Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = double-skin facade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2935 KB  
Article
A Novel Earth-to-Air Heat Exchanger-Assisted Ventilated Double-Skin Facade for Low-Grade Renewable Energy Utilization in Transparent Building Envelopes
by Zhanzhi Yu, Fei Liu, Wenke Sui, Rui Wang, Chong Zhang, Xiaoxiao Dong and Xinhua Xu
Buildings 2025, 15(20), 3655; https://doi.org/10.3390/buildings15203655 - 11 Oct 2025
Viewed by 185
Abstract
Transparent building envelopes significantly increase energy demands due to low thermal resistance and solar heat gain, while conventional double-skin facades may lead to overheating and high cooling loads in the summer. This study proposes a novel earth-to-air heat exchanger (EAHE)-assisted ventilated double-skin facade [...] Read more.
Transparent building envelopes significantly increase energy demands due to low thermal resistance and solar heat gain, while conventional double-skin facades may lead to overheating and high cooling loads in the summer. This study proposes a novel earth-to-air heat exchanger (EAHE)-assisted ventilated double-skin facade (VDSF) system utilizing low-grade shallow geothermal energy for year-round thermal regulation of transparent building envelopes. A numerical model of this coupled system was developed and validated to estimate the thermal performance of the EAHE-assisted VDSF system in a hot-summer-and-cold-winter climate. Parametric study was conducted to investigate the impact of some key design parameters on thermal performance of the EAHE-assisted VDSF system and further reveal recommended design parameters of this coupled system. The results indicate that the EAHE-VDSF system reduces annual accumulated cooling loads by 20.3% to 76.5% and heating loads by 19.6% to 47.1% in comparison to a conventional triple-glazed, non-ventilated facade. The cavity temperature of the VDSF decreases by 15 °C on average in the summer, effectively addressing the overheating issue in DSFs. The proposed coupled EAHE-VDSF system shows promising energy-saving potential and ensures stability and consistency in the thermal regulation of transparent building envelopes. Full article
Show Figures

Figure 1

35 pages, 2895 KB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 2929
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

22 pages, 13993 KB  
Article
Impacts of Design Parameters on the Thermal Performance of a Macro-Encapsulated Phase-Change-Material Blind Integrated in a Double-Skin Façade System
by Yilin Li, Wenshan He, Wanting Tao, Caiyi Yang, Yidong Li and Jo Darkwa
Energies 2025, 18(13), 3326; https://doi.org/10.3390/en18133326 - 25 Jun 2025
Viewed by 993
Abstract
Double-skin façades (DSFs) are promising sustainable design elements of buildings. However, they are prone to overheating problems in warm seasons due to high outdoor temperatures and intense solar radiation. Although phase-change material (PCM) blinds have proved to be effective at enhancing the thermal [...] Read more.
Double-skin façades (DSFs) are promising sustainable design elements of buildings. However, they are prone to overheating problems in warm seasons due to high outdoor temperatures and intense solar radiation. Although phase-change material (PCM) blinds have proved to be effective at enhancing the thermal performance of DSFs, the impacts of the design parameters are crucial to the overall thermal performance of the system. This study focused on analyzing the impacts of design parameters on the thermal performance of a ventilated DSF system, which consisted of a macro-encapsulated phase-change material (PCM) blind with an aluminum shell. A simulation study was conducted using ANSYS Workbench FLUENT software, and the temperature distributions of the integrated system were compared with different blind tilt angles and ratios of cavity depth to blind width. The results show that both the blind tilt angle and ratio of cavity depth to blind width had a significant influence on the thermal performance of the DSF system. For instance, lower air-cavity temperatures within the range of 37~40 °C were achieved with the PCM blind at tilt angles of 30° and 60° compared with other selected tilt angles (0° and 90°). In terms of the cavity depth to blind width ratio, a ratio of 2.5 resulted in a lower air-cavity temperature and a better thermal performance by the DSF. With the optimal blind tilt angle and cavity depth to blind width ratio, the integrated DSF and macro-encapsulated PCM-blind system can reduce the cavity temperature by as much as 2.9 °C during the warm season. Full article
Show Figures

