Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = down-converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2439 KB  
Article
A Traceable Low-Frequency Attenuation Standard from 1 kHz to 10 MHz for Next-Generation Wireless and EMC Calibration
by Anton Widarta
Sensors 2025, 25(19), 6227; https://doi.org/10.3390/s25196227 - 8 Oct 2025
Viewed by 281
Abstract
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an [...] Read more.
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an inductive voltage divider (IVD) as a reference, ensuring the highest accuracy and traceability while eliminating sensitivity to detector nonlinearity. Attenuation at 1 kHz, 9 kHz, and 10 kHz is measured directly against the IVD ratio, while higher-frequency measurements (100 kHz–10 MHz) are performed via heterodyne detection, down-converting signals to 1 kHz for comparison. To ensure comparable accuracy at higher attenuation levels, a double-step method is applied at 9 kHz and 10 kHz to mitigate the increased IVD uncertainty above 1 kHz. Linearity is ensured by suppressing common-mode currents with toroidal ferrite chokes and minimizing inter-channel coupling. Type B (non-statistical) measurement uncertainties are evaluated, with major contributions from the IVD reference, system errors, and mismatch. The expanded uncertainties are 2.2 × 10−3 dB at 20 dB, 3.0 × 10−3 dB at 40 dB, and 4.0 × 10−3 dB at 60 dB attenuation. To facilitate wider dissemination and extend the calibration range, a resistive step attenuator with 10 dB pads is evaluated as a practical transfer standard, providing a simple and robust solution for traceable attenuation calibration in this frequency range. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

21 pages, 6275 KB  
Article
Design of a Low-Cost Flat E-Band Down-Converter with Variable Conversion Gain
by Mehrdad Harifi-Mood, Mansoor Dashti Ardakani, Djilali Hammou, Emilia Moldovan, Bryan Hosein and Serioja O. Tatu
Sensors 2025, 25(17), 5492; https://doi.org/10.3390/s25175492 - 3 Sep 2025
Viewed by 957
Abstract
This paper presents the design and implementation of a wideband diode-based down-converter operating from 60 to 90 GHz with a variable flat conversion gain. The proposed down-converter is implemented utilizing the Miniature Hybrid-Microwave Integrated Circuit (MHMIC) technology. It is composed of a wideband [...] Read more.
This paper presents the design and implementation of a wideband diode-based down-converter operating from 60 to 90 GHz with a variable flat conversion gain. The proposed down-converter is implemented utilizing the Miniature Hybrid-Microwave Integrated Circuit (MHMIC) technology. It is composed of a wideband double-balanced mixer, a Local Oscillator (LO) chain, and a differential TransImpedance Amplifier (TIA) with a variable gain. The designed mixer uses a novel topology exhibiting minimum reflection and high isolation between the RF and LO ports across a wide operating frequency of 30 GHz. In this topology, two balanced detectors generate the differential IF signal with minimum reflection. The characteristic impedance (Z0) of the mixer is set to be 70.7Ω, to minimize trace widths to reduce the mutual coupling and increasing the bandwidth. The OPA 657 is the core of the designed differential TIA with a variable gain. In addition, the LO chain of the down-converter utilized a combination of an active (×2) and a passive (×3) multiplier to generate enough RF power in the desired frequency range. Also, a WR-12 waveguide to Substrate Integrated Waveguide (SIW) transition is designed for the RF and LO ports that operates through the E-band. The proposed down-converter demonstrates excellent performance, with a high isolation between RF and LO ports exceeding 22 dB and a maximum conversion gain of 5 dB, and a response with a variation of ±5 dB across the band. The proposed mixer exhibits a return loss of better than 10 dB at both RF and LO ports, and it consumes a power of 560 mW. Full article
(This article belongs to the Special Issue Recent Development of Millimeter-Wave Technologies)
Show Figures

