Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = flat optical elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4026 KB  
Article
Design and Optimization Analysis of a Multipoint Flexible Adhesive Support Structure for a Spaceborne Rectangular Curved Prism
by Xinyin Jia, Bingliang Hu, Xianqiang He, Siyuan Li and Jia Liu
Appl. Sci. 2025, 15(16), 9050; https://doi.org/10.3390/app15169050 - 16 Aug 2025
Viewed by 324
Abstract
Curved prisms can serve as core components of dispersive spectroscopy and converge light paths, making them widely used in spectral imaging technology. Their positional stability, surface shape errors, and temperature stability in optical systems directly affect the performance of spectral imaging systems. On [...] Read more.
Curved prisms can serve as core components of dispersive spectroscopy and converge light paths, making them widely used in spectral imaging technology. Their positional stability, surface shape errors, and temperature stability in optical systems directly affect the performance of spectral imaging systems. On the basis of the analysis of design indicators and optimization of the support structure for curved prisms, a multipoint flexible adhesive support structure (MPPASS) of large rectangular curved prisms for space-based application is proposed. The novelty of the MPPASS lies in its ability to achieve micro-stress and high stability support for large-aperture rectangular optical elements through the bonding of peripheral small points and the introduction of flexible bonding rings. The design principles of the adhesive support structure were deeply studied, and on this basis, the engineering design, finite element analysis, adhesive testing, and mechanical testing of large curved prisms were completed. The designed curved prism assembly has a maximum deformation displacement of 0.0085 mm and a maximum tilt angle of 0.65” under gravity loading, a first-order frequency of 1003.5 Hz, and a maximum acceleration amplification factor of 3.12 in the X, Y, and Z directions. The root mean square (RMS) variation value of the mirror shape errors for the curved prism assembly was 5.26 nm under a uniform temperature load of 20 ± 1 °C, and the RMS value of the mirror shape errors was 0.019 λ after mechanical testing. The installation surface flatness of 0.02 mm did not significantly affect its mirror shape errors. The experimental results verified the rationality of the design, temperature stability, and mechanical stability of the MPPASS. Full article
Show Figures

Figure 1

22 pages, 4820 KB  
Article
Microstructure and Properties of Corrosion-Resistant Steel Produced by CASTRIP
by Kai Lei, Long Chen, Hengchang Lu, Xintong Lian, Qingxiao Feng, Hualong Li and Han Dong
Crystals 2025, 15(7), 595; https://doi.org/10.3390/cryst15070595 - 24 Jun 2025
Viewed by 470
Abstract
The CASTRIP process is an innovative method for producing flat rolled low-carbon and low-alloy steel at very thin thicknesses. By casting steel close to its final dimensions, enormous savings in time and energy can be realized. In this paper, an ultra-high-strength low-alloy corrosion-resistant [...] Read more.
The CASTRIP process is an innovative method for producing flat rolled low-carbon and low-alloy steel at very thin thicknesses. By casting steel close to its final dimensions, enormous savings in time and energy can be realized. In this paper, an ultra-high-strength low-alloy corrosion-resistant steel was produced through the CASTRIP process. Microstructure and properties were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal microscopy (LSCM), electron backscattered diffraction (EBSD), and tensile testing. The results show that the microstructure is mainly composed of polygonal ferrite, bainite ferrite, and acicular ferrite. The bainite ferrite forms parallel lath bundles nucleating at austenite grain boundaries, propagating perpendicularly into the parent grains. The acicular ferrite exhibits a cross-interlocked morphology preferentially nucleating at oxide/sulfide inclusions. Microstructural characterization confirms that the phase transformation of acicular ferrite and bainite ferrite introduces high-density dislocations, identified as the primary strengthening mechanism. Under the CASTRIP process, corrosion-resistant elements such as Cu, P, Sb, and Nb are completely dissolved in the matrix without grain boundary segregation, thereby contributing to solid solution strengthening. Full article
(This article belongs to the Special Issue Phase Transformation and Microstructure Evolution of Alloys)
Show Figures