Figure 1

21 pages, 3571 KB  
Article
An Experimental Study of Wind-Driven Ventilation with Double Skin Facade During Transition Seasons
by Guoqing He, Zhewen Fan, Yuan Meng, Linfeng Yao and Changqing Ye
Energies 2025, 18(13), 3249; https://doi.org/10.3390/en18133249 - 21 Jun 2025
Cited by 1 | Viewed by 1096
Abstract
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons [...] Read more.
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons through a comparative study approach. A full-scale box-type DSF room and a traditional window-wall room were simultaneously monitored in a laboratory building under real climatic conditions, with indoor environmental parameters recorded for 10 days. Airflow sensation surveys complemented the physical measurements to evaluate perceived comfort. The results showed that the DSF room consistently exhibited lower air velocities (≤0.2 m/s) compared to the traditional room, demonstrating minimal response to wind conditions related to its small openings (opening ratio of 4.7%) and increased flow resistance from the dual-layer structure of the DSF. Under unfavorable wind conditions, the DSF room demonstrated higher ventilation rates due to the enhanced stack effect. However, this advantage had a negligible effect on the thermal comfort vote for the indoor temperature range (26 °C to 28 °C). These findings highlight the climate-dependent performance of DSFs: while advantageous for thermal comfort in cooler climates, they may lead to reduced thermal comfort in warm and hot climates due to low indoor airflow velocities. Future work could include the optimization of DSF opening configurations to enhance wind-driven ventilation while maintaining stack ventilation benefits. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings—2nd Edition)
Show Figures

Figure 1

50 pages, 4165 KB  
Review
Sustainable Insulation Technologies for Low-Carbon Buildings: From Past to Present
by Pinar Mert Cuce
Sustainability 2025, 17(11), 5176; https://doi.org/10.3390/su17115176 - 4 Jun 2025
Cited by 1 | Viewed by 2492
Abstract
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. [...] Read more.
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. Studies indicate that a significant proportion of a building’s heat loss occurs through its external walls and windows, highlighting the need for effective insulation strategies. The development of double-skin facades (D-SFSs), adaptive facades (AFs), and green facades has enabled substantial reductions in heating and cooling energy demands. Materials such as vacuum insulation panels (VIPs), aerogels, and phase change materials (PCMs) have demonstrated superior thermal resistance, contributing to improved thermal regulation and reduced carbon emissions. Green facades offer additional benefits by lowering surface temperatures and mitigating urban heat island effects, while D-SF configurations can reduce cooling loads by over 20% in warm climates. Despite these advancements, challenges remain regarding the initial investment costs, durability, and material sustainability. The future of facade insulation technologies is expected to focus on bio-based and recyclable insulation materials, enhanced thermal performance, and climate-responsive facade designs. This study provides a comprehensive review of historical and modern facade insulation technologies, examining their impact on energy efficiency, sustainability, and future trends in architectural design. Full article
Show Figures

Figure 1

16 pages, 14642 KB  
Article
Examining the Existing Criteria for the Evaluation of Window Ejected Plume Attachment
by Jianlong Xing, Chaoting Nie, Bin Zheng and Lei Miao
Fire 2025, 8(5), 168; https://doi.org/10.3390/fire8050168 - 23 Apr 2025
Viewed by 568
Abstract
Both single-skin and double-skin glass facades are extensively employed in commercial high-rise buildings and are gaining increasing popularity. However, the capability to deploy firefighting agents in such ultra-high structures remains limited and has been minimally investigated. To provide guidance for single-layer exterior wall [...] Read more.
Both single-skin and double-skin glass facades are extensively employed in commercial high-rise buildings and are gaining increasing popularity. However, the capability to deploy firefighting agents in such ultra-high structures remains limited and has been minimally investigated. To provide guidance for single-layer exterior wall fire protection, this study examines the impact of vertical walls on window ejected plumes by simulating the upper portion of jet plumes using a square burner flame. Experimental and numerical simulations were conducted. The findings revealed that plumes from propane burners could attach to the wall even when LE. burner fire > 0.7W, contradicting previous criteria. This discrepancy arises because prior studies underestimated the induced pressure difference in large fires. This pressure difference propels the plume toward the wall, behaving like a rigid body. Full article
Show Figures