Figure 1

19 pages, 1107 KB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 - 1 Aug 2025
Viewed by 844
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 5777 KB  
Article
Considering a mm-Wave Front-End Receiver and Quadrature Down-Converter for 18–40 GHz with Low Noise Figure and High Gain for an ESM System
by Yuseok Jeon and Hyunkyu Kim
Electronics 2025, 14(14), 2803; https://doi.org/10.3390/electronics14142803 - 11 Jul 2025
Viewed by 426
Abstract
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four [...] Read more.
In this paper, RF sub-modules with millimeter-wave functionality are considered and verified for designing an ultra-wideband receiver (18–40 GHz) required in the electronic support measure (ESM) field. The pre-design of an ultra-wideband super heterodyne receiver (SHR) requires a front-end module (FEM) with four units in the system. Each FEM has four channels with the same path, while the quadrature millimeter down-converter (QMDC) needs to have a converting function that uses a broadband mixer. The FEM includes the ability to provide built-in test (BIT) path functionality to the antenna ports prior to system field installation. Each path of the QMDC requires the consideration of several factors, such as down-converting, broadband gain flatness, and high isolation. As this is an RF module requiring high frequency and wideband characteristics, it is necessary to identify risk factors in advance within a predictable range. Accordingly, the blind-mate A (BMA) connector connection method, the phase-alignment test method in the down-conversion structure, and the LO signal, IF path inflow-blocking method were analyzed and designed. Full article
Show Figures

Figure 1

14 pages, 4970 KB  
Article
Correlation of the Microstructural, Chemical, Luminescent, and Photocatalytic Properties of SrGd2O4 Doped with Rare Earth Ions
by Tijana Stamenković and Vesna Lojpur
Catalysts 2025, 15(6), 522; https://doi.org/10.3390/catal15060522 - 26 May 2025
Viewed by 721
Abstract
This study evaluated the relationship between the microstructure, photoluminescence, and photocatalytic properties of newly synthesized nanostructured phosphor materials. The combustion method was used to create samples of down-converting SrGd2O4 doped with Dy3+ ions (1, and 7 at%) and up-converting [...] Read more.
This study evaluated the relationship between the microstructure, photoluminescence, and photocatalytic properties of newly synthesized nanostructured phosphor materials. The combustion method was used to create samples of down-converting SrGd2O4 doped with Dy3+ ions (1, and 7 at%) and up-converting SrGd2O4 co-doped with varying quantities of Yb3+ ions (2, and 6 at%) and a constant quantity of Ho3+ ions (1 at%). Transmission electron microscopy (TEM) revealed the existence of porous agglomerated round-shaped particles, with the size around 150 nm, arranged in network-like structures. Energy dispersive X-ray spectroscopy (EDS) confirmed the presence of all structural elements and their homogeneous distribution throughout the particles. The presence of specific emission peaks associated with Dy3+ or Ho3+ dopant ions was demonstrated by luminescent measurement. The degradation processes of specific organic dyes (methylene blue for up-converters and rhodamine B for down-converters) under simulated sun irradiation were used to investigate photocatalytic activity. A reduction in dye concentration in aqueous solutions was measured using UV/Vis absorption spectroscopy. The results showed a successful dye breakdown rate after 4 h, and aliquots of the working solutions were obtained at precise intervals. Additionally, the results indicated that samples with the highest luminescence intensity exhibited superior photocatalytic activity, suggesting a significant promise for usage as multifunctional materials. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

13 pages, 6687 KB  
Article
The Use of ZnO Quantum Dots to Improve the Electrical Properties of Silicon Solar Cells
by Magdalena Monika Szindler, Marek Szindler, Krzysztof Lukaszkowicz, Krzysztof Matus, Mateusz Fijalkowski, Tomasz Węgrzyn, Bożena Szczucka-Lasota and Jakub Polis
Materials 2025, 18(4), 861; https://doi.org/10.3390/ma18040861 - 16 Feb 2025
Cited by 2 | Viewed by 1441
Abstract
Silicon-based solar cells dominate the photovoltaic market, with commercial monocrystalline silicon cells reaching efficiencies as high as 27.3% by May 2024. An alternative to monocrystalline silicon solar cells is polycrystalline solar cells. Despite their lower efficiency (record: 23.81%), their manufacturing process is simpler [...] Read more.
Silicon-based solar cells dominate the photovoltaic market, with commercial monocrystalline silicon cells reaching efficiencies as high as 27.3% by May 2024. An alternative to monocrystalline silicon solar cells is polycrystalline solar cells. Despite their lower efficiency (record: 23.81%), their manufacturing process is simpler and cheaper, and their energy conversion efficiency is less sensitive to temperature changes. However, limitations persist in optical and electrical losses, particularly underutilizing ultraviolet (UV) radiation due to silicon’s bandgap. To address these issues, the application of down-converting materials like zinc oxide (ZnO) quantum dots (QDs) has gained attention. ZnO QDs absorb high-energy UV light and re-emit it in the visible spectrum, optimizing the portion of solar energy usable by silicon cells. This study explores the synthesis of ZnO QDs using a sol–gel method, followed by their application on polycrystalline silicon solar cells. Experimental results indicated an increase in short-circuit current and overall efficiency, with the efficiency rising from 18.67% to a maximum of 19.05% when ZnO QDs were deposited from a 5 mg/mL solution. These findings suggest that ZnO QDs could significantly enhance solar energy conversion efficiency by utilizing portions of the solar spectrum that would otherwise be wasted. Full article
Show Figures