Figure 1

13 pages, 27964 KB  
Article
Enhanced Terahertz Sensing via On-Chip Integration of Diffractive Optics with InGaAs Bow-Tie Detectors
by Karolis Redeckas, Vytautas Jakštas, Matas Bernatonis, Vincas Tamošiūnas, Gintaras Valušis and Linas Minkevičius
Sensors 2025, 25(1), 229; https://doi.org/10.3390/s25010229 - 3 Jan 2025
Viewed by 1030
Abstract
The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie [...] Read more.
The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate’s focal length and the InP substrate’s thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher—up to 24.5 V/W—than that of a standalone bow-tie detector. Investigations revealed the strong angular dependence of the incident radiation on the Fresnel zone plate-integrated bow-tie diode’s response. These findings pave a promising avenue for the further development of single-sided integration of flat optics with THz detectors, enabling improved sensitivity, simplified manufacturing processes, and reduced costs for THz detection systems in a more compact design scheme. Full article
Show Figures

Figure 1

20 pages, 8171 KB  
Article
Alignment of Fabry–Pérot Cavities for Optomechanical Acceleration Measurements
by Marina Rezinkina and Claus Braxmaier
Photonics 2025, 12(1), 15; https://doi.org/10.3390/photonics12010015 - 27 Dec 2024
Viewed by 1025
Abstract
The wave optics processes in a Fabry–Pérot cavity with a length of about tens of millimeters are considered. Such cavities are used, among other applications, in optomechanical accelerometers for precise measurement of displacement of moving elements. A Fabry–Pérot cavity formed by a spherical [...] Read more.
The wave optics processes in a Fabry–Pérot cavity with a length of about tens of millimeters are considered. Such cavities are used, among other applications, in optomechanical accelerometers for precise measurement of displacement of moving elements. A Fabry–Pérot cavity formed by a spherical and flat mirror is considered. The influence of parameters characterizing the alignment of the Fabry–Pérot cavity mirrors and the laser beam on the appearance of the higher order modes is investigated using numerical modeling. It is shown that the angle of inclination of the flat mirror of the cavity greatly affects the occurrence of higher order modes in addition to the fundamental mode. The levels of displacement of the axis of a spherical mirror in the vertical direction which do not cause the emergence of higher order modes is shown. The influence of the degree of displacement of the laser beam axis in the vertical direction relative to the symmetry axis of the Fabry–Pérot cavity is also investigated. Full article
Show Figures

Figure 1

13 pages, 5338 KB  
Article
Curved Holographic Augmented Reality Near-Eye Display System Based on Freeform Holographic Optical Element with Extended Field of View
by Hong Xu, Yuan Xu, Changyu Wang and Juan Liu
Photonics 2024, 11(12), 1194; https://doi.org/10.3390/photonics11121194 - 19 Dec 2024
Cited by 2 | Viewed by 1999
Abstract
At present, most near-eye display devices adopt flat substrates, which have problems such as limited field of view (FOV) and bulky shape, while the curved structure is expected to expand the FOV with appropriate volume. In this paper, we propose a curved holographic [...] Read more.
At present, most near-eye display devices adopt flat substrates, which have problems such as limited field of view (FOV) and bulky shape, while the curved structure is expected to expand the FOV with appropriate volume. In this paper, we propose a curved holographic augmented reality (AR) near-eye display system based on holographic optical element (HOE) with the ability to expand the FOV. The system includes a display source and a HOE with curved substrate. We analyze the system by exploiting the diffraction theory between plane and curved surface, and a layered and weighted FOV optimization method using particle swarm optimization algorithm is proposed to realize the optimization of the phase of freeform HOE. Numerical and experimental results show that the proposed curved holographic near-eye display system can realize cylindrical AR display and expand the FOV of the system. It is expected to be applied to the holographic AR near-eye display in the future. Full article
(This article belongs to the Special Issue Holographic Information Processing)
Show Figures

