Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (213)

Search Parameters:
Keywords = electromagnetic actuation system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1827 KB  
Review
Rotary Steerable Drilling Technology: Bottlenecks Breakthroughs and Intelligent Trends in China Shale Gas Development
by Hao Geng, Bingzhong Zhang and Yingjian Xie
Processes 2025, 13(11), 3471; https://doi.org/10.3390/pr13113471 - 29 Oct 2025
Viewed by 40
Abstract
Rotary Steerable System (RSS) enhances directional drilling efficiency by over 300% via dynamic bit adjustment during string rotation. This study aims to systematically address these bottlenecks, quantify technical boundaries, and propose actionable breakthrough paths for China’s RSS technology in shale gas development. To [...] Read more.
Rotary Steerable System (RSS) enhances directional drilling efficiency by over 300% via dynamic bit adjustment during string rotation. This study aims to systematically address these bottlenecks, quantify technical boundaries, and propose actionable breakthrough paths for China’s RSS technology in shale gas development. To address China’s shale gas RSS bottlenecks, this study proposes a “Material-Algorithm-System” tri-level strategy centered on an innovative “Tri-loop System.” Key innovations include (1) silicon nitride–tungsten carbide composite coatings to enhance thermal resilience, tested to withstand 220 °C, reducing thermal failure risk by 40% compared to conventional materials; (2) downhole reinforcement learning optimization; (3) a “Tri-loop System” integrating downhole intelligent control, wellbore-surface bidirectional communication, and cloud monitoring, shortening downhole command response latency from over 5 s to less than 1 s. In practical shale gas development scenarios—such as the Sichuan Basin’s deep coalbed methane wells and Shengli Oilfield’s tight reservoirs—this tri-level strategy has proven effective: the high-frequency electromagnetic wave radar increased thin coal seam drilling encounter rate by 23%, while the piezoelectric ceramic micro-actuators reduced tool failure rate by 35% in 175–200 °C environments. This approach targets raising China’s shale gas RSS application rate to 60%, supporting sustainable oil and gas exploration. Full article
(This article belongs to the Special Issue Development of Advanced Drilling Engineering)
Show Figures

Figure 1

29 pages, 4164 KB  
Review
Multimodal Field-Driven Actuation in Bioinspired Robots: An Emerging Taxonomy and Roadmap Towards Hybrid Intelligence
by Jianping Wang, Xin Wang, Shuai Zhou and Gengbiao Chen
Biomimetics 2025, 10(10), 713; https://doi.org/10.3390/biomimetics10100713 - 21 Oct 2025
Viewed by 423
Abstract
Rigid–flexible coupled robots hold significant potential for operating in unstructured environments, but a systematic analysis of their actuation strategies across diverse physical fields is notably lacking in the literature. This review addresses this gap by introducing a novel taxonomy based on field-controlled evolutionary [...] Read more.
Rigid–flexible coupled robots hold significant potential for operating in unstructured environments, but a systematic analysis of their actuation strategies across diverse physical fields is notably lacking in the literature. This review addresses this gap by introducing a novel taxonomy based on field-controlled evolutionary pathways—mechanical → electromagnetic → chemical → biohybrid—and critically examining over 100 seminal studies through a six-dimensional framework encompassing design, dynamics, and performance. We demonstrate that hybrid field integration (e.g., pneumatic-chemical synergy) improves grasping robustness by 40% in cluttered environments compared to single-field systems. Notably, biohybrid actuators, which integrate living cells, exhibit over 90% motion similarity to biological models, while phase-transition materials allow for adaptive stiffness tuning (0.1–5 N·mm−1) in medical applications. Radar chart analysis further reveals fundamental trade-offs between energy efficiency, response speed, and scalability across the various fields. These insights provide a clear roadmap for the development of next-generation robots with embodied intelligence, emphasizing multi-field synergies and bio-inspired adaptability. Full article
(This article belongs to the Special Issue Bioinspired Locomotion Control: From Biomechanics to Robotics)
Show Figures

