Advancement in the Design and Control of Robotic Grippers

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Actuators for Robotics".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 19569

Special Issue Editor


E-Mail Website
Guest Editor
Istituto Italiano di Tecnologia, Center for Robotics and Intelligent Systems, Via San Quirico19d, 16163 Genoa, Italy
Interests: mechatronic systems; robotic hands and grippers; actuators; sensors for robots; control; system dynamics; modelling and simulation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Robotic arms interact with the environment by means of their end effectors. These coincide, in the majority of cases, with two-fingered grippers. Such devices allow the robotic arm to grasp items with various properties (e.g., shape and weight), even applying high forces when required. Despite their wide employment, the performance of robotic grippers is still limited by several factors. Above all, the scarce instrumentation, in terms of electronics and sensors, complicates the implementation of advanced control algorithms. This is a shortcoming particularly affecting pneumatic grippers, which are the most employed type of robotic gripper. As the market of robotic grippers shows a clearly growing trend, the need to conceive more sophisticated devices becomes stronger. Therefore, this Special Issue aims at collecting valuable articles that can produce a significant advancement in the state of the art of robotic grippers. Key challenges regard the augmentation of the gripper intelligence, which passes through the integration of reliable sensors in the gripper, and the design improvement of crucial components (such as actuators, fingers, etc.). Topics will focus on, but are not limited to, the following:

- design

- actuation

- instrumentation

- real-time control

- performance evaluation

- modeling and test

Dr. Rocco Antonio Romeo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • design     
  • actuation     
  • instrumentation     
  • real-time control     
  • performance evaluation     
  • modeling and test

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 6658 KiB  
Article
Soft Robotic Honeycomb-Velcro Jamming Gripper Design
by Yu Cheng Chung, Wai Tuck Chow and Van Pho Nguyen
Actuators 2024, 13(9), 359; https://doi.org/10.3390/act13090359 - 16 Sep 2024
Viewed by 514
Abstract
In this paper, using a honeycomb-velcro structure to generate a novel jamming gripper is explored. Each finger of the gripper consists of multi-layers with a honeycomb sandwich structure acting as a core wrapped by a fabric sheet and sealed by a latex membrane. [...] Read more.
In this paper, using a honeycomb-velcro structure to generate a novel jamming gripper is explored. Each finger of the gripper consists of multi-layers with a honeycomb sandwich structure acting as a core wrapped by a fabric sheet and sealed by a latex membrane. This structure can transit between unjammed (flexible) and jammed (rigid) states thanks to the vacuum pressure. Various materials of honeycomb structure, fabric, and reinforcements are investigated to seek optimal combinations for making the jamming fingers. Then, such fingers are deployed in experiments to evaluate the stiffness and the surface friction with different loads in terms of with or without vacuum. Vacuum pressure boosts the stiffness and friction of all the jamming fingers compared with the without-vacuum case. Attached to a gripper, the jamming finger shows good performance in diverse manipulation with food, a metal component, a toy, a can, and a bottle. Furthermore, the variable-stiffness finger under vacuum pressure can be utilized to perform assembly and installation operations such as pushing a bolt into an aligned hole. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

14 pages, 1877 KiB  
Article
Fast UOIS: Unseen Object Instance Segmentation with Adaptive Clustering for Industrial Robotic Grasping
by Kui Fu, Xuanju Dang, Qingyu Zhang and Jiansheng Peng
Actuators 2024, 13(8), 305; https://doi.org/10.3390/act13080305 - 9 Aug 2024
Viewed by 912
Abstract
Segmenting unseen object instances in unstructured environments is an important skill for robots to perform grasping-related tasks, where the trade-off between efficiency and accuracy is an urgent challenge to be solved. In this work, we propose a fast unseen object instance segmentation (Fast [...] Read more.
Segmenting unseen object instances in unstructured environments is an important skill for robots to perform grasping-related tasks, where the trade-off between efficiency and accuracy is an urgent challenge to be solved. In this work, we propose a fast unseen object instance segmentation (Fast UOIS) method that utilizes predicted center offsets of objects to compute the positions of local maxima and minima, which are then used for selecting initial seed points required by the mean-shift clustering algorithm. This clustering algorithm that adaptively generates seed points can quickly and accurately obtain instance masks of unseen objects. Accordingly, Fast UOIS first generates pixel-wise predictions of object classes and center offsets from synthetic depth images. Then, these predictions are used by the clustering algorithm to calculate initial seed points and to find possible object instances. Finally, the depth information corresponding to the filtered instance masks is fed into the grasp generation network to generate grasp poses. Benchmark experiments show that our method can be well transferred to the real world and can quickly generate sharp and accurate instance masks. Furthermore, we demonstrate that our method is capable of segmenting instance masks of unseen objects for robotic grasping. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