Figure 1

34 pages, 4857 KB  
Review
Grayscale Lithography and a Brief Introduction to Other Widely Used Lithographic Methods: A State-of-the-Art Review
by Svetlana N. Khonina, Nikolay L. Kazanskiy and Muhammad A. Butt
Micromachines 2024, 15(11), 1321; https://doi.org/10.3390/mi15111321 - 30 Oct 2024
Cited by 13 | Viewed by 9453
Abstract
Lithography serves as a fundamental process in the realms of microfabrication and nanotechnology, facilitating the transfer of intricate patterns onto a substrate, typically in the form of a wafer or a flat surface. Grayscale lithography (GSL) is highly valued in precision manufacturing and [...] Read more.
Lithography serves as a fundamental process in the realms of microfabrication and nanotechnology, facilitating the transfer of intricate patterns onto a substrate, typically in the form of a wafer or a flat surface. Grayscale lithography (GSL) is highly valued in precision manufacturing and research endeavors because of its unique capacity to create intricate and customizable patterns with varying depths and intensities. Unlike traditional binary lithography, which produces discrete on/off features, GSL offers a spectrum of exposure levels. This enables the production of complex microstructures, diffractive optical elements, 3D micro-optics, and other nanoscale designs with smooth gradients and intricate surface profiles. GSL plays a crucial role in sectors such as microelectronics, micro-optics, MEMS/NEMS manufacturing, and photonics, where precise control over feature depth, shape, and intensity is critical for achieving advanced functionality. Its versatility and capacity to generate tailored structures make GSL an indispensable tool in various cutting-edge applications. This review will delve into several lithographic techniques, with a particular emphasis on masked and maskless GSL methods. As these technologies continue to evolve, the future of 3D micro- and nanostructure manufacturing will undoubtedly assume even greater significance in various applications. Full article
Show Figures

Figure 1

23 pages, 19563 KB  
Review
A Review: Phase Measurement Techniques Based on Metasurfaces
by Zhicheng Zhao, Yueqiang Hu and Shanyong Chen
Photonics 2024, 11(11), 996; https://doi.org/10.3390/photonics11110996 - 22 Oct 2024
Viewed by 3796
Abstract
Phase carries crucial information about the light propagation process, and the visualization and quantitative measurement of phase have important applications, ranging from ultra-precision metrology to biomedical imaging. Traditional phase measurement techniques typically require large and complex optical systems, limiting their applicability in various [...] Read more.
Phase carries crucial information about the light propagation process, and the visualization and quantitative measurement of phase have important applications, ranging from ultra-precision metrology to biomedical imaging. Traditional phase measurement techniques typically require large and complex optical systems, limiting their applicability in various scenarios. Optical metasurfaces, as flat optical elements, offer a novel approach to phase measurement by manipulating light at the nanoscale through light-matter interactions. Metasurfaces are advantageous due to their lightweight, multifunctional, and easy-to-integrate nature, providing new possibilities for simplifying traditional phase measurement methods. This review categorizes phase measurement techniques into quantitative and non-quantitative methods and reviews the advancements in metasurface-based phase measurement technologies. Detailed discussions are provided on several methods, including vortex phase contrast, holographic interferometry, shearing interferometry, the Transport of Intensity Equation (TIE), and wavefront sensing. The advantages and limitations of metasurfaces in phase measurement are highlighted, and future research directions are explored. Full article
(This article belongs to the Special Issue Challenges and Future Directions in Adaptive Optics Technology)
Show Figures

