Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = filtration textiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3419 KB  
Article
Anionic Azo Dyes: Wastewater Pollutants as Functionalizing Agents for Porous Polycarbonate Membranes Aiding in Water Decolorization
by Alan Jarrett Messinger, Isabella S. Mays, Brennon Craigo, Jeffrey Joering and Sean P. McBride
Sustainability 2025, 17(17), 7696; https://doi.org/10.3390/su17177696 - 26 Aug 2025
Viewed by 421
Abstract
Efficient water decolorization techniques are vital for ensuring fresh water for future generations. Azo dyes are used heavily in the textile industry and are a challenge to remove from industrial wastewater. This research expands on recent innovative work where anionic azo dyes themselves [...] Read more.
Efficient water decolorization techniques are vital for ensuring fresh water for future generations. Azo dyes are used heavily in the textile industry and are a challenge to remove from industrial wastewater. This research expands on recent innovative work where anionic azo dyes themselves were used to functionalize track-etched porous polycarbonate filtration membranes with decolorized water obtained as a byproduct. The objective of this research is to determine whether the observed dye rejection is dependent on the magnitude of the intrinsic charge of the dye molecule or on its structure, using two selectively chosen anionic azo dye series during functionalization. The first group is a negative two intrinsic charge series with six dyes, each differing in structure, and the second group is a five-dye series that increases from −1 to −6 in intrinsic charge. Rejection measurements as a function of both time and concentration during functionalization are made using ultraviolet-visible light spectroscopy. For 100 µM aqueous dyes, comparing pre- and post-functionalization, a systematically increasing trend in the ability to functionalize porous polycarbonate based on the number of double 6-carbon ring structures in the dyes is illustrated and found to be independent of intrinsic charge. Full article
(This article belongs to the Special Issue Sustainable Solutions for Wastewater Treatment and Recycling)
Show Figures

Graphical abstract

23 pages, 8391 KB  
Article
Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters
by Magdalena Owczarek
Materials 2025, 18(15), 3554; https://doi.org/10.3390/ma18153554 - 29 Jul 2025
Viewed by 323
Abstract
This study investigates the influence of weaving process parameters on the structural homogeneity of woven fabrics, with a focus on the structural autoregulation phenomenon. Two experimental fabric groups of 30 each, plain and twill weaves, were produced using varied loom settings: shed closure [...] Read more.
This study investigates the influence of weaving process parameters on the structural homogeneity of woven fabrics, with a focus on the structural autoregulation phenomenon. Two experimental fabric groups of 30 each, plain and twill weaves, were produced using varied loom settings: shed closure timing, lease rod position, backrest roller position, warp pre-tension, and yarn twist direction. Structural uniformity was assessed using a proprietary method and the MagFABRIC 2.1. image analysis system, which quantify intra-repeat, inter-repeat, and global inhomogeneity. This method uses the size, shape, and location of inter-thread pores as well as warp and weft pitches. The results indicate that autoregulation can reduce local structural disturbances, including warp yarn grouping. In plain weaves, loom parameters and humidity significantly contributed to structural autoregulation. In contrast, twill weaves demonstrated dominant internal feedback mechanisms, significantly influenced by yarn twist direction. Regression models at F = 10 revealed nonlinear interactions, confirming autoregulation and experimentally supporting Nosek’s quasi-dynamic theory for these types of fabrics. The results of these studies have practical relevance in high-performance textiles such as filtration, barrier fabrics, and composite reinforcements, where local structural deviations critically affect the functional properties of fabrics. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