33 pages, 12188 KiB  
Article
Soft Robotic System with Continuum Manipulator and Compliant Gripper: Design, Fabrication, and Implementation
by Shakir Qaddoori Fenjan and Siavash Fathollahi Dehkordi
Actuators 2024, 13(8), 298; https://doi.org/10.3390/act13080298 - 6 Aug 2024
Viewed by 1481
Abstract
This paper presents the design, construction, and implementation of a soft robotic system comprising a continuum manipulator arm equipped with a compliant gripper. Three main objectives were pursued: (1) developing a soft silicone gripper as an alternative to expensive and rigid steel grippers, [...] Read more.
This paper presents the design, construction, and implementation of a soft robotic system comprising a continuum manipulator arm equipped with a compliant gripper. Three main objectives were pursued: (1) developing a soft silicone gripper as an alternative to expensive and rigid steel grippers, enabling safe and precise handling of delicate or irregular objects such as fruits, glassware, and irregular shapes; (2) fabricating a continuum manipulator arm with robotic joints inspired by vertebrae, allowing for smooth, non-linear motion and more excellent maneuverability compared to traditional rigid arms, enabling access to hard-to-reach areas; and (3) integrating the compliant gripper with the continuum manipulator and implementing a control system for the soft gripper and remote bending arm using a microcontroller. The soft gripper, manipulator arm vertebrae, and other components were fabricated using 3D printing with PLA material for the molds. The gripper construct used hyperelastic silicone (Ecoflex 00.30). The continuum manipulator achieved a higher degree of freedom and mobility, while simulations and experiments validated the design’s effectiveness. The comparison shows that the close agreements differ by only 2.5%. In practical experiments involving lifting objects, the gripper was able to carry items with a greater mass. The proposed soft, integrated robotic system outperformed traditional rigid approaches, offering safe and flexible handling capabilities in unstructured environments. The nature-inspired design enabled a compliant grip and enhanced maneuverability, making it suitable for various applications requiring dexterous manipulation of delicate or irregularly shaped objects. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

15 pages, 5234 KiB  
Article
A Hybrid Three-Finger Gripper for Automated Harvesting of Button Mushrooms
by Bikram Koirala, Abishek Kafle, Huy Canh Nguyen, Jiming Kang, Abdollah Zakeri, Venkatesh Balan, Fatima Merchant, Driss Benhaddou and Weihang Zhu
Actuators 2024, 13(8), 287; https://doi.org/10.3390/act13080287 - 29 Jul 2024
Viewed by 911
Abstract
Button mushrooms (Agaricus bisporus) grow in multilayered Dutch shelves with limited space between two shelves. As an alternative to conventional hand-picking, automated harvesting in recent times has gained widespread popularity. However, automated harvesting of mushrooms faces critical challenges in the form [...] Read more.
Button mushrooms (Agaricus bisporus) grow in multilayered Dutch shelves with limited space between two shelves. As an alternative to conventional hand-picking, automated harvesting in recent times has gained widespread popularity. However, automated harvesting of mushrooms faces critical challenges in the form of growing environment, limited spaces, picking forces, and efficiency. End effectors for picking button mushrooms are an integral part of the automated harvesting process. The end effectors developed so far are oversized, bulky, and slow and thus are unsuitable for commercial mushroom harvesting applications. This paper introduces a novel three-finger hybrid gripper with rigid and soft parts, specifically designed for harvesting button mushrooms in automated systems even on narrow shelves. It discusses the design, fabrication, force analysis, and picking performance of the gripper in detail for both individual and clustered mushrooms. The results indicate that the gripping force depends on mushroom density and size. The inclusion of textured soft pads on gripper fingertips performs better compared with plain soft pads by reducing force by up to 20% and improving picking time. The gripper achieved a 100% picking success rate for single-grown mushrooms and 64% for clusters, with reduced picking times compared with existing end effectors. However, harvesting clustered mushrooms led to increased damage, suggesting the need for future improvements. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

