Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = electromagnetic lock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7687 KiB  
Article
Locked Rotor Fault Analysis in Dual Rotor Wound Field Flux Switching Generator for Counter-Rotating Wind Turbine Application
by Wasiq Ullah, Faisal Khan, Udochukwu B. Akuru and Mehroz Fatima
Machines 2025, 13(6), 462; https://doi.org/10.3390/machines13060462 - 27 May 2025
Abstract
In this paper, the performance of the Independent Dual Rotor Wound Field Flux Switching Generator (IDRWFFSG) under locked rotor fault scenarios and counter-rotating operational direction for fault withstand capability is investigated. The IDRWFFSG and the locked rotor fault scenarios are defined, and the [...] Read more.
In this paper, the performance of the Independent Dual Rotor Wound Field Flux Switching Generator (IDRWFFSG) under locked rotor fault scenarios and counter-rotating operational direction for fault withstand capability is investigated. The IDRWFFSG and the locked rotor fault scenarios are defined, and the magnetic path formation is explained. An integrated mathematical and electromagnetic modelling of the generator characteristics performance comprising torque quality, output power, efficiency and power factor are undertaken, based on the finite element method (FEM) under fault conditions. The electromagnetic characteristics are investigated independently for the inner and outer rotors under locked conditions while the counterpart rotor is rotated in both clockwise (CW) and counterclockwise (CCW) directions. The analysis confirms that CCW offers a comparatively better response than CW, with excellent locked rotor fault withstand capability. In the case of CCW operation, the average torque, output power, efficiency, and power factor are improved. Based on the results, it is determined that the rotational direction of the rotor is selected depending on the prerequisite demand of high efficiency, high power factor, and high output power when one of the rotors goes under a locked condition. Finally, a test prototype is developed to validate the predicted electromagnetic characteristics, of which the measured results confirm the effectiveness of the IDRWFFSG fault withstand capability study. Full article
(This article belongs to the Special Issue Wound Field and Less Rare-Earth Electrical Machines in Renewables)
Show Figures

Figure 1

11 pages, 3159 KiB  
Article
Stability Assessment of Rydberg Electromagnetically Induced Transparency Locking via Optical Heterodyne Spectroscopy
by Qiuyu Yin, Yanzhao Liang, Haitao Lin, Ning Ji and Thibault Vogt
Photonics 2025, 12(4), 374; https://doi.org/10.3390/photonics12040374 - 13 Apr 2025
Viewed by 316
Abstract
Frequency locking to reference atomic lines using Rydberg electromagnetically induced transparency (EIT) has been recently introduced as an inexpensive and reliable technique for laser frequency stabilization. In this work, we carry out a systematic study of this technique using heterodyne beat spectroscopy. Two [...] Read more.
Frequency locking to reference atomic lines using Rydberg electromagnetically induced transparency (EIT) has been recently introduced as an inexpensive and reliable technique for laser frequency stabilization. In this work, we carry out a systematic study of this technique using heterodyne beat spectroscopy. Two different commercial semi-conductor lasers are locked to the same reference frequency using EIT locking, and their relative frequency stability is analyzed and continuously monitored in real time. A substantial improvement in the laser frequency stability is achieved through searching for the optimal proportional–integral settings and EIT probe laser powers. The results show that the cutoff frequency of the beat signal can be lowered to less than 500 kHz. We also compare the frequencies of free running lasers with that of a locked laser and characterize their frequency drifts. This study is important in assessing the use of Rydberg EIT locking in atomic electrometers. Full article
Show Figures