Figure 1

8 pages, 2089 KB  
Communication
Low-Noise Millimeter-Wave Down-Conversion Technology for Chip-Scaled Optical Clocks
by Shuai Li, Lulu Yan, Enrang Zheng, Zhijing Du, Jun Ruan and Shougang Zhang
Sensors 2025, 25(4), 1041; https://doi.org/10.3390/s25041041 - 10 Feb 2025
Viewed by 969
Abstract
This article reports on a millimeter-wave (MM-wave) signal down-conversion system with low phase noise for chip-scaled optical clocks. The system utilizes analog regenerative frequency division, low-noise fractional frequency division, and phase-locked frequency division techniques to down-convert a 100 GHz MM-wave signal to 100 [...] Read more.
This article reports on a millimeter-wave (MM-wave) signal down-conversion system with low phase noise for chip-scaled optical clocks. The system utilizes analog regenerative frequency division, low-noise fractional frequency division, and phase-locked frequency division techniques to down-convert a 100 GHz MM-wave signal to 100 MHz with phase noise of −117 dBc/Hz @100 Hz, −133 dBc/Hz @1 kHz, and 10 MHz with phase noise of −124 dBc/Hz @100 Hz and −143 dBc/Hz @1 kHz. The frequency stability of the signal down-converted to 100 MHz is 5.0 × 10−15 @ 1 s and 1.8 × 10−16 @ 1000 s, while the frequency stability of the 10 MHz signal is 5.7 × 10−14 @ 1 s and 5.9 × 10−16 @1000 s, both of which decrease to the 10−16 level at 10,000 s. This down-conversion system meets the frequency conversion requirements of state-of-the-art chip-based optical clocks and micro-cavity optical combs. Full article
Show Figures

Figure 1

13 pages, 2529 KB  
Article
A Filter-Free, Image-Reject, Sub-Harmonic Downconverted RoF Link Without Fiber-Dispersion-Induced Power Fading
by Yuanyuan Li, Qiong Zhao and Wu Zhang
Photonics 2024, 11(12), 1191; https://doi.org/10.3390/photonics11121191 - 19 Dec 2024
Viewed by 972
Abstract
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local [...] Read more.
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local oscillator (LO) is applied to the lower QPSK modulator, achieving sub-harmonic single-sideband (SH–SSB) modulation. The I/Q mixing is realized by exploiting a two-channel photonic microwave phase shifter, which mainly consists of a modulator, two polarization controllers, and two polarizers. The image interference signal can be rejected when combing the I and Q IF signals through a 90° electrical hybrid. Because the scheme is simple and filter-free, it has a good image-reject capability over a large frequency tunable range. Moreover, due to the special SH-SSB modulation, the modulated signals are immune to the chromatic dispersion-introduced power fading effect. Last, the sub-harmonic downconverter can decrease the frequency requirement of the LO signal. Experimental results show that an image rejection ratio (IRR) greater than 50 dB can be achieved when transmitted through a 25 km single-mode fiber (SMF). Simultaneously, under different RF signals and IF signals, the IRR has no periodic power fading, only small fluctuations. Image rejection capability of the scheme for the 50-MBaud 16-QAM wideband vector signal is also verified and the demodulation of the desired IF signal with a good EVM of less than 5% is realized. Full article
(This article belongs to the Special Issue New Perspectives in Microwave Photonics)
Show Figures

