Based Optimization of Crane Lifting Position and Capacity Using a Construction Digital Twin for Prefabricated Bridge Deck Assembly
by Dae-Ho Jang, Gi-Tae Roh, Chi-Ho Jeon and Chang-Su Shim
Buildings 2025, 15(3), 475; https://doi.org/10.3390/buildings15030475 - 3 Feb 2025
Cited by 2 | Viewed by 2027
Abstract
The growing adoption of off-site construction methods has increased the critical role of mobile cranes within the construction sector. This study develops a Construction Digital Twin (CDT) framework to optimize crane lifting positions and capacities for the installation of prefabricated bridge decks. By [...] Read more.
The growing adoption of off-site construction methods has increased the critical role of mobile cranes within the construction sector. This study develops a Construction Digital Twin (CDT) framework to optimize crane lifting positions and capacities for the installation of prefabricated bridge decks. By integrating 3D site modeling, Building Information Modeling (BIM), and crane simulations within the Unity game engine, the CDT overcomes the limitations of conventional 2D-based planning by providing a three-dimensional representation of site conditions. An exhaustive search method identifies optimal crane configurations, enhancing precision and efficiency. Simulation calibration using video analysis of real bridge deck installations aligns crane speed and cycle times with actual operations, improving reliability. Case studies demonstrate the CDT’s ability to reduce crane operation costs by 27% when employing a smaller capacity crane while maintaining operational efficiency. Additional DFA-focused simulations with varying deck dimensions revealed a potential 10% cost reduction by optimizing crane operations and deck design strategies. The CDT framework supports early-stage planning, reduces operational risks, and contributes to cost-effective and safer construction practices, offering a scalable solution adaptable to various construction scenarios. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

24 pages, 3189 KB  
Article
Digital Twins and AI Decision Models: Advancing Cost Modelling in Off-Site Construction
by Joas Serugga
Eng 2025, 6(2), 22; https://doi.org/10.3390/eng6020022 - 22 Jan 2025
Cited by 3 | Viewed by 2929
Abstract
The rising demand for housing continues to outpace traditional construction processes, highlighting the need for innovative, efficient, and sustainable delivery models. Off-site construction (OSC) has emerged as a promising alternative, offering faster project timelines and enhanced cost management. However, current research on cost [...] Read more.
The rising demand for housing continues to outpace traditional construction processes, highlighting the need for innovative, efficient, and sustainable delivery models. Off-site construction (OSC) has emerged as a promising alternative, offering faster project timelines and enhanced cost management. However, current research on cost models for OSC, particularly in automating material take-offs and optimising cost performance, remains limited. This study addresses this gap by proposing a new cost model integrating Digital Twin (DT) technology and AI-driven decision models for modular housing in the UK. The research explores the role of DTs in enhancing cost estimation and decision-making processes. By leveraging DTs and AI, the proposed model evaluates the impact of emergent technologies on cost performance, material efficiency, and sustainability across social, environmental, and economic dimensions. As proposed, this integrated approach enables a cost model tailored for OSC systems, providing a data-driven foundation for cost optimisation and material take-offs. The study’s findings highlight the potential of combining DTs and AI decision models to enhance cost modelling in modular construction, offering new capabilities to support sustainable and performance-driven housing delivery. The paper introduces a dynamic, data-driven cost model integrating real-time data acquisition through DTs and AI-powered predictive analytics. This dynamic approach enhances cost accuracy, reduces lifecycle cost variability, and supports adaptive decision-making throughout the OSC project lifecycle. Full article
(This article belongs to the Special Issue Artificial Intelligence for Engineering Applications)
Show Figures

Figure 1

18 pages, 10972 KB  
Article
Framework of Virtual Plantation Forest Modeling and Data Analysis for Digital Twin
by Wanlu Li, Meng Yang, Benye Xi and Qingqing Huang
Forests 2023, 14(4), 683; https://doi.org/10.3390/f14040683 - 26 Mar 2023
Cited by 9 | Viewed by 3797
Abstract
Plantation forests, cultivated through artificial seeding and planting methods, are of great significance to human society. However, most experimental sites for these forests are located in remote areas. Therefore, in-depth studies on remote forest management and off-site experiments can better meet the experimental [...] Read more.
Plantation forests, cultivated through artificial seeding and planting methods, are of great significance to human society. However, most experimental sites for these forests are located in remote areas. Therefore, in-depth studies on remote forest management and off-site experiments can better meet the experimental and management needs of researchers. Based on an experimental plantation forest of Triploid Populus Tomentosa, this paper proposes a digital twin architecture for a virtual poplar plantation forest system. The framework includes the modeling of virtual plantation and data analysis. Regarding this system architecture, this paper theoretically analyzes the three main entities of the physical world, digital world, and researchers contained in it, as well as their interaction mechanisms. For virtual plantation modeling, a tree modeling method based on LiDAR point cloud data was adopted. The transitional particle flow method was proposed to combine with AdTree method for tree construction, followed by integration with other models and optimization. For plantation data analysis, a database based on forest monitoring data was established. Tree growth equations were derived by fitting the tree diameter at breast height data, which were then used to predict and simulate trends in diameter-related data that are difficult to measure. The experimental result shows that a preliminary digital twin-oriented poplar plantation system can be constructed based on the proposed framework. The system consists of 2160 trees and simulations of 10 types of monitored or predicted data, which provides a new practical basis for the application of digital twin technology in the forestry field. The optimized tree model consumes over 67% less memory, while the R2 of the tree growth equation with more than 100 data items could reach more than 87%, which greatly improves the performance and accuracy of the system. Thus, utilizing forestry information networking and digitization to support plantation forest experimentation and management contributes to advancing the digital transformation of forestry and the realization of a smart management model for forests. Full article
Show Figures