Figure 1

8 pages, 8537 KiB  
Communication
Probing nS/nD Rydberg States via 6P3/2 Intermediate Level Using Electromagnetically Induced Transparency in 87Rb
by Donghao Li, Beining Xu, Keyu Qin, Xin Jia, Changtao Zhao, Yaoting Zhou and Zhongxiao Xu
Photonics 2025, 12(3), 204; https://doi.org/10.3390/photonics12030204 - 26 Feb 2025
Viewed by 654
Abstract
We perform precise measurements of the 87Rb Rydberg excitation spectrum by using electromagnetically induced transparency (EIT) in a ladder system. We utilize a two-photon excitation configuration with the probe and control lasers at 420 nm and 1013 nm, respectively. In this work, [...] Read more.
We perform precise measurements of the 87Rb Rydberg excitation spectrum by using electromagnetically induced transparency (EIT) in a ladder system. We utilize a two-photon excitation configuration with the probe and control lasers at 420 nm and 1013 nm, respectively. In this work, we employ 6P3/2,F′ = 3 as an intermediate state to excite the high-lying Rydberg states of the nS and nD series, with principal quantum numbers ranging from n=35 to n=70. To improve the signal-to-noise ratio (SNR) in this inverted level scheme (λp<λc), we apply a 100 kHz chopping to the control beam, which is followed by a demodulation operated with a lock-in amplifier. Additionally, we verify the ionization energies and determine the quantum defects for the nS and nD series, respectively. Our work offers a database for applications of large-scale quantum simulation and quantum computation with the 87Rb atom array. Full article
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
An Underactuated Dexterous Hand with Novel Bidirectional Self-Locking Joints for Multiple Fingertip Active Motion Trajectories
by Daode Zhang, Ziwen He, Zican Ding, Zhiyong Yang, Wei Zhang and Yanyu Pan
Electronics 2024, 13(23), 4809; https://doi.org/10.3390/electronics13234809 - 5 Dec 2024
Viewed by 960
Abstract
This paper proposes an underactuated dexterous hand with novel bidirectional self-locking joints (BSJs) that enable multiple fingertip motion trajectories. The BSJ design integrates a locking wheel, rack, finger side walls, and a self-holding electromagnetic actuator, combining rack-and-pinion transmission with friction self-locking principles. Building [...] Read more.
This paper proposes an underactuated dexterous hand with novel bidirectional self-locking joints (BSJs) that enable multiple fingertip motion trajectories. The BSJ design integrates a locking wheel, rack, finger side walls, and a self-holding electromagnetic actuator, combining rack-and-pinion transmission with friction self-locking principles. Building on the BSJ concept, an underactuated dexterous hand is developed. The study begins with an analysis of BSJ’s deviation angle, establishing the minimum deviation angle critical to its operation. A detailed mechanical model of a BSJ is formulated, and its parameters are quantitatively analyzed to determine a safety static friction coefficient (0.177). Five distinct finger motion modes are designed and kinematic analysis focuses on the index finger and the generation of 57 unique fingertip active motion trajectories. Experimental validation included single finger performance tests that confirmed the diversity of fingertip trajectories and the hand’s ability to withstand loading in both forward and reverse directions. Through envelope and precision grasping experiments, the dexterous hand demonstrated its adaptability and ability to grasp objects of various sizes and shapes, such as strawberries, apples, student ID cards, and water bottles. This capability underscores its potential for a wide range of applications, from prosthetic hands for rehabilitation, where precision and adaptability are key, to robotic hands in industrial automation, offering flexibility in diverse tasks. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

13 pages, 6143 KiB  
Article
Design of an Electromagnetic Micro Mirror Driving System for LiDAR
by Jie Chen, Haiqiang Zhang, Zhongjin Zhang and Wenjie Yan
Sensors 2024, 24(12), 3969; https://doi.org/10.3390/s24123969 - 19 Jun 2024
Cited by 2 | Viewed by 1316
Abstract
Electromagnetic micro mirrors are in great demand for light detection and ranging (LiDAR) applications due to their light weight and low power consumption. The driven frequency of electromagnetic micro mirrors is very important to their performance and consumption. An electromagnetic micro mirror system [...] Read more.
Electromagnetic micro mirrors are in great demand for light detection and ranging (LiDAR) applications due to their light weight and low power consumption. The driven frequency of electromagnetic micro mirrors is very important to their performance and consumption. An electromagnetic micro mirror system is proposed in this paper. The model of the system was composed of a micro mirror, an integrated piezoresistive (PR) sensor, and a driving circuit was developed. The twisting angle of the mirror edge was monitored by an integrated PR sensor, which provides frequency feedback signals, and the PR sensor has good sensitivity and linearity in testing, with a maximum of 24.45 mV/deg. Stable sinusoidal voltage excitation and frequency tracking was realized via a phase-locked loop (PLL) in the driving circuit, with a frequency error within 10 Hz. Compared with other high-cost solutions using PLL circuits, it has greater advantages in power consumption, cost, and occupied area. The mechanical and piezoresistive properties of micro mirrors were performed in ANSYS 19.2 software. The behavior-level models of devices, circuits, and systems were validated by MATLAB R2023a Simulink, which contributes to the research on the large-angle deflection and low-power-consumption drive of the electromagnetic micro mirror. The maximum optical scan angle reached 37.6° at 4 kHz in the behavior-level model of the micro mirror. Full article
Show Figures

