Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = forebrain ischemia-reperfusion injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2641 KB  
Article
The Autophagic and Apoptotic Death of Forebrain Neurons of Rats with Global Brain Ischemia Is Diminished by the Intranasal Administration of Insulin: Possible Mechanism of Its Action
by Irina O. Zakharova, Liubov V. Bayunova, Daria K. Avrova, Alina D. Tretyakova, Alexander O. Shpakov and Natalia F. Avrova
Curr. Issues Mol. Biol. 2024, 46(7), 6580-6599; https://doi.org/10.3390/cimb46070392 - 27 Jun 2024
Cited by 5 | Viewed by 1282
Abstract
Insulin is a promising neuroprotector. To better understand the mechanism of insulin action, it was important to show its ability to diminish autophagic neuronal death in animals with brain ischemic and reperfusion injury. In forebrain ischemia and reperfusion, the number of live neurons [...] Read more.
Insulin is a promising neuroprotector. To better understand the mechanism of insulin action, it was important to show its ability to diminish autophagic neuronal death in animals with brain ischemic and reperfusion injury. In forebrain ischemia and reperfusion, the number of live neurons in the hippocampal CA1 region and frontal cortex of rats decreased to a large extent. Intracerebroventricular administration of the autophagy and apoptosis inhibitors to ischemic rats significantly increased the number of live neurons and showed that the main part of neurons died from autophagy and apoptosis. Intranasal administration of 0.5 IU of insulin per rat (before ischemia and daily during reperfusion) increased the number of live neurons in the hippocampal CA1 region and frontal brain cortex. In addition, insulin significantly diminished the level of autophagic marker LC3B-II in these forebrain regions, which markedly increased during ischemia and reperfusion. Our studies demonstrated for the first time the ability of insulin to decrease autophagic neuronal death, caused by brain ischemia and reperfusion. Insulin administered intranasally activated the Akt-kinase (activating the mTORC1 complex, which inhibits autophagy) and inhibited the AMP-activated protein kinase (which activates autophagy) in the hippocampus and frontal cortex of rats with brain ischemia and reperfusion. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Ischemia–Reperfusion Injury)
Show Figures

Figure 1

13 pages, 9005 KB  
Article
Porphyran Attenuates Neuronal Loss in the Hippocampal CA1 Subregion Induced by Ischemia and Reperfusion in Gerbils by Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation
by Dae Won Kim, Tae-Kyeong Lee, Ji Hyeon Ahn, Se-Ran Yang, Myoung Cheol Shin, Jun Hwi Cho, Moo-Ho Won, Il Jun Kang and Joon Ha Park
Mar. Drugs 2024, 22(4), 170; https://doi.org/10.3390/md22040170 - 11 Apr 2024
Cited by 4 | Viewed by 2161
Abstract
Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this [...] Read more.
Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds with Neuroprotective Potential)
Show Figures