Figure 1

17 pages, 4692 KB  
Article
Design and Evaluation of a Hip-Only Actuated Lower Limb Exoskeleton for Lightweight Gait Assistance
by Ming Li, Hui Li, Yujie Su, Disheng Xie, Raymond Kai Yu Tong and Hongliu Yu
Electronics 2025, 14(19), 3853; https://doi.org/10.3390/electronics14193853 - 29 Sep 2025
Viewed by 589
Abstract
This paper presents the design and evaluation of a lightweight, minimally actuated lower limb exoskeleton that emphasizes hip–knee coordination for natural and efficient gait assistance. The system adopts a hip-only motorized actuation strategy in combination with an electromagnetically controlled knee locking mechanism, ensuring [...] Read more.
This paper presents the design and evaluation of a lightweight, minimally actuated lower limb exoskeleton that emphasizes hip–knee coordination for natural and efficient gait assistance. The system adopts a hip-only motorized actuation strategy in combination with an electromagnetically controlled knee locking mechanism, ensuring rigid stability during stance while providing compliant assistance during swing. To support sit-to-stand transitions, a gas spring–ratchet mechanism is integrated, which remains disengaged in the seated position, delivers assistive torque during rising, and provides cushioning during the descent to enhance safety and comfort. The control framework fuses foot pressure and thigh-mounted IMU signals for finite state machine (FSM)-based gait phase detection and employs a fuzzy PID controller to achieve adaptive hip torque regulation with coordinated hip–knee control. Preliminary human-subject experiments demonstrate that the proposed design enhances lower-limb coordination, reduces muscle activation, and improves gait smoothness. By integrating a minimal-actuation architecture, a practical sit-to-stand assist module, and an intelligent control strategy, this exoskeleton strikes an effective balance between mechanical simplicity, functional support, and gait naturalness, offering a promising solution for everyday mobility assistance in elderly or mobility-impaired users. Full article
Show Figures

Figure 1

17 pages, 7150 KB  
Article
Dual Halbach Array Compact Linear Actuator with Thrust Characteristics Part I Simulation Result
by Jumpei Kuroda, Ryutaro Ono, Takumu Takayama, Shinobu Kasamatsu, Ikkei Kobayashi, Daigo Uchino, Kazuki Ogawa, Taro Kato, Keigo Ikeda, Ayato Endo, Hideaki Kato and Takayoshi Narita
Actuators 2025, 14(10), 476; https://doi.org/10.3390/act14100476 - 28 Sep 2025
Viewed by 336
Abstract
The application of mechanical products in many situations involves linear motion. The cylinder head of an internal combustion engine (ICE), a mechanical product, contains intake and exhaust valves. These valves open or close using the linear motion converted by the camshafts rotated by [...] Read more.
The application of mechanical products in many situations involves linear motion. The cylinder head of an internal combustion engine (ICE), a mechanical product, contains intake and exhaust valves. These valves open or close using the linear motion converted by the camshafts rotated by the engine. A typical engine is operated with a single cam profile; depending on the engine rotation, there are areas where the cam profiles do not match, resulting in a poor engine performance. An intake and exhaust system with an actuator can solve this problem. In a previous study on this system, the geometry and processing during manufacturing were complex. Therefore, in response, a linear actuator operated by Lorentz force with a coil as the mover was designed in this study. Through an electromagnetic field analysis using the finite element method, a three-phase alternating current was applied to the coil, assuming that it would be used as a power source for a general inverter. Consequently, the thrust obtained in the valve-actuation direction was 56.7 N, indicating improved axial thrust over the conventional model. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