Figure 1

11 pages, 7844 KiB  
Article
Tailored Triggering of High-Quality Multi-Dimensional Coupled Topological States in Valley Photonic Crystals
by Guangxu Su, Jiangle He, Xiaofei Ye, Hengming Yao, Yaxuan Li, Junzheng Hu, Minghui Lu, Peng Zhan and Fanxin Liu
Nanomaterials 2024, 14(10), 885; https://doi.org/10.3390/nano14100885 - 19 May 2024
Cited by 1 | Viewed by 2116
Abstract
The combination of higher-order topological insulators and valley photonic crystals has recently aroused extensive attentions due to the great potential in flexible and efficient optical field manipulations. Here, we computationally propose a photonic device for the 1550 nm communication band, in which the [...] Read more.
The combination of higher-order topological insulators and valley photonic crystals has recently aroused extensive attentions due to the great potential in flexible and efficient optical field manipulations. Here, we computationally propose a photonic device for the 1550 nm communication band, in which the topologically protected electromagnetic modes with high quality can be selectively triggered and modulated on demand. Through introducing two valley photonic crystal units without any structural alteration, we successfully achieve multi-dimensional coupled topological states thanks to the diverse electromagnetic characteristics of two valley edge states. According to the simulations, the constructed topological photonic devices can realize Fano lines on the spectrum and show high-quality localized modes by tuning the coupling strength between the zero-dimensional valley corner states and the one-dimensional valley edge states. Furthermore, we extend the valley-locked properties of edge states to higher-order valley topological insulators, where the selected corner states can be directionally excited by chiral source. More interestingly, we find that the modulation of multi-dimensional coupled photonic topological states with pseudospin dependence become more efficient compared with those uncoupled modes. This work presents a valuable approach for multi-dimensional optical field manipulation, which may support potential applications in on-chip integrated nanophotonic devices. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructures)
Show Figures

Graphical abstract

15 pages, 7520 KiB  
Article
Design and Analysis of Micro Signal Detection Circuit for Magnetic Field Detection Utilizing Coil Sensors
by Qifan Xu, Sichang Zhang, Siyu Li, Zhe Xu, Shouqi Cao and Meiling Wang
Appl. Sci. 2024, 14(9), 3618; https://doi.org/10.3390/app14093618 - 25 Apr 2024
Cited by 1 | Viewed by 1539
Abstract
Eddy current inspection has been extensively employed in non-destructive testing of various conductive materials. The coil probe, as a mainstream sensor in the eddy current detection system, inevitably encounters interference from external signals while transmitting its own signal. Therefore, developing techniques to extract [...] Read more.
Eddy current inspection has been extensively employed in non-destructive testing of various conductive materials. The coil probe, as a mainstream sensor in the eddy current detection system, inevitably encounters interference from external signals while transmitting its own signal. Therefore, developing techniques to extract valuable signals from noisy ones is crucial for ensuring accurate detection. Carbon fiber composites not only possess significantly lower electrical conductivity compared to conventional metallic materials but also exhibit notable anisotropy. To address this issue, we designed an ‘8’ coil probe set where the excitation coil does not electromagnetically interfere with the detection coil. However, practical applications that require portability and miniaturization pose challenges when utilizing this coil probe set to identify carbon content or defects due to the typically weak output signal. To address this issue, this paper proposes a design that combines the ‘8’ structure of the planar coil probe with the principle of phase-locked amplification to create a dual-phase sensitive phase-locked amplification detection circuit. These specific design ideas were tested using a weak signal, which passed through the preamplifier, secondary amplifier, and band-pass filter comprising the target channel for signal amplification and noise filtering. The effective signal amplitude is proportional to the inverse phase difference between the direct current (DC) signal and inversely proportional to the amplitude of the signal. Finally, the DC signal was passed through an analog-to-digital converter (ADC). The analog-to-digital converter (A/D) is used to collect and calculate the DC signal, enabling the detection of weak electrical signals. Simulation experiments demonstrated that the signal detection circuit has an amplitude error below 0.2% and a phase error below 0.5%. The phase-locked amplification circuit designed in this paper can effectively extract the tiny impedance change signals of the planar coil sensor probe with high sensitivity and good robustness. Full article
(This article belongs to the Special Issue Electromagnetic Detection Instruments and Signal Processing)
Show Figures