Figure 1

16 pages, 4900 KB  
Article
Passive Dissipation of Canopy Urban Heat Through Double Skin Façades
by Chih-Hong Huang, Ching-Hsun Wang and Yu-Ping Tsaur
Buildings 2025, 15(3), 430; https://doi.org/10.3390/buildings15030430 - 29 Jan 2025
Viewed by 1320
Abstract
In the face of global warming, mitigating the urban heat island effect has become an important concern worldwide. This study applies the principle of buoyancy ventilation formed by sunlight in double skin façades (DSFs) to improve the thermal environment outside buildings by discharging [...] Read more.
In the face of global warming, mitigating the urban heat island effect has become an important concern worldwide. This study applies the principle of buoyancy ventilation formed by sunlight in double skin façades (DSFs) to improve the thermal environment outside buildings by discharging heat through temperature and pressure differences. The study subject is a 15 × 30 × 40 m residential concrete building situated in a subtropical climate. The lower opening of the DSF faces the outdoor environment; heat is absorbed through this opening from the ground environment and then evacuated up to above the urban canopy layer heat island in order to cool pedestrian environments on the ground. We used numerical simulation to analyze the cooling potential of this DSF in summer daytime conditions. The results show that the DSF can successfully transport heat energy and discharge it above the urban canopy layer. Significant cooling effects were observed in both the horizontal and vertical spaces on the leeward side of the building DSF through the passage of surface heat, thereby reducing the load of indoor air conditioning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

28 pages, 9680 KB  
Article
An Experimental and Numerical Investigation of a Passive Façade and Proposals for Improving Its Energy Performance
by Eugen Iavorschi, Laurențiu Dan Milici, Pavel Atănăsoae and Constantin Ungureanu
Energies 2025, 18(2), 359; https://doi.org/10.3390/en18020359 - 16 Jan 2025
Cited by 3 | Viewed by 1120
Abstract
The double-skin façade (DSF), referred to hereinafter as a passive façade, represents an alternative technology aimed at improving the energy performance of buildings with glass envelopes. A passive façade consists of a traditional façade supplemented on the interior by a secondary layer, which [...] Read more.
The double-skin façade (DSF), referred to hereinafter as a passive façade, represents an alternative technology aimed at improving the energy performance of buildings with glass envelopes. A passive façade consists of a traditional façade supplemented on the interior by a secondary layer, which is separated by a ventilated cavity with a variable width. Numerous studies have been conducted to optimize the control of passive façades with the aim of improving building energy performance. This study focuses on comparing experimental data for the passive façade with numerical simulations conducted in ANSYS Fluent 17, proposing optimization options based on the analysis of temperature and velocity fields within the façade. The results reveal the dynamics of natural free convection within the passive façade, the presence of recirculation zones in the experimental model, and the manifestation of the “chimney effect” observed in the temperature analysis of the façade’s interior in both experimental and numerical models. ANSYS Fluent 17 is a numerical simulation software used extensively in engineering and research to provide precise and comprehensive solutions for complex fluid dynamics problems. Although there is a body of existing research, the need for further investigation into façade design, control, and optimization continues. Full article
(This article belongs to the Special Issue Adaptive Thermal Comfort and Energy Use in Buildings)
Show Figures