Figure 1

27 pages, 22292 KB  
Article
RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor
by Peter Hobden, Edmond Nurellari and Saket Srivastava
J. Sens. Actuator Netw. 2024, 13(5), 58; https://doi.org/10.3390/jsan13050058 - 23 Sep 2024
Viewed by 2984
Abstract
Microwave Doppler sensors are used extensively in motion detection as they are energy-efficient, small-size and relatively low-cost sensors. Common applications of microwave Doppler sensors are for detecting intrusion behind a car roof liner inside an automotive vehicle and to detect moving objects. These [...] Read more.
Microwave Doppler sensors are used extensively in motion detection as they are energy-efficient, small-size and relatively low-cost sensors. Common applications of microwave Doppler sensors are for detecting intrusion behind a car roof liner inside an automotive vehicle and to detect moving objects. These applications require a millisecond response from the target for effective detection. A Doppler microwave sensor is ideally suited to the task, as we are only interested in movement of a large water-based mass (i.e., a person) (FMCW Radar also detect static objects). Although microwave components at 2.45 GHz are now relatively cheap due to mass production of other Industrial Scientific and Medical application (ISM) devices, they do require tuning for temperature compensation, dielectric, and manufacturing variability. A digital solution would be ideal, as chip solutions are known to be more repeatable, but Application-Specific Integrated Circuits (ASICs) are expensive to initially prototype. This paper presents the first completely digital Doppler motion sensor solution at 2.45 GHz, implemented on the new RFSoC from Xilinx without the need to up/downconvert the frequency externally. Our proposed system uses a completely digital approach bringing the benefits of product repeatability, better overtemperature performance and softwarisation, without compromising any performance metric associated with a comparable analogue motion sensor. The RFSoC shows to give superior distance versus false detection, as the Signal-to-Noise Ratio (SNR) is better than a typical analogue system. This is mainly due to the high gain amplification requirement of an analogue system, making it susceptible to electrical noise appearing in the intermediate-frequency (IF) baseband. The proposed RFSoC-based Doppler sensor shows how digital technology can replace traditional analogue radio frequency (RF). A case study is presented showing how we can use a novel method of using multiple Doppler channels to provide range discrimination, which can be performed in both analogue and in a digital implementation (RFSoC). Full article
Show Figures

Figure 1

25 pages, 2095 KB  
Article
Operational Angular Track Reconstruction in Space Surveillance Radars through an Adaptive Beamforming Approach
by Marco Felice Montaruli, Maria Alessandra De Luca, Mauro Massari, Germano Bianchi and Alessio Magro
Aerospace 2024, 11(6), 451; https://doi.org/10.3390/aerospace11060451 - 1 Jun 2024
Cited by 6 | Viewed by 1870
Abstract
In the last few years, many space surveillance initiatives have started to consider the problem represented by resident space object overpopulation. In particular, the European Space Surveillance and Tracking (EUSST) consortium is in charge of providing services like collision avoidance, fragmentation analysis, and [...] Read more.
In the last few years, many space surveillance initiatives have started to consider the problem represented by resident space object overpopulation. In particular, the European Space Surveillance and Tracking (EUSST) consortium is in charge of providing services like collision avoidance, fragmentation analysis, and re-entry, which rely on measurements obtained through ground-based sensors. BIRALES is an Italian survey radar belonging to the EUSST framework and is capable of providing measurements including Doppler shift, slant range, and angular profile. In recent years, the Music Approach for Track Estimate and Refinement (MATER) algorithm has been developed to retrieve angular tracks through an adaptive beamforming technique, guaranteeing the generation of more accurate and robust measurements with respect to the previous static beamforming approach. This work presents the design of a new data processing chain to be used by BIRALES to compute the angular track. The signal acquired by the BIRALES receiver array is down-converted and the receiver bandwidth is split into multiple channels, in order to maximize the signal-to-noise ratio of the measurements. Then, the signal passes through a detection block, where an isolation procedure creates, for each epoch, signal correlation matrices (CMs) related to the channels involved in the detection and then processes them to isolate the data stream related to a single detected source. Consequently, for each epoch and for each detected source, just the CM featuring the largest signal contribution is kept, allowing deriving the Doppler shift measurement from the channel illumination sequence. The MATER algorithm is applied to each CM stream, first estimating the signal directions of arrival, then grouping them in the observation time window, and eventually returning the target angular track. Ambiguous estimates may be present due to the configuration of the receiver array, which cause spatial aliasing phenomena. This problem can be addressed by either exploiting transit prediction (in the case of cataloged objects), or by applying tailored criteria (for uncatalogued objects). The performance of the new architecture was assessed in real operational scenarios, demonstrating the enhancement represented by the implementation of the channelization strategy, as well as the angular measurement accuracy returned by MATER, in both nominal and off-nominal scenarios. Full article
(This article belongs to the Special Issue Track Detection of Resident Space Objects)
Show Figures