Figure 1

15 pages, 9168 KiB  
Article
Quasi-Synchronous Variations in the OLR of NOAA and Ionospheric Ne of CSES of Three Earthquakes in Xinjiang, January 2020
by Chen Yu, Jing Cui, Wanchun Zhang, Weiyu Ma, Jing Ren, Bo Su and Jianping Huang
Atmosphere 2023, 14(12), 1828; https://doi.org/10.3390/atmos14121828 - 15 Dec 2023
Cited by 1 | Viewed by 1514
Abstract
The successive tidal force (TF) at the epicenter of the Jiashi M6.6 earthquake in Xinjiang, China, was calculated for the period from 13 December 2019 to 10 February 2020. With periodic changes in tide-generating forces, the variations in the electron density (Ne) data [...] Read more.
The successive tidal force (TF) at the epicenter of the Jiashi M6.6 earthquake in Xinjiang, China, was calculated for the period from 13 December 2019 to 10 February 2020. With periodic changes in tide-generating forces, the variations in the electron density (Ne) data recorded by the China Seismo-Electromagnetic Satellite (CSES) and outgoing longwave radiation (OLR) data provided by NOAA on a large scale at N25°–N55°, E65°–E135° were studied. The results show that (1) in the four cycles during which the TF changes from trough to peak, the earthquake occurred during one peak time when the OLR changed around the epicenter via calm–rise processions and in other similar TF phases, and neither an increase in the OLR nor earthquake occurred. (2) With a change in the TF, the spatiotemporal evolution of the OLR from seismogenic processes to its occurrence was as follows: microenhancement–enhancement–microattenuation–enhancement–calmness; this is consistent with the evolution of outward infrared radiation when rocks break under stress loading: microrupture–rupture–locking–accelerated rupture–rupture. (3) Ne increased significantly during the seismogenic period and was basically consistent with OLR enhancement. The results indicate that as the TF increases, the Earth’s stress accumulates at a critical point, and the OLR increases and transfers upward. The theoretical hypothesis underlying the conducted study is that the accumulated electrons on the surface cause negatively charged electrons in the atmosphere to move upward, resulting in an increase in ionospheric Ne near the epicenter, which reveals the homology of seismic stress variations in the spatial coupling process. The quasi-synchronous change process of these three factors suggests that the TF changed the process of the stress accumulation–imbalance in the interior structure of this earthquake and has the effect of triggering the earthquake, and the spatiotemporal variations in the OLR and ionospheric Ne could be indirect reflections of in situ stress. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