Figure 1

29 pages, 10644 KB  
Article
Evaluating the Performance of Fixed 3D-Printed and Dynamic Fabric Modules in a Second-Skin Façade System: A Residential Case Study in Southern Italy at Building and District Scales
by Yorgos Spanodimitriou, Giovanni Ciampi, Luigi Tufano, Michelangelo Scorpio and Sergio Sibilio
Buildings 2025, 15(2), 189; https://doi.org/10.3390/buildings15020189 - 10 Jan 2025
Cited by 1 | Viewed by 2238
Abstract
The building sector accounts for 30% of worldwide final energy usage and 26% of global energy-linked emissions. In construction, innovative materials and systems can offer flexible, lightweight, energy-efficient solutions to achieve more efficient buildings. This study addresses the energy analysis and environmental impacts [...] Read more.
The building sector accounts for 30% of worldwide final energy usage and 26% of global energy-linked emissions. In construction, innovative materials and systems can offer flexible, lightweight, energy-efficient solutions to achieve more efficient buildings. This study addresses the energy analysis and environmental impacts of retrofitting residential buildings in Monterusciello, Italy, using an innovative second-skin façade system design that incorporates 3D-printed and fabric modules. The purpose is to enhance energy efficiency and reduce the environmental impact of residential buildings originally constructed with prefabricated elements that have degraded over time. This research employed TRNSYS modelling to simulate energy consumption and environmental impacts at the single-building and whole-district levels, analysing the system’s effectiveness in reducing cooling and heating demands and using different materials for optimal performance. The results show that retrofitting with the second-skin façade system significantly reduces cooling energy demand by 30.2% and thermal energy demand by 3.84%, reaching a primary energy saving of 16.4% and 285 tons of CO2 emissions reduction for the whole district. The results highlight the potential of second-skin façade systems in improving energy efficiency and environmental sustainability, suggesting future research directions in material innovation and adaptive system development for district-wide applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 8094 KB  
Article
A Study of the Impacts of Different Opening Arrangements of Double-Skin Façades on the Indoor Temperatures of a Selected Building
by Qing Sun, Junwei Song, Ying Yu, Hongbo Ai and Long Zhao
Buildings 2024, 14(12), 3893; https://doi.org/10.3390/buildings14123893 - 5 Dec 2024
Cited by 1 | Viewed by 1328
Abstract
The aim of this study is to evaluate the indoor temperature of a double-skin façades (DSF) high-rise building in Xi’an under different window opening arrangements, and to assess their impact on the operating time of the air-conditioning system. Compared to conventional buildings, double-skin [...] Read more.
The aim of this study is to evaluate the indoor temperature of a double-skin façades (DSF) high-rise building in Xi’an under different window opening arrangements, and to assess their impact on the operating time of the air-conditioning system. Compared to conventional buildings, double-skin façade (DSF) buildings can reduce energy consumption. While current research trends focus primarily on heat transfer and materials, there is limited exploration of window opening arrangements. To address this gap, VENT engineering software 2018 was used to simulate indoor temperatures at various window opening angles and determine the optimal arrangement. Additionally, the extreme random tree (ET) algorithm was employed to develop a model for indoor temperature prediction. Climate data were sourced from an online database and processed using the Spearman correlation coefficient method. Window opening arrangements were designed using orthogonal tests, and the performance of the DSF was evaluated with computational fluid dynamics (CFD) software (Fluent) 2023R1. An analysis of temperature variation in the double-skin façade (DSF) curtain wall revealed that the ET algorithm predicted indoor temperatures with 93% accuracy at a 50° window opening angle. Optimal window opening arrangement 2 resulted in a 2.7% reduction in the average interior temperature, a 3.6% reduction at a height of 1.2 m, and a decrease in air-conditioning runtime by 1.33 h. The extreme random tree (ET) algorithm was found to be more accurate than other methods in predicting DSF performance. These findings provide insights for optimizing the control and application of double-skin façades and suggest potential synergies with other systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 4323 KB  
Article
Evaluating the Impact of Phase Change Materials and Double-Skin Façades on Energy Performance in Office Buildings Under Climate Change Scenarios: A Case Study in Iran
by Sina Fard Moradinia, Ahmed Rasul Hussein, Melissa Chan, Niloufar Bagherifam and Milad Baghalzadeh Shishehgarkhaneh
Eng 2024, 5(4), 3049-3079; https://doi.org/10.3390/eng5040159 - 25 Nov 2024
Cited by 2 | Viewed by 2056
Abstract
The potential for energy efficiency in office buildings is critical, especially in regions facing rapid climate change impacts. This study investigates the use of phase change materials (PCMs) and double-skin façades (DSFs) to optimize energy performance in office buildings in Iran, a country [...] Read more.
The potential for energy efficiency in office buildings is critical, especially in regions facing rapid climate change impacts. This study investigates the use of phase change materials (PCMs) and double-skin façades (DSFs) to optimize energy performance in office buildings in Iran, a country with significant energy demands for heating and cooling. Utilizing Building Information Modeling (BIM) and EnergyPlus 24.1.0 software, we evaluated energy consumption trends across climate scenarios from 1981 to 2030. The findings underscore the rising energy demand due to global temperature increases and demonstrate that integrating PCMs and DSFs can mitigate energy consumption. This research highlights the importance of region-specific building strategies to achieve energy-efficient designs and contributes practical insights for developing sustainable energy policies in Iran. Full article
Show Figures