33 pages, 1821 KB  
Review
The “Colors” of Moringa: Biotechnological Approaches
by Edgar Yebran Villegas-Vazquez, Juan Ramón Padilla-Mendoza, Mayra Susana Carrillo-Pérez, Rocío Gómez-Cansino, Liliana Altamirano-Garcia, Rocío Cruz Muñoz, Alvaro Diaz-Badillo, Israel López-Reyes and Laura Itzel Quintas-Granados
Plants 2025, 14(15), 2338; https://doi.org/10.3390/plants14152338 - 29 Jul 2025
Viewed by 873
Abstract
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although [...] Read more.
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although MO’s resilience offers promise for climate-smart agriculture and public health, challenges remain in standardizing cultivation and verifying therapeutic claims. This work underscores MO’s translational potential and the need for integrative, interdisciplinary research. MO is used in advanced materials, like electrospun fibers and biopolymers, showing filtration, antibacterial, anti-inflammatory, and antioxidant properties—important for the biomedical industry and environmental remediation. In textiles, it serves as an eco-friendly alternative for wastewater treatment and yarn sizing. Biotechnological advancements, such as genome sequencing and in vitro culture, enhance traits and metabolite production. MO supports green biotechnology through sustainable agriculture, nanomaterials, and biocomposites. MO shows potential for disease management, immune support, metabolic health, and dental care, but requires further clinical trials for validation. Its resilience is suitable for land restoration and food security in arid areas. AI and deep learning enhance Moringa breeding, allowing for faster, cost-effective development of improved varieties. MO’s diverse applications establish it as a key element for sustainable development in arid regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

21 pages, 2629 KB  
Article
SDG 6 in Practice: Demonstrating a Scalable Nature-Based Wastewater Treatment System for Pakistan’s Textile Industry
by Kamran Siddique, Aansa Rukya Saleem, Muhammad Arslan and Muhammad Afzal
Sustainability 2025, 17(13), 6226; https://doi.org/10.3390/su17136226 - 7 Jul 2025
Viewed by 536
Abstract
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents [...] Read more.
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents routinely discharged into rivers and agricultural lands despite stringent National Environmental Quality Standards (NEQS). This study presents a pilot-scale case from Faisalabad’s Khurrianwala industrial zone, where a decentralized, nature-based bioreactor was piloted to bridge the gap between policy and practice. The system integrates four treatment stages—anaerobic digestion (AD), floating treatment wetland (FTW), constructed wetland (CW), and sand filtration (SF)—and was further intensified via nutrient amendment, aeration, and bioaugmentation with three locally isolated bacterial strains (Acinetobacter junii NT-15, Pseudomonas indoloxydans NT-38, and Rhodococcus sp. NT-39). The fully intensified configuration achieved substantial reductions in total dissolved solids (TDS) (46%), total suspended solids (TSS) (51%), chemical oxygen demand (COD) (91%), biochemical oxygen demand (BOD) (94%), nutrients, nitrogen (N), and phosphorus (P) (86%), sulfate (26%), and chloride (41%). It also removed 95% iron (Fe), 87% cadmium (Cd), 57% lead (Pb), and 50% copper (Cu) from the effluent. The bacterial inoculants persist in the system and colonize the plant roots, contributing to stable bioremediation. The treated effluent met the national environmental quality standards (NEQS) discharge limits, confirming the system’s regulatory and ecological viability. This case study demonstrates how nature-based systems, when scientifically intensified, can deliver high-performance wastewater treatment in industrial zones with limited infrastructure—offering a replicable model for sustainable, SDG-aligned pollution control in the Global South. Full article
(This article belongs to the Special Issue Progress and Challenges in Realizing SDG-6 in Developing Countries)
Show Figures