Figure 1

18 pages, 2789 KB  
Communication
The Effect of Aging on Nitric Oxide Production during Cerebral Ischemia and Reperfusion in Wistar Rats and Spontaneous Hypertensive Rats: An In Vivo Microdialysis Study
by Yasuo Ito, Harumitsu Nagoya, Masamizu Yamazato, Yoshio Asano, Masahiko Sawada, Tomokazu Shimazu, Makiko Hirayama, Toshimasa Yamamoto and Nobuo Araki
Int. J. Mol. Sci. 2023, 24(16), 12749; https://doi.org/10.3390/ijms241612749 - 13 Aug 2023
Cited by 4 | Viewed by 1995
Abstract
Nitric oxide (NO) is involved in the pathogenesis of cerebral ischemic injury. Here, we investigated the effects of aging on NO production during cerebral ischemia-reperfusion (IR). Male Wister rats (WRs) were assigned to 12-month-old (older; n = 5) and 3-month-old (younger; n = [...] Read more.
Nitric oxide (NO) is involved in the pathogenesis of cerebral ischemic injury. Here, we investigated the effects of aging on NO production during cerebral ischemia-reperfusion (IR). Male Wister rats (WRs) were assigned to 12-month-old (older; n = 5) and 3-month-old (younger; n = 7) groups. Similarly, male spontaneous hypertensive rats (SHRs) were allocated to 12-month-old (older; n = 6) and 3-month-old (younger; n = 8) groups. After anesthesia, their NO production was monitored using in vivo microdialysis probes inserted into the left striatum and hippocampus. Forebrain cerebral IR injuries were produced via ligation of the bilateral common carotid arteries, followed by reperfusion. The change in the NO3 of the older rats in the SHR groups in the striatum was less compared to that of the younger rats before ischemia, during ischemia, and after reperfusion (p < 0.05). In the hippocampus, the change in the NO3 of the older rats in the SHR groups was lower compared to that of the younger rats after reperfusion (p < 0.05). There were no significant differences between the two WR groups. Our findings suggested that aging in SHRs affected NO production, especially in the striatum, before and during cerebral ischemia, and after reperfusion. Hypertension and aging may be important factors impacting NO production in brain IR injury. Full article
(This article belongs to the Special Issue The 25th Anniversary of NO)
Show Figures

Figure 1

27 pages, 6762 KB  
Article
The Effect of Cerebrolysin in an Animal Model of Forebrain Ischemic-Reperfusion Injury: New Insights into the Activation of the Keap1/Nrf2/Antioxidant Signaling Pathway
by Basma H. Marghani, Shaymaa Rezk, Ahmed I. Ateya, Badriyah S. Alotaibi, Basma H. Othman, Samy M. Sayed, Mohammed Ali Alshehri, Mustafa Shukry and Mohamed M. Mansour
Int. J. Mol. Sci. 2023, 24(15), 12080; https://doi.org/10.3390/ijms241512080 - 28 Jul 2023
Cited by 7 | Viewed by 3654
Abstract
Forebrain ischemia-reperfusion (IR) injury causes neurological impairments due to decreased cerebral autoregulation, hypoperfusion, and edema in the hours to days following the restoration of spontaneous circulation. This study aimed to examine the protective and/or therapeutic effects of cerebrolysin (CBL) in managing forebrain IR [...] Read more.
Forebrain ischemia-reperfusion (IR) injury causes neurological impairments due to decreased cerebral autoregulation, hypoperfusion, and edema in the hours to days following the restoration of spontaneous circulation. This study aimed to examine the protective and/or therapeutic effects of cerebrolysin (CBL) in managing forebrain IR injury and any probable underlying mechanisms. To study the contribution of reperfusion to forebrain injury, we developed a transient dual carotid artery ligation (tDCAL/IR) mouse model. Five equal groups of six BLC57 mice were created: Group 1: control group (no surgery was performed); Group 2: sham surgery (surgery was performed without IR); Group 3: tDCAL/IR (surgery with IR via permanently ligating the left CA and temporarily closing the right CA for 30 min, followed by reperfusion for 72 h); Group 4: CBL + tDCAL/IR (CBL was given intravenously at a 60 mg/kg BW dose 30 min before IR); and Group 5: tDCAL/IR + CBL (CBL was administered i.v. at 60 mg/kg BW three hours after IR). At 72 h following IR, the mice were euthanized. CBL administration 3 h after IR improved neurological functional recovery, enhanced anti-inflammatory and antioxidant activities, alleviated apoptotic neuronal death, and inhibited reactive microglial and astrocyte activation, resulting in neuroprotection after IR injury in the tDCAL/IR + CBL mice group as compared to the other groups. Furthermore, CBL reduced the TLRs/NF-kB/cytokines while activating the Keap1/Nrf2/antioxidant signaling pathway. These results indicate that CBL may improve neurologic function in mice following IR. Full article
(This article belongs to the Special Issue The Role of NRF2 in Health and Disease)
Show Figures