Figure 1

16 pages, 6671 KB  
Article
Wind-Induced Vibration Control of High-Rise Buildings with Double-Skin Façades Using Distributed Multiple Tuned Façade-Dampers-Inerters
by Haiwei Xu, Lingfeng Su, Wenjuan Lou and Zhehao Chen
Appl. Sci. 2024, 14(22), 10565; https://doi.org/10.3390/app142210565 - 16 Nov 2024
Viewed by 1417
Abstract
To address the shortcomings of tuned mass dampers (TMD), such as excessive internal space occupation and overlarge physical mass, this paper proposes a tuned façade damper inerter (TFDI) that utilizes parts of the outer façades of double-skin façades (DSF) as damping mass, capitalizing [...] Read more.
To address the shortcomings of tuned mass dampers (TMD), such as excessive internal space occupation and overlarge physical mass, this paper proposes a tuned façade damper inerter (TFDI) that utilizes parts of the outer façades of double-skin façades (DSF) as damping mass, capitalizing on the lightweight and efficient characteristics of inerters. The TFDI effectively resolves the challenge of multi-layer connections of inerters in high-rise buildings by utilizing corridor space. By vertically distributing TFDIs, a distributed multiple TFDI (d-MTFDI) system is formed. The configuration and motion of equations of this system are presented, and the control effectiveness is validated using wind tunnel test data. Two tuning modes are further proposed: unified tuning mode and distributed tuning mode. For the unified tuning mode, analytical expressions for optimal tuning frequency and damping ratio are derived; for the distributed tuning mode, numerical optimization methods are employed to determine the optimal tuning frequency range and damping ratio. Comparative results indicate that the distributed tuning mode achieves higher control efficiency than the unified tuning mode, with a significant reduction in the required optimal damping ratio. Furthermore, comparisons with d-MTMD demonstrate that d-MTFDI significantly enhances wind-induced vibration control performance. Full article
(This article belongs to the Special Issue Vibration-Based Structural Health Monitoring of Buildings and Bridges)
Show Figures

Figure 1

13 pages, 4758 KB  
Article
A Control Optimization Model for a Double-Skin Facade Based on the Random Forest Algorithm
by Qing Sun, Yifan Du, Xiuying Yan, Junwei Song and Long Zhao
Buildings 2024, 14(10), 3045; https://doi.org/10.3390/buildings14103045 - 24 Sep 2024
Viewed by 1174
Abstract
Abstract: This study addresses the current difficulties in accurately controlling the indoor temperature of double-skin facades (DSFs), and its optimization, with a focus on the window opening angles of double-skin facades. The Spearman correlation coefficient method was used to select the main meteorological [...] Read more.
Abstract: This study addresses the current difficulties in accurately controlling the indoor temperature of double-skin facades (DSFs), and its optimization, with a focus on the window opening angles of double-skin facades. The Spearman correlation coefficient method was used to select the main meteorological factors, including outdoor temperature, dew point temperature, scattered radiation, direct radiation, and window opening angle. A modified random forest algorithm was used to construct the optimization model and 80% of the data were used for model training. In the experiments, the average accuracy of the optimization model was as high as 93.5% for all window opening angles. This study provides a data-driven method for application to double-skin facades, which can effectively determine and control the window opening angles of double-skin facades to achieve energy saving and emission reduction, reduce indoor temperature, improve comfort, and provide a practical basis for decision-making. Future research will further explore the applicability and accuracy of the model under different climatic conditions. Full article
(This article belongs to the Topic Building Energy and Environment, 2nd Edition)
Show Figures