22 pages, 3275 KB  
Review
Permanent Magnet Synchronous Motor Drive System for Agricultural Equipment: A Review
by Chao Zhang, Xiongwei Xia, Hong Zheng and Hongping Jia
Agriculture 2025, 15(19), 2007; https://doi.org/10.3390/agriculture15192007 - 25 Sep 2025
Viewed by 449
Abstract
The electrification of agricultural equipment is a critical pathway to address the dual challenges of increasing global food production and ensuring sustainable agricultural development. As the core power unit, the permanent magnet synchronous motor (PMSM) drive system faces severe challenges in achieving high [...] Read more.
The electrification of agricultural equipment is a critical pathway to address the dual challenges of increasing global food production and ensuring sustainable agricultural development. As the core power unit, the permanent magnet synchronous motor (PMSM) drive system faces severe challenges in achieving high performance, robustness, and reliable control in complex farmland environments characterized by sudden load changes, extreme operating conditions, and strong interference. This paper provides a comprehensive review of key technological advancements in PMSM drive systems for agricultural electrification. First, it analyzes solutions to enhance the reliability of power converters, including high-frequency silicon carbide (SiC)/gallium nitride (GaN) power device packaging, thermal management, and electromagnetic compatibility (EMC) design. Second, it systematically elaborates on high-performance motor control algorithms such as Direct Torque Control (DTC) and Model Predictive Control (MPC) for improving dynamic response; robust control strategies like Sliding Mode Control (SMC) and Active Disturbance Rejection Control (ADRC) for enhancing resilience; and the latest progress in fault-tolerant control architectures incorporating sensorless technology. Furthermore, the paper identifies core challenges in large-scale applications, including environmental adaptability, real-time multi-machine coordination, and high reliability requirements. Innovatively, this review proposes a closed-loop intelligent control paradigm encompassing environmental disturbance prediction, control parameter self-tuning, and actuator dynamic response. This paradigm provides theoretical support for enhancing the autonomous adaptability and operational quality of agricultural machinery in unstructured environments. Finally, future trends involving deep AI integration, collaborative hardware innovation, and agricultural ecosystem construction are outlined. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 3445 KB  
Article
Hybrid Actuation MEMS Micromirror with Decoupled Piezoelectric Fast Axis and Electromagnetic Slow Axis for Crosstalk Suppression
by Haoxiang Li, Jiapeng Hou, Zheng Gong, Huijun Yu, Yue Liu and Wenjiang Shen
Micromachines 2025, 16(9), 1072; https://doi.org/10.3390/mi16091072 - 22 Sep 2025
Viewed by 871
Abstract
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning [...] Read more.
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning patterns that degrade image quality. To tackle this issue, a hybrid actuation scheme is proposed in which a piezoelectric actuator drives the fast axis through an S-shaped spring structure, achieving a resonance frequency of 792 Hz, while the slow axis is independently driven by an electromagnetic actuator operating in quasi-static mode. Finite element simulations and experimental measurements validate that the proposed decoupled design significantly suppresses mechanical crosstalk. When the fast axis is driven to a 40° optical scan angle, the hybrid system reduces the parasitic slow-axis deflection (typically around 1.43°) to a negligible level, thereby producing a clean single-line scan. The piezoelectric fast axis exhibits a quality factor of Q = 110, while the electromagnetic slow axis achieves a linear 20° deflection at 20 Hz. This hybrid design facilitates a distortion-free field of view measuring 40° × 20° with uniform line spacing, presenting a straightforward and effective solution for high-precision scanning applications such as LiDAR (Light Detection and Ranging) and structured light projection. Full article
Show Figures

Figure 1

18 pages, 4475 KB  
Article
Electromagnetic Continuously Variable Transmission (EMCVT) System for Precision Torque Control in Human-Centered Robotic Applications
by Ishara Madusankha, Prageeth Nimantha Jayaweera, Nipun Shantha Kahatapitiya, Peshan Sampath, Ashan Weeraratne, Kasun Subasinghage, Chamara Liyanage, Akila Wijethunge, Naresh Kumar Ravichandran and Ruchire Eranga Wijesinghe
Appl. Mech. 2025, 6(3), 69; https://doi.org/10.3390/applmech6030069 - 8 Sep 2025
Viewed by 1104
Abstract
In human-centered robotic applications, safety, efficiency, and adaptability are critical for enabling effective interaction and performance. Incorporating electromagnetic continuously variable transmission (EM-CVT) systems into robotic designs enhances both safety and precise, adaptable motion control. The flexible power transmission offered by CVTs allows robots [...] Read more.
In human-centered robotic applications, safety, efficiency, and adaptability are critical for enabling effective interaction and performance. Incorporating electromagnetic continuously variable transmission (EM-CVT) systems into robotic designs enhances both safety and precise, adaptable motion control. The flexible power transmission offered by CVTs allows robots to operate across diverse environments, supporting various tasks, human interaction, and safe collaboration. This study presents a CVT-based mechanical subsystem developed using two cones and an intermediate belt-driven transmission mechanism, providing efficient power and motion transfer. The control subsystem consists of six strategically positioned electromagnets energized by signals from a microcontroller. This electromagnetic actuation enables rapid and precise adjustments to the transmission ratio, enhancing overall system performance. A linear relationship between slip percentage and gear ratio was observed, indicating that the control system achieves stable and efficient operation, with a measured power consumption of 2.95 W per electromagnet. Future work will focus on validating slip performance under dynamic loading conditions, integrating the system into robotic platforms, and optimizing materials and control strategies to enable broader real-world deployment. Full article
Show Figures