Figure 1

13 pages, 2657 KB  
Article
Efficient Filtration Systems for Microplastic Elimination in Wastewater
by Jamal Sarsour, Benjamin Ewert, Bernd Janisch, Thomas Stegmaier and Götz T. Gresser
Microplastics 2025, 4(3), 36; https://doi.org/10.3390/microplastics4030036 - 30 Jun 2025
Viewed by 603
Abstract
This study presents the development of a textile-based cascade filter for the removal of microplastics from an industrial laundry effluent. The cascade microfilter consists of three stages of 3D textile sandwich composite filter media, which have successively finer pores and are aimed at [...] Read more.
This study presents the development of a textile-based cascade filter for the removal of microplastics from an industrial laundry effluent. The cascade microfilter consists of three stages of 3D textile sandwich composite filter media, which have successively finer pores and are aimed at filtering microplastic particles down to 1.5 µm. Polypropylene fabrics with pore sizes of 100, 50 and 20 µm and 3D warp-knitted fabrics with high porosity (96%) were used. Filtration tests were carried out with polyethylene model microplastic particles at a concentration of 167 mg/L. To regenerate the filter and restore its filtration performance, backwashing with filtered water and compressed air was applied. Field trials at an industrial laundry facility and a municipal wastewater treatment plant confirmed high removal efficiencies. The 3D textile sandwich structure promotes filter cake formation, allowing extended backwash intervals and the effective recovery of filtration capacity between 89.7% and 98.5%. The innovative use of 3D textile composites enables a high level of microplastic removal while extending the filter media lifetime. This makes a significant contribution to the reduction in microplastic emissions in the aquatic environment. The system is scalable, space and cost efficient and adaptable to various industrial applications and is thus a promising solution for advanced wastewater treatment. Full article
Show Figures

Figure 1

24 pages, 7913 KB  
Review
From Waste to Value: Advances in Recycling Textile-Based PET Fabrics
by Fatemeh Mohtaram and Peter Fojan
Textiles 2025, 5(3), 24; https://doi.org/10.3390/textiles5030024 - 28 Jun 2025
Viewed by 1935
Abstract
The environmental burden of textile waste has become a critical challenge for sustainable development. This review explores recent developments in the recycling of textiles, especially polyethylene tereph-2 thalate (PET)-based fabrics, with a focus on fiber-to-fiber regeneration as a pathway toward circular textile production. [...] Read more.
The environmental burden of textile waste has become a critical challenge for sustainable development. This review explores recent developments in the recycling of textiles, especially polyethylene tereph-2 thalate (PET)-based fabrics, with a focus on fiber-to-fiber regeneration as a pathway toward circular textile production. Recent developments in PET recycling, such as mechanical and chemical recycling methods, are critically examined, highlighting the potential of chemical depolymerization for recovering high-purity monomers suitable for textile-grade PET synthesis. Special attention is given to electrospinning as an emerging technology for converting recycled PET into high-value nanofibers, offering functional properties suitable for advanced applications in filtration, medical textiles, and smart fabrics. The integration of these innovations, alongside improved sorting technologies and circular design strategies, is essential for overcoming current limitations and enabling scalable, high-quality recycling systems. This review aims to support the development of a more resource efficient textile industry by outlining key challenges, technologies, and future directions in PET recycling. Full article
Show Figures

Graphical abstract

18 pages, 1896 KB  
Review
Fashion to Dysfunction: The Role of Plastic Pollution in Interconnected Systems of the Environment and Human Health
by Adelaide Parks Lovett, Leslie Browning-Samoni and Charles Freeman
Textiles 2025, 5(2), 21; https://doi.org/10.3390/textiles5020021 - 10 Jun 2025
Viewed by 1644
Abstract
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called [...] Read more.
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called microplastics, and anthropogenic microfibers (MFs) which degrade into nanoplastics (NPs) through mechanical stress, heat, and UV radiation. These particles bypass wastewater treatment and accumulate in human organs, including the liver, lungs, and brain. This review highlights the limitations of current waste management systems, the role of textile design in particle release, and the need for further research on airborne emissions and environmental interactions. Mitigating textile-derived plastic pollution will require biodegradable finishes, pre-consumer filtration systems, and circular consumption models supported by interdisciplinary collaboration. Full article
Show Figures