Figure 1

20 pages, 4837 KB  
Article
Optical Particle Tracking in the Pneumatic Conveying of Metal Powders through a Thin Capillary Pipe
by Lorenzo Pedrolli, Luigi Fraccarollo, Beatriz Achiaga and Alejandro Lopez
Technologies 2024, 12(10), 191; https://doi.org/10.3390/technologies12100191 - 3 Oct 2024
Viewed by 4843
Abstract
Directed Energy Deposition (DED) processes necessitate a consistent material flow to the melt pool, typically achieved through pneumatic conveying of metal powder via thin pipes. This study aims to record and analyze the multiphase fluid–solid flow. An experimental setup utilizing a high-speed camera [...] Read more.
Directed Energy Deposition (DED) processes necessitate a consistent material flow to the melt pool, typically achieved through pneumatic conveying of metal powder via thin pipes. This study aims to record and analyze the multiphase fluid–solid flow. An experimental setup utilizing a high-speed camera and specialized optics was constructed, and the flow through thin transparent pipes was recorded. The resulting information was analyzed and compared with coupled Computational Fluid Dynamics-Discrete Element Modeling (CFD-DEM) simulations, with special attention to the solids flow fluctuations. The proposed methodology shows a significant improvement in accuracy and reliability over existing approaches, particularly in capturing flow rate fluctuations and particle velocity distributions in small-scale systems. Moreover, it allows for accurately analyzing Particle Size Distribution (PSD) in the same setup. This paper details the experimental design, video analysis using particle tracking, and a novel method for deriving volumetric concentrations and flow rate from flat images. The findings confirm the accuracy of the CFD-DEM simulations and provide insights into the dynamics of pneumatic conveying and individual particle movement, with the potential to improve DED efficiency by reducing variability in material deposition rates. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

14 pages, 3209 KB  
Article
Spiral Annealing of Magnetic Microwires
by Alexander Chizhik, Paula Corte-Leon, Valentina Zhukova, Juan Mari Blanco, Julian Gonzalez and Arcady Zhukov
Sensors 2024, 24(19), 6239; https://doi.org/10.3390/s24196239 - 26 Sep 2024
Cited by 2 | Viewed by 863
Abstract
A preprocessing technique named “spiral annealing” was applied for the first time to magnetic microwires. In this process, the sample was arranged in a flat spiral shape during annealing, and subsequent measurements were conducted on the unbent sample with the induced stress distribution [...] Read more.
A preprocessing technique named “spiral annealing” was applied for the first time to magnetic microwires. In this process, the sample was arranged in a flat spiral shape during annealing, and subsequent measurements were conducted on the unbent sample with the induced stress distribution along and transverse to the sample. The research utilized both magnetic and magneto-optical methods. The anisotropy field magnitude in both the volume and surface of the microwire was measured, and for the first time, a direct correlation between the anisotropy field and the curvature of a spirally annealed microwire was established. Additionally, a connection between the type of surface domain structure and the degree of spiral curvature was identified. The preservation of the distribution of spiral annealing-induced magnetic properties both along and across the microwire is a key effect influencing the technological application of the microwire. The range of induced curvature within which a specific helical magnetic structure can exist was also determined. This insight links the conditions of spiral annealing to the selection of microwires as active elements in magnetic sensors. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