22 pages, 9271 KiB  
Article
Structural Design and Control Performance Study of Flexible Finger Mechanisms for Robot End Effectors
by Yeming Zhang, Kai Wang, Maolin Cai, Yan Shi, Sanpeng Gong, Hui Zhang and Pengyun Zhang
Actuators 2024, 13(7), 271; https://doi.org/10.3390/act13070271 - 18 Jul 2024
Viewed by 758
Abstract
Most traditional rigid grippers can cause damage to the surface of objects in actual production processes and are susceptible to factors such as different shapes, sizes, materials, and positions of the product. This article studies a flexible finger for flexible grippers, more commonly [...] Read more.
Most traditional rigid grippers can cause damage to the surface of objects in actual production processes and are susceptible to factors such as different shapes, sizes, materials, and positions of the product. This article studies a flexible finger for flexible grippers, more commonly described as PneuNet, designs the structure of the finger, discusses the processing and manufacturing methods of the flexible finger, and prepares a physical model. The influence of structural parameters such as the thickness of the flexible finger and the angle of the air chamber on the bending performance of the finger was analyzed using the Abaqus simulation tool. An RBF-PID control algorithm was used to stabilize the internal air pressure of the flexible fingers. A flexible finger stabilization experimental platform was built to test the ultimate pressure, ultimate bending angle, and end contact force of the fingers, and the simulation results were experimentally verified. The results show that when the thickness of the flexible finger is 2 mm and the air chamber angle is 0 deg, the maximum bending angle of the flexible finger can reach about 136.3°. Under the same air pressure, the bending angle is inversely correlated with the air chamber angle and finger thickness. The experimental error of the bending angle does not exceed 3%, which is consistent with the simulation results as a whole. When the thickness is 2 mm, the maximum end contact force can reach about 1.32 N, and the end contact force decreases with the increase in the air chamber angle. The RBF-PID control algorithm used has improved response speed and a better control effect compared to traditional PID control algorithms. This article provides a clear reference for the application of flexible fingers and flexible grippers, and this research method can be applied to the analysis and design optimization of other soft brakes. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

25 pages, 13495 KiB  
Article
Comparative Study of Mechanical Scaling Effects of Origami-Inspired Motion Generation Mechanisms with Multi-Degree Vertices
by Seetharam Krishnapuram, Xiao Xiao and Hongliang Ren
Actuators 2024, 13(7), 266; https://doi.org/10.3390/act13070266 - 13 Jul 2024
Viewed by 591
Abstract
Origami exhibits the remarkable ability to transform into diverse shapes, including quadrilaterals, triangles, and more complex polygons. This unique property has inspired the integration of origami principles into engineering design, particularly in the development of foldable mechanisms. In the field of robotics, when [...] Read more.
Origami exhibits the remarkable ability to transform into diverse shapes, including quadrilaterals, triangles, and more complex polygons. This unique property has inspired the integration of origami principles into engineering design, particularly in the development of foldable mechanisms. In the field of robotics, when combined with actuators, these foldable mechanisms are referred to as active origami. Origami-based mechanisms play a pivotal role as versatile end effectors or grippers, enabling them to accurately trace desired trajectories. The performance of these mechanisms heavily relies on their specific fold patterns. To shed light on their capabilities, this study focuses on five representative structures using spherical mechanisms: oriceps, Miura ori, MACIOR, and two hexagonal structures. To assess their potential, a comparative analysis is conducted, evaluating their kinematic and scaling performances. The analysis employs the “scaling factor” as a metric, which quantifies the mechanical advantage of these mechanisms. This metric aids in the selection of appropriate structures for various applications. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