Figure 1

14 pages, 4014 KB  
Article
Microplastics in Cronius ruber: Links to Wastewater Discharges
by Sofía Huelbes, May Gómez, Ico Martínez, Raül Triay-Portella, Miguel González-Pleiter and Alicia Herrera
Animals 2025, 15(10), 1420; https://doi.org/10.3390/ani15101420 - 14 May 2025
Viewed by 538
Abstract
Microplastic pollution in the ocean is a growing problem. It affects the entire ecosystem and, therefore, the species that inhabit it. Plastics can be filtered or ingested by organisms, entering and negatively affecting individuals. Among the populations affected are crustaceans. In previous studies, [...] Read more.
Microplastic pollution in the ocean is a growing problem. It affects the entire ecosystem and, therefore, the species that inhabit it. Plastics can be filtered or ingested by organisms, entering and negatively affecting individuals. Among the populations affected are crustaceans. In previous studies, fibers have been found mainly in the stomach contents of these animals, although other types, such as pellets, have also been found. This study examines the presence of microplastics in Cronius ruber, an invasive crab species in the Canary Islands, and investigates their potential links to nearby wastewater discharges. A total of 63 crabs were sampled from four beaches in Gran Canaria in 2021, and their stomach contents were analyzed through alkaline digestion, filtration, and micro-Fourier transform infrared spectroscopy (micro-FTIR). Microplastics were detected in 52% of individuals; the particles averaged 0.7 ± 0.5 mm in length, with an average of 1.73 ± 1.02 particles per crab. Fibers constituted 89% of the microplastics, with blue and black being the predominant colors. Rayon, commonly used in textiles, was the most frequently identified polymer (52%), highlighting the role of wastewater from laundry processes as a significant pollution source. Beaches close to unauthorized wastewater discharges, such as Anfi del Mar (n = 3) and El Puertillo (n = 32), showed the highest contamination levels, with a frequency of occurrence (FO) of microplastic particles of 67% and 58%, respectively. Playa de Las Nieves was the one with the lowest contamination level (n = 22), with a frequency of occurrence of microplastic particles of 41%. This is the first study to document microplastic ingestion in C. ruber, raising concerns about its ecological presence and the potential bioaccumulation of contaminants in marine ecosystems. Further research is essential to understand the long-term consequences of microplastic exposure on invasive species and their possible roles in pollutant transfer through food webs. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

15 pages, 3815 KB  
Article
Study of Bacterial Elution from High-Efficiency Glass Fiber Filters
by Le Rong, Yun Liang, Zhaoqian Li, Desheng Wang, Hao Wang, Lingyun Wang and Min Tang
Separations 2025, 12(5), 110; https://doi.org/10.3390/separations12050110 - 25 Apr 2025
Viewed by 525
Abstract
Antibacterial filter materials have been effectively utilized for controlling biological contaminants and purifying indoor air, with the market for such materials experiencing continuous expansion. Currently, textile antibacterial testing standards are widely adopted to evaluate the antimicrobial efficacy of filter materials, yet no dedicated [...] Read more.
Antibacterial filter materials have been effectively utilized for controlling biological contaminants and purifying indoor air, with the market for such materials experiencing continuous expansion. Currently, textile antibacterial testing standards are widely adopted to evaluate the antimicrobial efficacy of filter materials, yet no dedicated assessment protocols specifically tailored for filtration media have been established. This study aims to investigate the applicability of textile antibacterial testing methods to high-efficiency glass fiber filter materials (filtration efficiency > 99.9%), as well as to explore the factors that affect the rate of bacterial elution from high-efficiency glass fiber filter materials. By referencing the textile antibacterial testing standard (absorption method), significant discrepancies in bacterial recovery counts were observed between the high-efficiency glass fiber materials and the various textile control samples, with the former exhibiting a markedly lower recovery rate (approximately 10%). Pore structure and wettability analyses revealed the underlying causes of these differences. To ensure the accuracy of the antibacterial evaluation results, the effects of oscillation elution parameters (time and intensity) and material incubation conditions (duration, sealing and humidity) on bacterial recovery rates in glass fiber filter materials were systematically investigated to optimize the elution methodology. The results indicate that specimen type, size, elution method, incubation duration (4 h or 24 h), sealing conditions, and environmental humidity (10% or 30%, 60% and 95% RH) collectively influence bacterial recovery efficiency. The highest recovery efficiency (55%) was achieved when the filter materials were incubated in a sealed environment with humidity maintained at ≥60% RH. These findings emphasize the critical need to establish clear and specialized antibacterial performance testing standards for filter materials. The study provides essential guidance for developing material-specific evaluation protocols to ensure a reliable and standardized assessment of antimicrobial efficacy in high-efficiency filtration systems. Full article
Show Figures