18 pages, 8359 KB  
Article
Analyses of an Ultra-Wideband Absorber from UV-B to Middle-IR Utilizing a Square Nanopillar and a Square Hollow Embedded in a Square Cavity of the Top Layer of Multilayer Metamaterials
by Chia-Te Liao, Pei-Xiu Ke, Chia-Min Ho, Cheng-Fu Yang and Tung-Lung Wu
Photonics 2024, 11(8), 742; https://doi.org/10.3390/photonics11080742 - 8 Aug 2024
Cited by 2 | Viewed by 1194
Abstract
In this study, an ultra-wideband absorber spanning from UV-B to middle-IR was designed and analyzed using a novel structure. The multilayer metamaterial, arranged from bottom to top, consisted of an Al metal layer, a lower SiO2 layer, a graphite layer, another SiO [...] Read more.
In this study, an ultra-wideband absorber spanning from UV-B to middle-IR was designed and analyzed using a novel structure. The multilayer metamaterial, arranged from bottom to top, consisted of an Al metal layer, a lower SiO2 layer, a graphite layer, another SiO2 layer, a thin Ti layer, and a top SiO2 layer. The top layer of SiO2 had a 200 nm square cavity etched out, and then a square Ti nanopillar and a square Ti hollow outside a Ti nanopillar were embedded. This specific arrangement was chosen to maximize the absorption properties across a broad spectrum. The absorption spectrum of the designed absorber was thoroughly analyzed using the commercial finite element analysis software COMSOL Multiphysics® (version 6.0). This analysis confirmed that the combination of these various components achieved perfect absorption and an ultra-wideband response. The synergistic interaction between the layers and the nanopillars structure contributed significantly to the absorber’s efficiency, making it a promising candidate for applications requiring broad-spectrum absorption. The comprehensive analyses of the parameters for different structures demonstrated that the effects of guided-mode resonance, coupling resonance, optical impedance matching, and propagating surface plasmon resonance existed in the investigated structure. The optimal model, determined through analyses using COMSOL Multiphysics®, showed that the broadband absorption in the range of 270 to 3600 nm, spanning from UV-B to middle-IR, exceeded 90.0%. The average absorption rate within this range was 0.967, with the highest reaching a near-perfect absorptivity of 99.9%. We also compared three absorption spectra in this study: the t1–t6 flat structure, the t1–t5 flat structure with t6 featuring a square cavity, and the structure proposed in this study. This demonstrates that a square nanopillar and a square hollow embedded in a square cavity can enhance the absorptive properties of the absorber. Full article
(This article belongs to the Special Issue Emerging Trends in Metamaterials and Metasurfaces Research)
Show Figures

Figure 1

13 pages, 4072 KB  
Article
Line Illumination in Linear Array Photoacoustic Imaging Using a Powell Lens: A Proof-of-Concept Study
by Seyed Mohsen Ranjbaran, Karl Kratkiewicz, Rayyan Manwar and Kamran Avanaki
Photonics 2024, 11(4), 288; https://doi.org/10.3390/photonics11040288 - 22 Mar 2024
Cited by 2 | Viewed by 2475
Abstract
Photoacoustic imaging (PAI) is a rapidly developing biomedical imaging technology. Linear array-based photoacoustic tomography (LA-PAT) is one of the most popular configurations of cross-sectional PAI due to its simplicity and clinical translatability. However, when using an optical fiber for LA-PAT, the optical beam [...] Read more.
Photoacoustic imaging (PAI) is a rapidly developing biomedical imaging technology. Linear array-based photoacoustic tomography (LA-PAT) is one of the most popular configurations of cross-sectional PAI due to its simplicity and clinical translatability. However, when using an optical fiber for LA-PAT, the optical beam shape is deformed due to rapid divergence and, therefore, a larger area on the tissue is illuminated (and the illumination across the linear array is non-uniform), leading to the acquisition of PA signals outside the desired cross-section, which generates artifacts and degrades image resolution. A Powell lens is an optical element that converts a circular beam profile to a nearly linear flat-top profile. In this paper, a Powell lens is used to generate a uniform line illumination scheme that is evaluated with Zemax OpticStudio 2023 R1.02. The system is then characterized experimentally, and the performance is compared with a conventional illumination scheme in LA-PAT. Full article
(This article belongs to the Special Issue New Trends in Photoacoustic Imaging)
Show Figures