Figure 1

11 pages, 4429 KB  
Article
Input Voltage-Level Driven Split-Input Inverter Level Shifter for Nanoscale Applications
by Srinivasulu Gundala, Mohammed Mahaboob Basha, Virupakshi Madhurima and Ovidiu Petru Stan
Electronics 2024, 13(6), 1115; https://doi.org/10.3390/electronics13061115 - 18 Mar 2024
Cited by 6 | Viewed by 1808
Abstract
A level shifter (LS) appears to be highly efficient and effective in solving voltage contentions between deep sub-threshold and core voltage levels. An input voltage-level driven split-input inverter that can create common unconnected PMOS and NMOS transistors for the input inverter is proposed, [...] Read more.
A level shifter (LS) appears to be highly efficient and effective in solving voltage contentions between deep sub-threshold and core voltage levels. An input voltage-level driven split-input inverter that can create common unconnected PMOS and NMOS transistors for the input inverter is proposed, which is powered and used at the input stage to achieve maximum conversion efficiency. Layout and simulation results across different corners have demonstrated that the proposed LS is highly useful for cutting-edge nanoscale applications. It can up-convert voltage from 0.2 V to 1.2 V and down-convert from 1.2 V to 0.2 V @ 1 MHz input pulse, with a level-up or level-down mean switching delay of 1.3 ns, and a power of 9.5 nW. Moreover, the LS occupies an area of 8 μm2, which is a reasonably compact size compared to the typical LS designs. Overall, the proposed voltage LS design is an efficient and effective solution that could have an ample range of applications in IoT and biomedical, wireless sensor networks. Full article
(This article belongs to the Special Issue Design of Low-Voltage and Low-Power Integrated Circuits)
Show Figures

Figure 1

11 pages, 2702 KB  
Article
Low-Threshold Anti-Stokes Raman Microlaser on Thin-Film Lithium Niobate Chip
by Jianglin Guan, Jintian Lin, Renhong Gao, Chuntao Li, Guanghui Zhao, Minghui Li, Min Wang, Lingling Qiao and Ya Cheng
Materials 2024, 17(5), 1042; https://doi.org/10.3390/ma17051042 - 24 Feb 2024
Cited by 2 | Viewed by 2204
Abstract
Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based [...] Read more.
Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based on the interaction of light with the Stokes vibrational mode. Unlike redshifted SRS, stimulated anti-Stokes Raman scattering (SARS) further involves the interplay between the pump photon and the SRS photon to generate an upconverted photon, depending on a highly efficient SRS signal as an essential prerequisite. Therefore, achieving SARS in microresonators is challenging due to the low lasing efficiencies of integrated Raman lasers caused by intrinsically low Raman gain. In this work, high-Q whispering gallery microresonators were fabricated by femtosecond laser photolithography assisted chemo-mechanical etching on thin-film lithium niobate (TFLN), which is a strong Raman-gain photonic platform. The high Q factor reached 4.42 × 106, which dramatically increased the circulating light intensity within a small volume. And a strong Stokes vibrational frequency of 264 cm−1 of lithium niobate was selectively excited, leading to a highly efficient SRS lasing signal with a conversion efficiency of 40.6%. And the threshold for SRS was only 0.33 mW, which is about half the best record previously reported on a TFLN platform. The combination of high Q factors, a small cavity size of 120 μm, and the excitation of a strong Raman mode allowed the formation of SARS lasing with only a 0.46 mW pump threshold. Full article
Show Figures

Figure 1

13 pages, 2344 KB  
Article
OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode
by Carmela Tania Prontera, Marco Pugliese, Fabrizio Mariano, Daniela Taurino, Roberto Giannuzzi, Vitantonio Primiceri, Marco Esposito, Antonio Andretta, Giuseppe Gigli and Vincenzo Maiorano
Textiles 2024, 4(1), 91-103; https://doi.org/10.3390/textiles4010007 - 15 Feb 2024
Cited by 2 | Viewed by 2664
Abstract
Textile-based electronics represents a key technology for the development of wearable devices. Light-emitting textiles based on OLED architecture are particularly promising due to their intrinsic flexibility and possibility to be fabricated on large areas using scalable processes. Fabric planarization is one of the [...] Read more.
Textile-based electronics represents a key technology for the development of wearable devices. Light-emitting textiles based on OLED architecture are particularly promising due to their intrinsic flexibility and possibility to be fabricated on large areas using scalable processes. Fabric planarization is one of the most critical issues in their fabrication. Here we report a fast, simple, and industrially scalable planarization method based on the transfer of surface morphological properties from silicon to fabric. A liquid resin is used as a planarization layer, and by exploiting the low roughness of a ‘guide substrate’ it is possible to replicate the smooth and uniform surface from the silicon to the planarization layer. The result is a fabric with a flat and homogeneous polymer layer on its surface, suitable for OLED fabrication. In particular, the effect of resin viscosity on the surface morphology was evaluated to obtain the best planarization layer. The best device shows high luminance and current efficiency values, even after 1000 bending cycles. We also explored the possibility of tuning the color emitted by the device by using a fluorescent fabric as a down-converting layer. Thanks to this approach, it is in principle possible to achieve white emission from a very simple device architecture. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Figure 1