Figure 1

14 pages, 5184 KB  
Article
Thermal Lamination of Electrospun Nanofiber Membrane with Woven Fabric and Yarn Embedding Effect
by Ziyuan Gao, Le Xu, Hongxia Wang, Xin Wei, Kaikai Chen, Wenyu Wang, Suzhen Zhang and Tong Lin
Membranes 2025, 15(3), 95; https://doi.org/10.3390/membranes15030095 - 20 Mar 2025
Viewed by 1029
Abstract
This study investigated the effectiveness of two lamination methods for integrating electrospun nanofiber membranes with woven nylon fabric for personal protective applications. The first method used a thermoplastic urethane (TPU) nonwoven adhesive, while the second method incorporated both the adhesive and a yarn, [...] Read more.
This study investigated the effectiveness of two lamination methods for integrating electrospun nanofiber membranes with woven nylon fabric for personal protective applications. The first method used a thermoplastic urethane (TPU) nonwoven adhesive, while the second method incorporated both the adhesive and a yarn, with the yarn embedding by sewing. Lamination with the TPU nonwoven adhesive slightly improved the adhesion between the nanofiber membrane and the nylon fabric. However, it decreased the air permeability, with the degree of the decrease depending on the areal density of the TPU adhesive. As the areal density of the TPU increased from 10 g/m2 to 30 g/m2, the air permeability decreased from 107.6 mm/s to 43.4 mm/s. The lamination resulted in a slight increase in the filtration efficiency for oil aerosol particles (0.3 µm, PM0.3, at a flow rate of 32 L/min) to 96.4%, with a pressure drop of 83 Pa. Embedding non-fusible yarns in the laminate increased the nanofiber/fabric adhesion and permeability. Still, the filtration efficiency and pressure drop were reduced to 74.4% and 38 Pa, respectively, due to numerous pinholes formed in the nanofiber layer during the sewing process. Conversely, incorporating fusible TPU yarns not only improved the interlayer adhesion by 175% compared to using TPU fabric adhesive alone but also increased the air permeability to 136.1 mm/s. However, the filtration performance (87.7%, 72 Pa) was slightly lower than that of the unlaminated nanofiber/fabric pack because the TPU yarns sealed the pinholes during lamination. Lamination embedded with hot-melt yarns provides a versatile approach for combining nanofiber membranes with conventional fabrics. It can be used to develop nanofiber-functionalized textiles for a wide range of applications, including fire protection, electrical insulation, sound absorption, filtration, marine applications, and more. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