Figure 1

27 pages, 14896 KB  
Article
Associating Physical and Photocatalytic Properties of Recyclable and Reusable Blast Furnace Dust Waste
by Nayane O. Chaves, Lucas S. Lima, Michael D. S. Monteiro, Raimundo A. L. Sobrinho, Nilson S. Ferreira, Glenda Q. Ramos, Henrique D. da Fonseca Filho, Rosane M. P. B. Oliveira and Robert S. Matos
Materials 2024, 17(4), 818; https://doi.org/10.3390/ma17040818 - 8 Feb 2024
Cited by 3 | Viewed by 2178
Abstract
Blast furnace dust waste (BFDW) proved efficient as a photocatalyst for the decolorization of methylene blue (MB) dye in water. Structural analysis unequivocally identified α-Fe2O3 as the predominant phase, constituting approximately 92%, with a porous surface showcasing unique 10–30 nm [...] Read more.
Blast furnace dust waste (BFDW) proved efficient as a photocatalyst for the decolorization of methylene blue (MB) dye in water. Structural analysis unequivocally identified α-Fe2O3 as the predominant phase, constituting approximately 92%, with a porous surface showcasing unique 10–30 nm agglomerated nanoparticles. Chemical and thermal analyses indicated surface-bound water and carbonate molecules, with the main phase’s thermal stability up to 900 °C. Electrical conductivity analysis revealed charge transfer resistance values of 616.4 Ω and electrode resistance of 47.8 Ω. The Mott-Schottky analysis identified α-Fe2O3 as an n-type semiconductor with a flat band potential of 0.181 V vs. Ag/AgCl and a donor density of 1.45 × 1015 cm−3. The 2.2 eV optical bandgap and luminescence stem from α-Fe2O3 and weak ferromagnetism arises from structural defects and surface effects. With a 74% photocatalytic efficiency, stable through three photodegradation cycles, BFDW outperforms comparable waste materials in MB degradation mediated by visible light. The elemental trapping experiment exposed hydroxyl radicals (OH) and superoxide anions (O2) as the primary species in the photodegradation process. Consequently, iron oxide-based BFDW emerges as an environmentally friendly alternative for wastewater treatment, underscoring the pivotal role of its unique physical properties in the photocatalytic process. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

16 pages, 7953 KB  
Communication
First Approach Using Fluidic Force Microscopy (FluidFM®) to Measure Adhesion Forces between Droplets and Flat/Rough Surfaces Immersed in Water
by Laura Schwan and Ulrich Bröckel
Processes 2024, 12(1), 99; https://doi.org/10.3390/pr12010099 - 1 Jan 2024
Cited by 1 | Viewed by 1975
Abstract
The research program “Engineered Artificial Minerals (EnAM)” addresses the challenge of recycling valuable elements from battery waste streams. These elements, such as lithium (Li), often migrate in the slag phase, in some cases as crystals. EnAM crystals represent concentrated reservoirs of these elements, [...] Read more.
The research program “Engineered Artificial Minerals (EnAM)” addresses the challenge of recycling valuable elements from battery waste streams. These elements, such as lithium (Li), often migrate in the slag phase, in some cases as crystals. EnAM crystals represent concentrated reservoirs of these elements, which can only be effectively recycled if they are extracted from the slag matrix and then separated. Selective wet agglomeration is a separation process based on a three-phase system and is often used in coal and ore processing. The produced agglomerates in this process can be easily separated from the remaining suspension. The precise quantification of the wetting properties and adhesion strength between suspended particles and binding liquid droplets is a scientific challenge. An accurate technique suitable for adhesion force measurements in three-phase systems with micrometer-scale particles is Fluidic Force Microscopy (FluidFM®). An experimental setup with optical control is being developed to measure adhesion forces between droplets and flat/rough surfaces. This will enable precise measurements of adhesion forces between solid EnAM crystals and binding liquid droplets. Based on these measurements, optimal agglomeration conditions can be selected in the future to improve selective wet agglomeration with respect to recycling processes. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