7 pages, 1344 KiB  
Communication
Electromagnetically Induced Transparency Spectra of 6Li Rydberg Atoms
by Meimei Wu, Xin Bao, Shuxian Yu, Licheng Yi, Pingshuai Ren, Shujin Deng and Haibin Wu
Photonics 2023, 10(12), 1367; https://doi.org/10.3390/photonics10121367 - 12 Dec 2023
Cited by 2 | Viewed by 2053
Abstract
Rydberg atoms possess highly excited valence electrons that are far away from atomic cations. Compared with ground states, Rydberg states are excited states with a high principal quantum number n that exhibit large electric dipole moments and have a variety of applications in [...] Read more.
Rydberg atoms possess highly excited valence electrons that are far away from atomic cations. Compared with ground states, Rydberg states are excited states with a high principal quantum number n that exhibit large electric dipole moments and have a variety of applications in quantum information processing. In this communication, we report the measurement of the 6Li Rydberg excitation spectrum by ladder-type electromagnetically induced transparency (EIT) in a vapor cell. The 2pns/nd EIT spectra were recorded by sweeping the frequency of an ultraviolet Rydberg pumping laser while keeping the probing laser resonant to the 2s2p transition. All lasers were locked on an ultrastable optical Fabry-Pérot cavity and measured by an optical frequency comb. Our results provide valuable information to precisely determine quantum defects and enable novel experiments with Rydberg-dressed ultracold Fermi gases. Full article
(This article belongs to the Special Issue Optical Quantum System)
Show Figures

Figure 1

19 pages, 6364 KiB  
Article
Circuit Techniques for Immunity to Process, Voltage, and Temperature Variations in the Attachable Fractional Divider
by Atsushi Motozawa, Yasuyuki Hiraku, Yoshitaka Hirai, Naoaki Hiyama, Yusuke Imanaka and Fukashi Morishita
Electronics 2023, 12(23), 4885; https://doi.org/10.3390/electronics12234885 - 4 Dec 2023
Viewed by 1317
Abstract
In the automotive industry, system-on-chips are crucial for managing weak radio waves from space, known as satellite signals. Integer-N phase-locked loops have played a vital role in the operation of system-on-chips in recent history. Their clock frequencies are carefully designed to prevent electromagnetic [...] Read more.
In the automotive industry, system-on-chips are crucial for managing weak radio waves from space, known as satellite signals. Integer-N phase-locked loops have played a vital role in the operation of system-on-chips in recent history. Their clock frequencies are carefully designed to prevent electromagnetic interference. However, as global navigation satellite system becomes more prevalent, integer-N phase-locked loops face new challenges in generating clocks within the shrinking frequency bands due to large frequency steps determined using a reference clock. To address it, replacing integer-N phase-locked loops with fractional-N phase-locked loops is required. This topic has not been discussed extensively, but it is a practical issue that requires consideration due to its potential impact on development costs. This is why we developed an attachable fractional divider. Our developed divider can efficiently transform integer-N phase-locked loops into fractional-N phase-locked loops, achieving low jitter degradation of 0.35 psrms and a low fractional spur of −69.3 dBc. Thanks to its attachable design, it expedites time-to-market. Regarding mass production, ensuring immunity to process, voltage, and temperature variations is a significant concern. We introduce the circuit techniques employed in the developed fractional divider for immunity to process, voltage, and temperature variations. Subsequently, we provide a comprehensive set of measurement results. The frequency differences over process variations in fractional-N mode is 6.14 ppm. Power supply and temperature dependances are extremely small in spread-spectrum clocking mode. This article illustrates that the developed fractional divider enhances both time-to-market and product reliance. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

13 pages, 15143 KiB  
Article
Research on a Variable-Stiffness Joint and Its Application in Actuators
by Qi Wang, Xiaolong Lu, Peng Jiang, Chang Guo and Yalin Sun
Actuators 2023, 12(11), 397; https://doi.org/10.3390/act12110397 - 25 Oct 2023
Cited by 1 | Viewed by 2343
Abstract
Variable-stiffness actuators can flexibly adjust the overall or local stiffness of a structure, thus enabling reconstruction, adaptation, and locking capabilities that can meet a wide range of task requirements. However, the programmable design and manufacture of three-dimensional (3D) variable-stiffness actuators has become a [...] Read more.
Variable-stiffness actuators can flexibly adjust the overall or local stiffness of a structure, thus enabling reconstruction, adaptation, and locking capabilities that can meet a wide range of task requirements. However, the programmable design and manufacture of three-dimensional (3D) variable-stiffness actuators has become a challenge. In this paper, we present a method to develop the 3D structure of variable-stiffness actuators that combines variable-stiffness joints with 3D printing technology. The variable-stiffness joints were obtained by arranging steel needles wrapped with enameled copper wire inside the grooves of a polylactic acid (PLA) structure and bonding the three components with silicone glue. First, a variable-stiffness joint was used as a variable-stiffness node and subjected to 3D printing to realize multiple 3D variable-stiffness designs and manufacture a programmable structure. Then, using the repulsive force between paired magnets, we developed a driving actuator for the 3D variable-stiffness structure, enabling the expansion and deployment functions of the structure. In addition, an electromagnetically driven mechanical gripper was designed based on variable-stiffness joints to effectively decrease the driving energy in applications where objects are held for extended periods using variable-stiffness control. Our study provides practical solutions and guidance for the development of 3D variable-stiffness actuators, contributing to the achievement of more innovative and practical actuators. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