16 pages, 4460 KB  
Article
Tailoring the Performance of a Composite PEI Nanofiltration Membrane via Incorporating Activated PDA for Efficient Dye Sieving and Salt Separation
by Wanting Li, Jiaye Liu, Weifu Wang, Shichun Chen, Fengwei Jia, Xiang Li, Ying Zhao, Wenjuan Zhang, Dan Song and Jun Ma
Membranes 2025, 15(3), 75; https://doi.org/10.3390/membranes15030075 - 2 Mar 2025
Cited by 1 | Viewed by 1434
Abstract
Efficient dye sieving and salt separation can facilitate the recycling of valuable resources in textile wastewater treatment. This study focuses on developing a high-performance nanofiltration membrane (NF) by co-depositing activated polydopamine (O-PDA), oxidized with KMnO4, and polyethyleneimine (PEI) onto a polysulfone [...] Read more.
Efficient dye sieving and salt separation can facilitate the recycling of valuable resources in textile wastewater treatment. This study focuses on developing a high-performance nanofiltration membrane (NF) by co-depositing activated polydopamine (O-PDA), oxidized with KMnO4, and polyethyleneimine (PEI) onto a polysulfone support membrane (PSF), thereby enabling effective dye sieving and salt separation. Due to the high hydrophilicity of PDA and the formation of high molecular polymers after oxidation, it was anticipated that O-PDA would crosslink the PEI layer, providing rapid permeating channels. Filtration experiments demonstrated that the formation of O-PDA significantly enhanced the salt retention rate of nanofiltration membranes, achieving a nearly threefold increase in NaCl retention from 15% to 45.7%. It was observed that the retention performance of O-PDA could be adjusted by controlling its loading or oxidation level. Furthermore, despite a notable reduction in permeability, the dye removal efficiency of the O-PDA/PEI membrane increased substantially to 99.5%. Long-term filtration experiments also confirmed both the stability and anti-fouling properties of this membrane design. Clearly, owing to its excellent operational stability and anti-fouling characteristics, the O-PDA/PEI membrane exhibits great potential for applications in dye sieving and salt separation. Full article
Show Figures

Figure 1

15 pages, 2302 KB  
Article
Zeolitized Clays and Their Use for the Capture and Photo-Fenton Degradation of Methylene Blue
by Koffi Simeon Kouadio, Ekou Tchirioua and Jérémy Dhainaut
Catalysts 2025, 15(2), 188; https://doi.org/10.3390/catal15020188 - 18 Feb 2025
Viewed by 2604
Abstract
Water pollution by dyes is a major environmental problem, particularly in the textile, food, and pharmaceutical industries. These dyes are often complex chemical compounds that are difficult to remediate due to their chemical stability, their solubility in water, and their resistance to conventional [...] Read more.
Water pollution by dyes is a major environmental problem, particularly in the textile, food, and pharmaceutical industries. These dyes are often complex chemical compounds that are difficult to remediate due to their chemical stability, their solubility in water, and their resistance to conventional treatment processes such as filtration, coagulation, or decantation. Thus, to date, there is still a need to make water treatment processes more performant and cost-efficient. The main aim of this research is to prepare photocatalytically active MFI-type zeolites from natural clays and support iron oxide nanoparticles. These catalysts were characterized and evaluated for the capture and the photo-Fenton degradation of methylene blue (MB) in aqueous solution. After 10 min under photo-Fenton conditions, Fe/MTK-MFI presented almost complete removal of MB for up to four consecutive cycles. Full article
(This article belongs to the Special Issue Porous Catalysts: Synthesis and Catalytic Performance)
Show Figures

Figure 1

9 pages, 3924 KB  
Article
Nanoparticle Air Filtration Using MXene-Coated Textiles
by Prastuti Upadhyay, Stefano Ippolito, Bita Soltan Mohammadlou, Michael S. Waring and Yury Gogotsi
C 2025, 11(1), 13; https://doi.org/10.3390/c11010013 - 12 Feb 2025
Cited by 1 | Viewed by 2825
Abstract
Nanoparticles with aerodynamic diameters of less than 100 nm pose serious problems to human health due to their small size and large surface area. Despite continuous progress in materials science to develop air remediation technologies, efficient nanoparticle filtration has appeared to be challenging. [...] Read more.
Nanoparticles with aerodynamic diameters of less than 100 nm pose serious problems to human health due to their small size and large surface area. Despite continuous progress in materials science to develop air remediation technologies, efficient nanoparticle filtration has appeared to be challenging. This study showcases the great promise of MXene-coated polyester textiles to efficiently filter nanoparticles, achieving a high efficiency of ~90% within the 15–30 nm range. Using alkaline earth metal ions to assist textile coating drastically improves the filter performance by ca. 25%, with the structure–property relationship thoroughly assessed by electron microscopy and X-ray computed tomography. Such techniques confirm metal ions’ crucial role in obtaining fully coated and impregnated textiles, which increases tortuosity and structural features that boost the ultimate filtration efficiency. Our work provides a novel perspective on using MXene textiles for nanoparticle filtration, presenting a viable alternative to produce high-performance air filters for real-world applications. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