16 pages, 5441 KB  
Article
Investigation of the Al-Mo-B(CN) Coatings Deposited Using Magnetron Sputtering of Al-Mo-B4C Target Produced by Detonation Spray Coating
by Sergey Viktorovich Zaitsev, Viacheslav Sirota, Marina Kovaleva, Dmitriy Prokhorenkov, Andrey Skiba and Mihail Limarenko
Coatings 2023, 13(11), 1918; https://doi.org/10.3390/coatings13111918 - 9 Nov 2023
Viewed by 1418
Abstract
In this work, a metal–ceramic composite target for magnetron sputtering was manufactured by a robotic complex for detonation spraying of coatings equipped with a multi-chamber detonation accelerator. The powder composition (30Mo-30Al-40B4C) was sprayed onto the copper plate base of the composite target cathode. [...] Read more.
In this work, a metal–ceramic composite target for magnetron sputtering was manufactured by a robotic complex for detonation spraying of coatings equipped with a multi-chamber detonation accelerator. The powder composition (30Mo-30Al-40B4C) was sprayed onto the copper plate base of the composite target cathode. The obtained cathode target with Al-Mo-B4C coating (thickness 280–300 μm) was used to deposit the Al-Mo-B(CN) coating (DC mode) on flat specimens of AISI 316 steel and silicon using equipment for magnetron sputtering UNICOAT 200. The Al-Mo-B4C coating has a lamella-type structure with inclusions of boron carbide particles. The structure and morphology of the coatings were studied using methods of optical analysis, scanning electron microscopy, atomic force microscopy, X-ray analysis, and X-ray photoelectron spectroscopy. Mechanical and tribological properties of the Al-Mo-B(CN) thin coatings were studied using a nanoindenter, a scratch tester, and a tribometer under a fluid-free friction regime at room temperature. The Al-Mo-B(CN) coating (thickness ~1 μm) exhibited a dense homogeneous fine-grained design without columnar elements and had an amorphous structure. The formation of the MoB2 and AlN phase with an admixture of oxygen in the form of aluminum oxide, molybdenum oxide, and boron oxide was determined using XPS analysis. The Al-Mo-B(CN) coating possessed a hardness of 13 GPa, an elasticity modulus of 114 GPa, an elastic recovery of 45%, a friction coefficient of 0.8 against a steel 100 Cr6 ball, and an adhesion strength of 11 N. Full article
Show Figures

Figure 1

11 pages, 9118 KB  
Article
Splicing Measurement and Compensation of Straightness Errors for Ultra-Precision Guideways
by Lian Zhou, Nan Zheng, Jie Li, Zhigang Yuan, Jian Wang, Fei Fang and Qiao Xu
Micromachines 2023, 14(9), 1670; https://doi.org/10.3390/mi14091670 - 26 Aug 2023
Cited by 3 | Viewed by 2090
Abstract
The straightness error of guideways is one of the key indicators of an ultra-precision machine, which plays an important role in the machining accuracy of a workpiece. In order to measure the straightness error of a long-distance ultra-precision guideway accurately, a splicing measurement [...] Read more.
The straightness error of guideways is one of the key indicators of an ultra-precision machine, which plays an important role in the machining accuracy of a workpiece. In order to measure the straightness error of a long-distance ultra-precision guideway accurately, a splicing measurement for the straightness error of a guideway using a high-precision flat mirror and displacement sensor was proposed in this paper, and the data splicing processing algorithm based on coordinate transformation was studied. Then, comparative experiments on a splicing measurement and direct measurement of the straightness error were carried out on a hydrostatic guideway grinder. The maximum difference between the two measurements was 0.3 μm, which was far less than the straightness error of 5.8 μm. The experiment demonstrated the correctness of the proposed splicing measurement method and data processing algorithm. To suppress the influence of the straightness error on machining accuracy, a straightness error compensation algorithm based on error rotation transformation and vertical axis position correction was proposed, and the grinding experiment of a plane optics with a size of 1400 mm × 500 mm was carried out. Without error compensation grinding, the flatness error of the element was 7.54 μm. After error compensation grinding, the flatness error was significantly reduced to 2.98 μm, which was less than the straightness errors of the guideways. These results demonstrated that the straightness error of the grinding machine had been well suppressed. Full article
Show Figures

Figure 1

Back to TopTop