16 pages, 11433 KiB  
Article
Study on Joining for Thin-Walled Aluminum Alloy/Steel Tubes by Electromagnetic Flanging Process
by Chang Chen, Yujia Zhao, Dayong Wang, Junjia Cui, Guangyao Li and Hao Jiang
Metals 2023, 13(9), 1529; https://doi.org/10.3390/met13091529 - 29 Aug 2023
Viewed by 1642
Abstract
A structure for joining thin-walled 6061-T6 aluminum alloy tube (outer tube) and Q195 steel tube (inner tube) by electromagnetic flanging process was proposed. The formation process, mechanical properties, failure modes, and morphology of the joint were investigated. The results showed that the outer [...] Read more.
A structure for joining thin-walled 6061-T6 aluminum alloy tube (outer tube) and Q195 steel tube (inner tube) by electromagnetic flanging process was proposed. The formation process, mechanical properties, failure modes, and morphology of the joint were investigated. The results showed that the outer tube impacted the inner tube, the flanges of the prefabricated holes on the outer tube were embedded into the prefabricated holes of the inner tube under the action of Lorentz force, and thus the mechanical locking joint was obtained. There were two tensile failure modes for the joints: Pull-out and fracture. Specifically, when the discharge energy was relatively high, the failure mode changed from pull-out to fracture. Combining the results of tensile tests and morphology observations, the maximum loads of the joints increased with the discharge energy. However, excessive discharge energy would lead to the brittle fracture of the inner tube, which was not beneficial to the service. Better discharge energy and the maximum load of the joint at this discharge energy were obtained. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

12 pages, 10028 KiB  
Article
Particle-in-Cell Simulations on High-Efficiency Phase-Locking Millimeter-Wave Magnetrons with Unsynchronized High-Voltage Pulses
by Minsheng Song, Lin Meng, Bin Wang, Liangjie Bi, Yu Qin, Haixia Liu, Liangpin Chen, Yong Yin and Hailong Li
Electronics 2023, 12(16), 3502; https://doi.org/10.3390/electronics12163502 - 18 Aug 2023
Viewed by 1742
Abstract
Phase locking is an essential choice for building a coherent array, and a system of phase-locked magnetrons is relatively compact and cheaper than other microwave sources. Previous theoretical and experimental studies on phase locking are conducted using synchronized high-voltage pulses. Here, we investigate [...] Read more.
Phase locking is an essential choice for building a coherent array, and a system of phase-locked magnetrons is relatively compact and cheaper than other microwave sources. Previous theoretical and experimental studies on phase locking are conducted using synchronized high-voltage pulses. Here, we investigate the characteristics of two phase-locked magnetrons using particle-in-cell (PIC) simulation software (CST STUDIO SUITE 2020) when two high-voltage pulses have delays. The results show that the magnetrons produced two-level RF signals because the operation could be divided into two stages. The first stage happened when one cathode emitted electrons; then, the electrons formed one spoke, traveling in synchronism with the 0-phase difference mode. Two output ports both produced half the output power of a free-running magnetron. The second stage happened after another cathode started to emit electrons, which were instantly pre-modulated by the electromagnetic field of the 0-phase difference mode produced during the first stage. In the second stage, simulations showed that pre-modulation accelerated the process of electron bunching. Eventually, two magnetrons were phase-locked, and the total output power of the two identical magnetrons nearly doubled the output power of the free-running magnetron, which demonstrated that the magnetrons were phase-locked in the high-efficiency phase-locking regime. Full article
Show Figures