17 pages, 1457 KB  
Article
Membrane Treatment to Improve Water Recycling in an Italian Textile District
by Francesca Tuci, Michele Allocca, Donatella Fibbi, Daniele Daddi and Riccardo Gori
Membranes 2025, 15(1), 18; https://doi.org/10.3390/membranes15010018 - 9 Jan 2025
Cited by 1 | Viewed by 1299
Abstract
The textile district of Prato (Italy) has developed a wastewater recycling system of considerable scale. The reclaimed wastewater is characterized by high levels of hardness (32 °F on average), which precludes its direct reuse in numerous wet textile processes (e.g., textile dyeing). Consequently, [...] Read more.
The textile district of Prato (Italy) has developed a wastewater recycling system of considerable scale. The reclaimed wastewater is characterized by high levels of hardness (32 °F on average), which precludes its direct reuse in numerous wet textile processes (e.g., textile dyeing). Consequently, these companies utilize ion exchange resins for water softening. However, the regeneration of the resins results in an increased concentration of chlorides in the reclaimed wastewater that exceeds the limit set by Italian regulations for the reuse of water for irrigation purposes. The objective of this study is to investigate the potential of membrane filtration as an alternative method for removing hardness from water. Therefore, an industrial-scale ultrafiltration-nanofiltration (UF-NF) pilot plant was installed to test the rejection of hardness from the reclaimed wastewater. The experiment employed two types of NF membranes and three permeate fluxes (27, 35, and 38 L·m−2·h−1) for testing. The results demonstrated that the system could remove hardness with efficiencies exceeding 98% under all conditions tested. The experimental findings indicate that the UF-NF system has the potential to be employed as a post-treatment step to render the reclaimed wastewater suitable for all textile finishing processes and to expand the scope for reuse. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 3333 KB  
Article
Evaluation of Alpaca Yarns Dyed with Buddleja Coriaceous Dye and Metallic Mordants
by Arturo Quispe-Quispe, Franklin Lozano, Luz María Pinche-Gonzales and Fulgencio Vilcanqui-Perez
Fibers 2025, 13(1), 2; https://doi.org/10.3390/fib13010002 - 28 Dec 2024
Cited by 1 | Viewed by 1491
Abstract
The objective of this research was to evaluate the effect of dye obtained from Buddleja coriacea and metallic mordants on the chromatic properties, textile characteristics, spectral profiles, and color stability in alpaca fibers. The dye extraction technique involved boiling in an aqueous solution, [...] Read more.
The objective of this research was to evaluate the effect of dye obtained from Buddleja coriacea and metallic mordants on the chromatic properties, textile characteristics, spectral profiles, and color stability in alpaca fibers. The dye extraction technique involved boiling in an aqueous solution, followed by filtration. Subsequently, alpaca yarns were dyed using the resulting extract following a standard protocol. The applied mordants included sodium sulfate (Na2SO4), aluminum sulfate and potassium dodecahydrate (KAl(SO4)2·12H2O), and oxalic acid (C2H2O4). Spectroscopy UV-Vis and FTIR spectrophotometry methods were used for the characterization of the dyed samples and analysis of the dye during the dyeing process. The findings revealed the formation of four distinct color tones. Additionally, it was determined that the mordants influenced the chromatic properties of the fibers dyed with Buddleja coriacea extract without modifying their textile characteristics. The identified spectral bands corresponded to keratin, the structural protein of the fibers. Changes in the intensity of these spectral bands were observed in the dyed samples, attributable to the presence of different mordants. Wet rub fastness was found to be inferior to dry rub fastness, which has implications for textile maintenance. In conclusion, Buddleja coriacea flowers provide an effective yellow dye, and when combined with various mordants, they allow for a variety of shades and hues in alpaca fiber yarns. Full article
Show Figures

Figure 1

Back to TopTop