15 pages, 9945 KiB  
Article
An Adaptive Magnetorheological Fluid-Based Robotic Claw with an Electro-Permanent Magnet Array
by Young Choi, Keith Drake, Mark Jesik, Christine Hartzell and Norman Wereley
Actuators 2023, 12(12), 469; https://doi.org/10.3390/act12120469 - 16 Dec 2023
Viewed by 1731
Abstract
The increasing demand for the adept handling of a diverse range of objects in various grasp scenarios has spurred the development of more efficient and adaptable robotic claws. This study specifically focuses on the creation of an adaptive magnetorheological fluid (MRF)-based robotic claw, [...] Read more.
The increasing demand for the adept handling of a diverse range of objects in various grasp scenarios has spurred the development of more efficient and adaptable robotic claws. This study specifically focuses on the creation of an adaptive magnetorheological fluid (MRF)-based robotic claw, driven by electro-permanent magnet (EPM) arrays to enhance gripping capabilities across different task requirements. In pursuit of this goal, a two-finger MRF-based robotic claw was introduced, featuring two magnetorheological (MR) grippers equipped with MR elastomer (MRE) bladders and EPM arrays at the fingertips. The operational principle involved placing a target object between these MR grippers and adjusting the normal force applied to the object for effective grasping. During this process, the contact stiffness of the MR grippers was altered by activating the EPM arrays in three distinct operation modes: passive, short-range (SR), and long-range (LR). Through experimentation on a benchtop material testing machine, the holding performance of the MRF-based robotic claw with the integrated EPM arrays was systematically evaluated. This study empirically validates the feasibility and effectiveness of the MRF-based robotic claw when equipped with EPM arrays. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

24 pages, 10809 KiB  
Article
Design and Analysis of an Adaptive Cable-Driven Manipulator Capable of Actively Transitioning between Two-Point Clamping and Envelope Grasping
by Huiling Wei, Jin Liu, Qinghua Lu, Weilin Chen, Lufeng Luo and Chengbin Liang
Actuators 2023, 12(12), 461; https://doi.org/10.3390/act12120461 - 11 Dec 2023
Viewed by 1606
Abstract
Actively transitioning between clamping and grasping is a challenging problem for most manipulators with limited degrees of freedom. To overcome this problem, a cable-driven rigid–flexible combined manipulator capable of actively transitioning between clamping and grasping is proposed in this paper, which has a [...] Read more.
Actively transitioning between clamping and grasping is a challenging problem for most manipulators with limited degrees of freedom. To overcome this problem, a cable-driven rigid–flexible combined manipulator capable of actively transitioning between clamping and grasping is proposed in this paper, which has a certain adaptability and compliance to achieve adaptive operation. First, the cable-driven unit and compliant unit of the cable-driven rigid–flexible combined manipulator are designed. Then, the sensitivity of the mechanism parameters is analyzed using the Monte Carlo method, and then the structure of the cable-driven rigid–flexible combined manipulator is optimized. After that, the force on the finger in two-point clamping mode is modelled using Newton’s second law. Furthermore, the input–output relationship modelling of the finger in envelope grasping mode is deeply analyzed using the principle of energy conservation. Finally, the stable grasping performance of the cable-driven rigid–flexible combined manipulator is verified using numerical simulation and physical prototype tests. The results show that the cable-driven rigid–flexible combined manipulator has good adaptability and compliance, which verifies the effectiveness and rationality of the design and modelling. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