8 pages, 1034 KB  
Proceeding Paper
Hardware in the Loop Laboratory Test Systems for Medium Frequency R-Mode Receivers
by Lars Grundhöfer, Filippo Giacomo Rizzi, Niklas Hehenkamp and Stefan Gewies
Eng. Proc. 2023, 54(1), 59; https://doi.org/10.3390/ENC2023-15464 - 29 Oct 2023
Viewed by 821
Abstract
Terrestrial radio navigation systems are an important data source for increasing the integrity of position, navigation, and timing information and for strengthening the immunity to the spoofing and jamming of satellite-based systems. A possible solution for maritime use is the medium frequency R-Mode. [...] Read more.
Terrestrial radio navigation systems are an important data source for increasing the integrity of position, navigation, and timing information and for strengthening the immunity to the spoofing and jamming of satellite-based systems. A possible solution for maritime use is the medium frequency R-Mode. Here, the first real results were presented in the Baltic Sea within the R-Mode Baltic project. For the development of receivers and future signal evolution of R-Mode, there is a great need to provide simulated signals to the receiver hardware. For our laboratory work, we developed different hardware in the loop test systems which enable the simulation of each of the three components and the entire medium frequency R-Mode signal. With this setup, we are able to conduct reproducible tests of the R-Mode receiver’s ranging and positioning performance without the necessity of field tests. Furthermore, the impact of R-Mode signal modifications can be initially analyzed without the need of an implementation in the real-world test bed. Firstly, we describe the usage of arbitrary wave generators that can be used to replay received or simulated signals. Due to their wide distribution in electronic laboratories, there are cost-efficient ways to build up test capabilities. For this work, we tested the Tektronix AFG 3022 and the Rigol DG1032. For further tests, we utilize software-defined radios that are capable of streaming continuous signals. We utilize the ETTUS N210 to directly output the simulated signals. Additionally, we test the LimeSDR with an external down-converter. To generate these signals, we utilize software packages that were created to support the development of the digital signal processing. This approach allows us to test our receiver with a continuous integration from pure software to hardware in the loop test. A comprehensive summary gives an overview of the pros and cons for the different suggested systems. Full article
(This article belongs to the Proceedings of European Navigation Conference ENC 2023)
Show Figures

Figure 1

20 pages, 6049 KB  
Article
Practical Use of Starlink Downlink Tones for Positioning
by Nabil Jardak and Ronan Adam
Sensors 2023, 23(6), 3234; https://doi.org/10.3390/s23063234 - 18 Mar 2023
Cited by 40 | Viewed by 18350
Abstract
The large availability of Low Earth Orbit (LEO) satellite systems makes them useful beyond their original purposes, such as in positioning, where their signals can be passively used. In order to determine their potential for this purpose, newly deployed systems need to be [...] Read more.
The large availability of Low Earth Orbit (LEO) satellite systems makes them useful beyond their original purposes, such as in positioning, where their signals can be passively used. In order to determine their potential for this purpose, newly deployed systems need to be investigated. This is the case with the Starlink system, which has a large constellation and is advantageous for positioning. It transmits signals in the 10.7–12.7 GHz band, the same as that of geostationary satellite television. Signals in this band are typically received using a low-noise block down-converter (LNB) and a parabolic antenna reflector. Regarding opportunistic use of these signals in small vehicle navigation, the dimensions of the parabolic reflector and its directional gain are not practical for tracking many satellites simultaneously. In this paper, we investigate the feasibility of tracking Starlink downlink tones for opportunistic positioning in a practical situation, when signals are received without a parabolic reflector. For this purpose, an inexpensive universal LNB is selected, and then signal tracking is performed to determine the signal and frequency measurement quality, as well as the number of satellites that can be tracked simultaneously. Next, the tone measurements are aggregated to handle tracking interruptions and to recover the traditional Doppler shift model. After that, the use of measurements in multi-epoch positioning is defined, and its performance discussed as a function of the relevant measurement rate and the required multi-epoch interval duration. The results showed promising positioning which can be improved by selecting a better-quality LNB. Full article
Show Figures

Figure 1

Back to TopTop