Figure 1

12 pages, 5731 KiB  
Article
Multiple Physical Quantities Janus Metastructure Sensor Based on PSHE
by Junyang Sui, Jie Xu, Aowei Liang, Jiahao Zou, Chuanqi Wu, Tinghao Zhang and Haifeng Zhang
Sensors 2023, 23(10), 4747; https://doi.org/10.3390/s23104747 - 14 May 2023
Cited by 6 | Viewed by 1949
Abstract
In this paper, a Janus metastructure sensor (JMS) based on the photonic spin Hall effect (PSHE), which can detect multiple physical quantities, is proposed. The Janus property is derived from the fact that the asymmetric arrangement of different dielectrics breaks the structure parity. [...] Read more.
In this paper, a Janus metastructure sensor (JMS) based on the photonic spin Hall effect (PSHE), which can detect multiple physical quantities, is proposed. The Janus property is derived from the fact that the asymmetric arrangement of different dielectrics breaks the structure parity. Hence, the metastructure is endowed with different detection performances for physical quantities on multiple scales, broadening the range and improving the accuracy of the detection. When electromagnetic waves (EWs) are incident from the forward scale of the JMS, the refractive index, thickness, and incidence angle can be detected by locking the angle corresponding to the PSHE displacement peak that is enhanced by the graphene. The relevant detection ranges are 2~2.4, 2~2.35 μm, and 27°~47°, with sensitivities (S) of 81.35°/RIU, 64.84°/μm, and 0.02238 THz/°, respectively. Under the condition that EWs incident into the JMS from the backward direction, the JMS can also detect the same physical quantities with different sensing properties, such as S of 99.3°/RIU, 70.07°/μm, and 0.02348 THz/° in corresponding detection ranges of 2~2.09, 1.85~2.02 μm, and 20°~40°. This novel multifunctional JMS is a supplement to the traditional single-function sensor and has a certain prospect in the field of multiscenario applications. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

20 pages, 5609 KiB  
Article
Grid Interconnection Modeling of Inverter Based Resources (IBR) Plant for Transient Analysis
by Himadry Shekhar Das, Shuhui Li and Shahinur Rahman
Energies 2023, 16(7), 3211; https://doi.org/10.3390/en16073211 - 2 Apr 2023
Cited by 2 | Viewed by 5891
Abstract
The increase in penetration levels of inverter-based resources (IBRs) is changing the dynamic performance of power grids of different parts of the world. IBRs are now being more and more integrated into the grid at a single connection point as an IBR plant. [...] Read more.
The increase in penetration levels of inverter-based resources (IBRs) is changing the dynamic performance of power grids of different parts of the world. IBRs are now being more and more integrated into the grid at a single connection point as an IBR plant. Due to the complex nature and dynamicity of each inverter model, it is not realistic to build and analyze full complex models of each inverter in the IBR plant. Moreover, simulating a large plant including detailed models of all the IBRs would require high computing resources as well as a long simulation time. This has been the main issue addressed in the new IEEE Std 2800-2022. This paper proposes a novel approach to model an IBR plant, which can capture the transient nature at the plant level, detailed IBR control at the inverter level, interactions of multiple IBR groups in a plant structure, and a collector system connecting the IBRs to the grid. The IBRs in the plant use a voltage source inverter topology combined with a grid-connected filter. The control structure of the IBR includes a cascaded loop control where an inner current control and outer power control are designed in the dq-reference frame, and a closed-loop phase-locked loop is used for the grid synchronization. The mathematical study is conducted first to develop aggregated plant models considering different operating scenarios of active IBRs in an IBR plant. Then, an electromagnetic transient simulation (EMT) model of the plant is developed to investigate the plant’s dynamic performance under different operating scenarios. The performance of the aggregated plant model is compared with that of a detailed plant model to prove the effectiveness of the proposed strategy. The results show that the aggregated EMT simulation model provides almost the same result as the detailed model from the plant perspective while the running time/computation burden is much lower. Full article
Show Figures

Figure 1

Back to TopTop