16 pages, 8369 KiB  
Article
Optimized Design of Fixture Mechanism for Cotton Bundle Fiber
by Daiyu Jiang, Huting Wang, Ruoyu Zhang, Rong Hu and Hong Liu
Actuators 2023, 12(12), 435; https://doi.org/10.3390/act12120435 - 23 Nov 2023
Viewed by 1524
Abstract
The linkage mechanism of a cotton bundle fiber strength tester will have an unstable clamping force when clamping fiber bundle samples with uneven thickness, resulting in slippage or damage to the fibers increasing the pectin residue, leading to inaccurate test results and increased [...] Read more.
The linkage mechanism of a cotton bundle fiber strength tester will have an unstable clamping force when clamping fiber bundle samples with uneven thickness, resulting in slippage or damage to the fibers increasing the pectin residue, leading to inaccurate test results and increased maintenance costs. To address this problem, according to the structural principle of the connecting rod-clamping mechanism, through the geometric relationship between the connecting rods to establish a parametric model of the mechanism and the use of the principle of virtual work on the mechanism to solve the force, the proposed new Dynamic Alternative Static Approximate Analysis Method (DASAAM) was based on Adams 2020. The Isight integrated Adams automatic optimization design framework was built. The variance of the change curve of the end force of the mechanism when clamping samples of different thicknesses was used as the evaluation function and the assembly conditions were used as the constraints. The dimensional parameters and angles of the mechanism were optimized using the multi-island genetic algorithm. The simulation results showed that when the thickness of the clamped sample varied in the range of 0–4 mm, the clamping force of the mechanism varied in the range of 8920–8630 N. Finally, the variance of the clamping force measured by the clamping force measurement component was 0.0367. The above results show that the DASAAM provided a new method for solving the static problem of mechanism morphological and position change, and the optimized linkage mechanism had better clamping force stability, which made the strength detection of cotton fiber more accurate, thus improving the quality of textile products. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

22 pages, 5370 KiB  
Article
Kinematic Analysis of a New 3-DOF Parallel Wrist-Gripper Assembly with a Large Singularity-Free Workspace
by Ramin Ghaedrahmati and Clément Gosselin
Actuators 2023, 12(11), 421; https://doi.org/10.3390/act12110421 - 10 Nov 2023
Cited by 3 | Viewed by 2049
Abstract
This paper introduces a novel dexterous 3-DOF parallel wrist-gripper assembly with a large singularity-free range of motion. It consists of a zero-torsion 2-DOF parallel wrist and a 1-DOF parallel gripper. The wrist produces a 2-DOF sphere-on-sphere pure rolling motion. This large singularity-free 2-DOF [...] Read more.
This paper introduces a novel dexterous 3-DOF parallel wrist-gripper assembly with a large singularity-free range of motion. It consists of a zero-torsion 2-DOF parallel wrist and a 1-DOF parallel gripper. The wrist produces a 2-DOF sphere-on-sphere pure rolling motion. This large singularity-free 2-DOF sphere-on-sphere pure rolling motion of the wrist allows for smooth and precise manipulation of objects in various orientations, making it suitable for applications such as assembly, pick-and-place, and inspection tasks. Using a geometrical approach, analytical solutions for the inverse and forward kinematics problems of the wrist and gripper are derived. From the inverse kinematic equations, the Jacobian matrices are derived and it is shown that the whole workspace is free of type I and type II singularities. It is shown that with a proper choice of design variables, a large singularity-free range of motion can be obtained. The absence of singularities in the whole workspace of the wrist-gripper assembly is an important feature that enhances its reliability. Finally, the correctness of the derived equations for the wrist inverse and forward kinematics are verified using MSC Adams. These results confirm the feasibility and effectiveness of the proposed parallel wrist-gripper assembly. Overall, the novel parallel wrist-gripper assembly presented in this paper demonstrates great potential for improving the efficiency and flexibility of robotic manipulators in a variety of industrial and research applications. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