Figure 1

21 pages, 7175 KB  
Article
Investigating Factors Impacting Power Generation Efficiency in Photovoltaic Double-Skin Facade Curtain Walls
by Xiaoxuan Zhou, Xue Zhou, Xiangyuan Zhu, Jiying Liu and Shiyu Zhou
Buildings 2024, 14(9), 2632; https://doi.org/10.3390/buildings14092632 - 25 Aug 2024
Viewed by 2233
Abstract
Photovoltaic double-skin glass is a low-carbon energy-saving curtain wall system that uses ventilation heat exchange and airflow regulation to reduce heat gain and generate a portion of electricity. By developing a theoretical model of the ventilated photovoltaic curtain wall system and conducting numerical [...] Read more.
Photovoltaic double-skin glass is a low-carbon energy-saving curtain wall system that uses ventilation heat exchange and airflow regulation to reduce heat gain and generate a portion of electricity. By developing a theoretical model of the ventilated photovoltaic curtain wall system and conducting numerical simulations, this study analyzes the variation patterns of the power generation efficiency of photovoltaic glass for different inclination angles, seasons, thermal ventilation spacing, and glass transmittance in the photovoltaic double-skin curtain wall system. The results indicate a positive correlation between the surface temperature of photovoltaic glass and both ground temperature and solar radiation intensity. Additionally, photovoltaic power generation efficiency is generally higher in spring and autumn than in summer and winter, with enhanced power generation performance observed. At an inclination angle of 40°, photovoltaic panels receive optimal solar radiation and, consequently, produce the maximum electricity. Furthermore, as the ventilation spacing increases, the efficiency of power generation initially rises, reaching a peak at approximately 0.4 m, where it is 0.4% greater than at a spacing of 0.012 m. For a photovoltaic glass transmittance of 40%, the highest photovoltaic power generation efficiency is 63%, while the average efficiency is 35.3%. This has significant implications for the application and promotion of photovoltaic double-skin glass curtain walls. Full article
Show Figures

Figure 1

18 pages, 3123 KB  
Article
A Method to Evaluate Forchheimer Resistance Coefficients for Permeable Screens and Air Louvers Modelled as a Porous Medium
by Yuriy Marykovskiy, Giulia Pomaranzi, Paolo Schito and Alberto Zasso
Fluids 2024, 9(7), 147; https://doi.org/10.3390/fluids9070147 - 22 Jun 2024
Cited by 1 | Viewed by 2176
Abstract
Porous medium models are commonly used in Computational Fluid Dynamics (CFD) to simulate flow through permeable screens of various types. However, the setup of these models is often limited to replicating a pressure drop in cases where fluid inflow is orthogonal to the [...] Read more.
Porous medium models are commonly used in Computational Fluid Dynamics (CFD) to simulate flow through permeable screens of various types. However, the setup of these models is often limited to replicating a pressure drop in cases where fluid inflow is orthogonal to the screen. In this work, a porous medium formulation that employs a non-diagonal Forchheimer tensor is presented. This formulation is capable of reproducing both the pressure drop and flow deflection under varying inflow angles for complex screen geometries. A general method to determine the porous model coefficients valid for both diagonal and non-diagonal Forchheimer tensors is proposed. The coefficients are calculated using a nonlinear least-squares optimisation based on an analytical solution of a special case of the Navier–Stokes equations. The applicability of the proposed method is evaluated in four different scenarios supplemented by local CFD simulations of permeable screens: wire mesh, perforated screens, air louvers, and expanded mesh panels. The practical application of this method is demonstrated in the modelling of windbreaks and permeable double-skin facades, which typically employ the aforementioned types of porous screens. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

Back to TopTop