Figure 1

11 pages, 2289 KB  
Article
Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting
by Lin Jiang, Qi Hu and Yijun Feng
Photonics 2025, 12(9), 897; https://doi.org/10.3390/photonics12090897 - 6 Sep 2025
Viewed by 749
Abstract
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal [...] Read more.
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal magnetic field and the widths of the output waveguides. The first approach features a mechanically reconfigurable ring-shaped ENZ waveguide. By continuously re-distributing the magnetic field within the ENZ tunneling channels utilizing rotatable copper plates, arbitrary power division among multiple output ports is constructed. The second design integrates a rectangular-loop ENZ cavity into a substrate-integrated waveguide, with four positive–intrinsic–negative diodes embedded to dynamically activate specific output ports. This configuration steers electromagnetic energy toward output ports with varying cross-sectional areas, enabling on-demand control over both the power division and the number of output ports. Both analytical and full-wave simulation results confirm dynamic power division, with transmission efficiencies exceeding 93%. Despite differences in structure and actuation mechanisms, both designs exhibit flexible field control, high reconfigurability, and excellent transmission performance, highlighting their potential in advanced applications such as real-time wireless communications, multi-input–multi-output systems, and reconfigurable antennas. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

13 pages, 4472 KB  
Article
Design and Optimization of a Broadband Stripline Kicker for Low Beam Emittance Ring Accelerators
by Sakdinan Naeosuphap, Sarunyu Chaichuay, Siriwan Jummunt and Porntip Sudmuang
Particles 2025, 8(3), 78; https://doi.org/10.3390/particles8030078 - 29 Aug 2025
Viewed by 417
Abstract
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the [...] Read more.
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the installation of a transverse bunch-by-bunch feedback system is planned. This system will comprise a button-type beam position monitor (BPM) for beam signal detection, a digital feedback controller, a broadband power amplifier, and a broadband stripline kicker as the primary actuator. One of the critical challenges lies in the development of the stripline kicker, which must be optimized for high shunt impedance and wide bandwidth while minimizing beam-coupling impedance. This work focuses on the comprehensive design of the stripline kicker intended for transverse (horizontal and vertical) bunch-by-bunch feedback in the Siam Photon Source II (SPS-II) storage ring. The stripline kicker design also incorporates features to enable its use for beam excitation in the SPS-II tune measurement system. The optimization process involves analytical approximations and detailed numerical electromagnetic field analysis of the stripline’s 3D geometry, focusing on impedance matching, field homogeneity, power transmission, and beam-coupling impedance. The details of engineering design are discussed to ensure that it meets the fabrication possibilities and stringent requirements of the SPS-II accelerator. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