Figure 1

23 pages, 3330 KB  
Perspective
Digital Technologies in Offsite and Prefabricated Construction: Theories and Applications
by Zhuo Cheng, Shengxian Tang, Hexu Liu and Zhen Lei
Buildings 2023, 13(1), 163; https://doi.org/10.3390/buildings13010163 - 9 Jan 2023
Cited by 31 | Viewed by 8232
Abstract
Due to its similarity to industrialized products, the offsite construction industry is seen as a focus for the transformation of Construction 4.0. Many digital technologies have been applied or have the potential to be applied to realize the integration of design, manufacturing, and [...] Read more.
Due to its similarity to industrialized products, the offsite construction industry is seen as a focus for the transformation of Construction 4.0. Many digital technologies have been applied or have the potential to be applied to realize the integration of design, manufacturing, and assembly. The main objective of this review was to identify the current stage of applying digital technologies in offsite construction. In this review, 171 related papers from the last 10 years (i.e., 2013–2022) were obtained by collecting and filtering them. They were classified and analyzed according to the digital twin concept, application areas, and specific application directions. The results indicated that there are apparent differences in the utilization and development level of different technologies in different years. Meanwhile, the introduction, current stages, and benefits of different digital technologies are also discussed. Finally, this review summarizes the current popular fields and speculates on future research directions by analyzing article publication trends, which sheds light on future research. Full article
Show Figures

Figure 1

18 pages, 2767 KB  
Article
An Off-Site Construction Digital Twin Assessment Framework Using Wood Panelized Construction as a Case Study
by Yuxi Wei, Zhen Lei and Sadiq Altaf
Buildings 2022, 12(5), 566; https://doi.org/10.3390/buildings12050566 - 28 Apr 2022
Cited by 34 | Viewed by 4507
Abstract
Off-site construction is an innovative type of construction with the philosophy of standardizing the process and deploying the latest technological enablers. Many technologies, such as the Building Information Model (BIM), Internet of Things (IoT), etc., are concerned with virtual representation and manipulation of [...] Read more.
Off-site construction is an innovative type of construction with the philosophy of standardizing the process and deploying the latest technological enablers. Many technologies, such as the Building Information Model (BIM), Internet of Things (IoT), etc., are concerned with virtual representation and manipulation of the physical site. However, a holistic view of the off-site construction processes is lacking in the exploration of the technological advances, resulting in inconsistency when applying these advances in practice. The concept of Digital Twin is useful for addressing this challenge. Digital Twin is a philosophy and a collection of technologies aimed toward seamless physical and virtual connections. Therefore, a holistic Off-site Construction Digital Twin model is necessary for any research concerning this topic, and an assessment framework is useful in helping off-site construction industry companies in approaching systematic Digital Twin. This research first proposes a model for Off-site Construction Digital Twin. To quantify this model, an assessment tool named Off-site Construction Digital Twin Maturity Level is proposed. The validation and evaluation of this assessment framework are conducted through a case study with ACQBuilt, an off-site construction company in Edmonton, Canada. The resulting assessment framework contributes to the body of knowledge in two ways: Firstly, it sets the foundation for an Off-site Construction Digital Twin, which is anticipated to significantly reduce waste and to improve efficiency. Secondly, it enables easier technology application in practice by offering a holistic Digital Twin framework. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

29 pages, 9240 KB  
Review
BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review
by Arghavan Akbarieh, Laddu Bhagya Jayasinghe, Danièle Waldmann and Felix Norman Teferle
Sustainability 2020, 12(7), 2670; https://doi.org/10.3390/su12072670 - 28 Mar 2020
Cited by 127 | Viewed by 15285
Abstract
This article is the second part of a two-part study, which explored the extent to which Building Information Modelling (BIM) is used for End-of-Lifecycle (EoL) scenario selection to minimise the Construction and Demolition Waste (CDW). The conventional literature review presented here is based [...] Read more.
This article is the second part of a two-part study, which explored the extent to which Building Information Modelling (BIM) is used for End-of-Lifecycle (EoL) scenario selection to minimise the Construction and Demolition Waste (CDW). The conventional literature review presented here is based on the conceptual landscape that was obtained from the bibliometric and scientometric analysis in the first part of the study. Seven main academic research directions concerning the BIM-based EoL domain were found, including social and cultural factors, BIM-based Design for Deconstruction (DfD), BIM-based deconstruction, BIM-based EoL within LCA, BIM-aided waste management, Material and Component Banks (M/C Banks), off-site construction, interoperability and Industry Foundation Classes (IFC). The analysis highlights research gaps in the path of raw materials to reusable materials, i.e., from the deconstruction to M/C banks to DfD-based designs and then again to deconstruction. BIM-based EoL is suffering from a lack of a global framework. The existing solutions are based on local waste management policies and case-specific sustainability criteria selection. Another drawback of these ad hoc but well-developed BIM-based EoL prototypes is their use of specific proprietary BIM tools to support their framework. This disconnection between BIM tools and EoL tools is reportedly hindering the BIM-based EoL, while no IFC classes support the EoL phase information exchange. Full article
Show Figures

Figure 1

Back to TopTop