13 pages, 15143 KiB  
Article
Research on a Variable-Stiffness Joint and Its Application in Actuators
by Qi Wang, Xiaolong Lu, Peng Jiang, Chang Guo and Yalin Sun
Actuators 2023, 12(11), 397; https://doi.org/10.3390/act12110397 - 25 Oct 2023
Cited by 1 | Viewed by 1721
Abstract
Variable-stiffness actuators can flexibly adjust the overall or local stiffness of a structure, thus enabling reconstruction, adaptation, and locking capabilities that can meet a wide range of task requirements. However, the programmable design and manufacture of three-dimensional (3D) variable-stiffness actuators has become a [...] Read more.
Variable-stiffness actuators can flexibly adjust the overall or local stiffness of a structure, thus enabling reconstruction, adaptation, and locking capabilities that can meet a wide range of task requirements. However, the programmable design and manufacture of three-dimensional (3D) variable-stiffness actuators has become a challenge. In this paper, we present a method to develop the 3D structure of variable-stiffness actuators that combines variable-stiffness joints with 3D printing technology. The variable-stiffness joints were obtained by arranging steel needles wrapped with enameled copper wire inside the grooves of a polylactic acid (PLA) structure and bonding the three components with silicone glue. First, a variable-stiffness joint was used as a variable-stiffness node and subjected to 3D printing to realize multiple 3D variable-stiffness designs and manufacture a programmable structure. Then, using the repulsive force between paired magnets, we developed a driving actuator for the 3D variable-stiffness structure, enabling the expansion and deployment functions of the structure. In addition, an electromagnetically driven mechanical gripper was designed based on variable-stiffness joints to effectively decrease the driving energy in applications where objects are held for extended periods using variable-stiffness control. Our study provides practical solutions and guidance for the development of 3D variable-stiffness actuators, contributing to the achievement of more innovative and practical actuators. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

12 pages, 3717 KiB  
Article
A Back-Drivable Rotational Force Actuator for Adaptive Grasping
by Xiaofeng Wu, Hongliang Hua, Che Zhao, Naiyu Shi and Zhiwei Wu
Actuators 2023, 12(7), 267; https://doi.org/10.3390/act12070267 - 29 Jun 2023
Cited by 2 | Viewed by 1321
Abstract
In this paper, a back-drivable and miniature rotary series elastic actuator (RSEA) is proposed for robotic adaptive grasping. A compact arc grooves design has been proposed to effectively reduce the dimension of the RSEA system. The elastic elements could be reliably embedded in [...] Read more.
In this paper, a back-drivable and miniature rotary series elastic actuator (RSEA) is proposed for robotic adaptive grasping. A compact arc grooves design has been proposed to effectively reduce the dimension of the RSEA system. The elastic elements could be reliably embedded in the arc grooves without any additional installation structures. The whole RSEA system is characterized as compact, miniature, and modular. The actuating force is controlled via a PI controller by tracking the deformation trajectory of the elastic elements. An underactuated finger mechanism has been adopted to investigate the effectiveness of the RSEA in robotic adaptive grasping. Results reveal that the underactuated finger mechanism could achieve adaptive grasping via the RSEA in a back-drive approach without the requirement of a fingertip force sensor. The RSEA could also exhibit an actuating compliance and a self-sensing characteristic. The actuating compliance characteristic helps in in guaranteeing the safety of human–robot interaction. The RSEA could estimate the external disturbance due to its self-sensing characteristic, which has the potential to replace the fingertip force sensor in grasping force perception applications. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 721 KiB  
Review
Control Methodologies for Robotic Grippers: A Review
by Simone Cortinovis, Giuseppe Vitrani, Marco Maggiali and Rocco Antonio Romeo
Actuators 2023, 12(8), 332; https://doi.org/10.3390/act12080332 - 17 Aug 2023
Cited by 3 | Viewed by 3457
Abstract
As automation is spreading in all the industry domains, the presence of robots is becoming unavoidable inside factories, warehouses and manufacturing facilities. Although a great number of companies and research institutions have concentrated their efforts on developing new robotic systems and advanced algorithms, [...] Read more.
As automation is spreading in all the industry domains, the presence of robots is becoming unavoidable inside factories, warehouses and manufacturing facilities. Although a great number of companies and research institutions have concentrated their efforts on developing new robotic systems and advanced algorithms, much work is necessary to provide robotic grippers, especially industrial ones, with reliable, powerful control strategies. Therefore, this article aims at delivering an up-to-date point of view on the state of the art of robotic gripper control. The principal control methodologies employed so far, as well as a thorough selection of the existing contributions to the field, will be reported and discussed. Finally, the authors’ opinion about future directions will be expressed. Full article
(This article belongs to the Special Issue Advancement in the Design and Control of Robotic Grippers)
Show Figures

Figure 1

Back to TopTop