22 pages, 8473 KB  
Article
Designing a Power Supply System for an Amphibious Robot Based on Wave Energy Generation
by Lishan Ma, Fang Huang, Lingxiao Li, Qiang Fu, Chunjie Wang and Xinpeng Wang
J. Mar. Sci. Eng. 2025, 13(8), 1466; https://doi.org/10.3390/jmse13081466 - 30 Jul 2025
Viewed by 530
Abstract
As the range of applications for amphibious robots expands, higher demands are being placed on their working time and working range. This paper proposed a power supply system for an amphibious robot based on wave energy generation, which can convert wave energy into [...] Read more.
As the range of applications for amphibious robots expands, higher demands are being placed on their working time and working range. This paper proposed a power supply system for an amphibious robot based on wave energy generation, which can convert wave energy into electric energy to enhance endurance. First, the no-load induced electromotive force, magnetic line distribution vector diagrams, and magnetic density cloud diagrams of the cylindrical and flat generators were compared by finite element simulation, which determined that the cylindrical structure has better power generation performance. Then, the electromagnetic parameters of the cylindrical generator were analyzed using Ansys Maxwell, and the final dimensions were determined. Finally, the wave motion was simulated using a swing motor, and the effects of different cutting speeds for the actuator before and after rectification, as well as series-parallel capacitance on the power generation performance of the designed generator, were experimentally analyzed. This provides a potential solution to enhance the working time and working range of amphibious robots. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 1749 KB  
Article
Optimization of Soft Actuator Control in a Continuum Robot
by Oleksandr Sokolov, Serhii Sokolov, Angelina Iakovets and Miroslav Malaga
Actuators 2025, 14(7), 352; https://doi.org/10.3390/act14070352 - 17 Jul 2025
Viewed by 641
Abstract
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data [...] Read more.
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data were collected using a high-frequency electromagnetic tracking system under monotonic pressurization to minimize hysteresis effects. Transfer functions were identified for each coordinate–actuator pair using the System Identification Toolbox in MATLAB, and optimal actuator pressures were computed analytically by solving a constrained quadratic program via a manual active-set method. The resulting control strategy achieved sub-millimeter positioning error while minimizing the number of actuators engaged. The approach is computationally efficient, sensor-minimal, and fully implementable in open-loop settings. Despite certain limitations due to sensor nonlinearity and actuator hysteresis, the method provides a robust foundation for feedforward control and the real-time deployment of soft robots in quasi-static tasks. Full article
(This article belongs to the Special Issue Advanced Technologies in Soft Actuators)
Show Figures

Figure 1

18 pages, 4050 KB  
Article
Novel Pulsed Electromagnetic Field Device for Rapid Structural Health Monitoring: Enhanced Joint Integrity Assessment in Steel Structures
by Viktors Mironovs, Yulia Usherenko, Vjaceslavs Zemcenkovs, Viktors Kurtenoks, Vjaceslavs Lapkovskis, Dmitrijs Serdjuks and Pavels Stankevics
Materials 2025, 18(12), 2831; https://doi.org/10.3390/ma18122831 - 16 Jun 2025
Viewed by 615
Abstract
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. [...] Read more.
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. Experiments were conducted on a model steel stand with two joint configurations, using steel plates of 4 mm and 8 mm thickness. The device’s efficacy was evaluated through oscillation pattern analysis and spectral characteristics. Results demonstrate the device’s ability to differentiate between joint states, with the 4 mm plate configuration showing a 15% reduction in high-frequency components compared to the 8 mm plate. Fundamental resonant frequencies of 3D-printed specimens were observed near 5100 Hz, with Q-factors ranging between 200 and 300. The study also found that a 10% increase in volumetric porosity led to a 7% downward shift in resonant frequencies. The developed PEMF device, operating at 50–230 V and delivering 1–5 pulses per minute, shows promise for rapid, non-destructive monitoring of structural joints. When combined with the coaxial correlation method, the system demonstrates enhanced sensitivity in detecting structural changes, utilising an electrodynamic actuator (10 Hz to 2000 Hz range). This integrated approach offers a 30% improvement in early-stage degradation detection compared to traditional methods. Full article
Show Figures

Figure 1

28 pages, 1577 KB  
Article
Study on Nonlinear Vibration of Carbon Nanotube-Reinforced Composite Beam Using Nonlocal Beam Theory in a Complex Environment
by Bogdan Marinca, Nicolae Herisanu and Vasile Marinca
Appl. Sci. 2025, 15(12), 6494; https://doi.org/10.3390/app15126494 - 9 Jun 2025
Viewed by 589
Abstract
The present research analyzed the nonlinear vibration of a CNTRC embedded in a nonlinear Winkler–Pasternak foundation in the presence of an electromagnetic actuator and mechanical impact. A higher-order shear deformation beam theory was applied to various models, as well as Euler–Bernoulli, Timoshenko, Reddy, [...] Read more.
The present research analyzed the nonlinear vibration of a CNTRC embedded in a nonlinear Winkler–Pasternak foundation in the presence of an electromagnetic actuator and mechanical impact. A higher-order shear deformation beam theory was applied to various models, as well as Euler–Bernoulli, Timoshenko, Reddy, and other beams, using a unified NSGT. The governing equations were obtained based on the extended shear and normal strain component of the von Karman theory and a Hamilton principle. The system was discretized by means of the Galerkin–Bubnov procedure, and the OAFM was applied to solve a complex nonlinear problem. The buckling and bending problems were studied analytically by using the HPM, the Galerkin method in combination with the weighted residual method, and finally, by the optimization of results for a simply supported composite beam. These results were validated by comparing our results for the linear problem with those available in literature, and a good agreement was proved. The influence of some parameters was examined. The results obtained for the extended models of the Euler–Bernoulli and Timoshenko beams were almost the same for the linear cases, but the results of the nonlinear cases were substantially different in comparison with the results obtained for the linear cases. Full article
(This article belongs to the Special Issue Nonlinear Dynamics in Mechanical Engineering and Thermal Engineering)
Show Figures

Figure 1

30 pages, 8909 KB  
Review
Recent Design and Application Advances in Micro-Electro-Mechanical System (MEMS) Electromagnetic Actuators
by Jianqun Cheng, Ning Xue, Bocang Qiu, Boqi Qin, Qingchun Zhao, Gang Fang, Zhihui Yao, Wenyi Zhou and Xuguang Sun
Micromachines 2025, 16(6), 670; https://doi.org/10.3390/mi16060670 - 31 May 2025
Cited by 3 | Viewed by 4857
Abstract
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly [...] Read more.
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly broadened their capabilities and practical applications. This comprehensive review systematically analyzes the recent developments in MEMS electromagnetic actuators, highlighting core operating principles such as Lorentz force and magnetic attraction/repulsion mechanisms and examining state-of-the-art fabrication technologies, such as advanced microfabrication techniques, additive manufacturing, and innovative material applications. Additionally, we provide an in-depth discussion on recent enhancements in actuator performance through smart and adaptive integration strategies, focusing on improved reliability, accuracy, and dynamic responsiveness. Emerging application fields, particularly micro-optical systems, microrobotics, precision micromanipulation, and microfluidic components, are extensively explored, demonstrating how recent innovations have significantly impacted these sectors. Finally, critical challenges, including miniaturization constraints, integration complexities, power efficiency, and reliability issues, are identified, alongside a prospective outlook outlining promising future research directions. This review aims to serve as an authoritative resource, fostering further innovation and technological advancement in MEMS actuators and related interdisciplinary fields. Full article
(This article belongs to the Special Issue Magnetic Manipulation in Micromachines)
Show Figures

Figure 1

22 pages, 33852 KB  
Article
Research on Actuator Control System Based on Improved MPC
by Qingjian Zhao, Qinghai Zhang, Shuang Zhao, Xiaoqian Zhang, Shilei Lu, Yang Guo, Liqiang Song and Zhengxu Zhao
Actuators 2025, 14(6), 263; https://doi.org/10.3390/act14060263 - 27 May 2025
Cited by 1 | Viewed by 728
Abstract
To improve the control accuracy and interference resistance of actuator control systems in complex environments, a complete actuator control system solution has been designed. The system uses an STM32 controller as the core processing unit, integrating high-precision position sensors to build a multi-level [...] Read more.
To improve the control accuracy and interference resistance of actuator control systems in complex environments, a complete actuator control system solution has been designed. The system uses an STM32 controller as the core processing unit, integrating high-precision position sensors to build a multi-level control architecture. An improved model predictive control algorithm is proposed, which introduces extended state observers and multi-objective optimization strategies to estimate system states and external disturbances in real-time, achieving precise disturbance compensation. Experimental and test results show that, under electromagnetic interference and mechanical vibration conditions, the system’s stability and robustness are significantly enhanced, with error fluctuations of less than 0.03 mm, dynamic response time of 4.82 s, overshoot of 1.5%, steady-state error of 0.14 mm, and energy consumption reduced by 15%, all better than MPC, fuzzy control, and PID control methods under similar conditions. This research provides a comprehensive solution for hardware design and algorithm optimization in actuator control for industrial automation and precision manufacturing. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

Back to TopTop