Figure 1

16 pages, 34805 KB  
Article
Aucubin Exerts Neuroprotection against Forebrain Ischemia and Reperfusion Injury in Gerbils through Antioxidative and Neurotrophic Effects
by Joon Ha Park, Tae-Kyeong Lee, Dae Won Kim, Ji Hyeon Ahn, Choong-Hyun Lee, Soon Sung Lim, Yang Hee Kim, Jun Hwi Cho, Il Jun Kang and Moo-Ho Won
Antioxidants 2023, 12(5), 1082; https://doi.org/10.3390/antiox12051082 - 11 May 2023
Cited by 5 | Viewed by 3026
Abstract
Aucubin is an iridoid glycoside that displays various pharmacological actions including antioxidant activity. However, there are few reports available on the neuroprotective effects of aucubin against ischemic brain injury. Thus, the aim of this study was to investigate whether aucubin protected against damage [...] Read more.
Aucubin is an iridoid glycoside that displays various pharmacological actions including antioxidant activity. However, there are few reports available on the neuroprotective effects of aucubin against ischemic brain injury. Thus, the aim of this study was to investigate whether aucubin protected against damage to hippocampal function induced by forebrain ischemia-reperfusion injury (fIRI) in gerbils, and to examine whether aucubin produced neuroprotection in the hippocampus against fIRI and to explore its mechanisms by histopathology, immunohistochemistry, and Western analysis. Gerbils were given intraperitoneal injections of aucubin at doses of 1, 5, and 10 mg/kg, respectively, once a day for seven days before fIRI. As assessed by the passive avoidance test, short-term memory function following fIRI significantly declined, whereas the decline in short-term memory function due to fIRI was ameliorated by pretreatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin. Most of the pyramidal cells (principal cells) of the hippocampus died in the Cornu Ammonis 1 (CA1) area four days after fIRI. Treatment with 10 mg/kg, but not 1 or 5 mg/kg, of aucubin protected the pyramidal cells from IRI. The treatment with 10 mg/kg of aucubin significantly reduced IRI-induced superoxide anion production, oxidative DNA damage, and lipid peroxidation in the CA1 pyramidal cells. In addition, the aucubin treatment significantly increased the expressions of superoxide dismutases (SOD1 and SOD2) in the pyramidal cells before and after fIRI. Furthermore, the aucubin treatment significantly enhanced the protein expression levels of neurotrophic factors, such as brain-derived neurotrophic factor and insulin-like growth factor-I, in the hippocampal CA1 area before and after IRI. Collectively, in this experiment, pretreatment with aucubin protected CA1 pyramidal cells from forebrain IRI by attenuating oxidative stress and increasing neurotrophic factors. Thus, pretreatment with aucubin can be a promising candidate for preventing brain IRI. Full article
Show Figures

Figure 1

13 pages, 2352 KB  
Article
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress
by Yang Hee Kim, Tae-Kyeong Lee, Jae-Chul Lee, Dae Won Kim, Seongkweon Hong, Jun Hwi Cho, Myoung Cheol Shin, Soo Young Choi, Moo-Ho Won and Il Jun Kang
Antioxidants 2022, 11(12), 2450; https://doi.org/10.3390/antiox11122450 - 12 Dec 2022
Cited by 9 | Viewed by 2252
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar [...] Read more.
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA. Full article
Show Figures

Graphical abstract

16 pages, 13763 KB  
Article
Relationship between Neuronal Damage/Death and Astrogliosis in the Cerebral Motor Cortex of Gerbil Models of Mild and Severe Ischemia and Reperfusion Injury
by Choong-Hyun Lee, Tae-Kyeong Lee, Dae Won Kim, Soon Sung Lim, Il Jun Kang, Ji Hyeon Ahn, Joon Ha Park, Jae-Chul Lee, Choong-Hyo Kim, Yoonsoo Park, Moo-Ho Won and Soo Young Choi
Int. J. Mol. Sci. 2022, 23(9), 5096; https://doi.org/10.3390/ijms23095096 - 3 May 2022
Cited by 10 | Viewed by 2552
Abstract
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can [...] Read more.
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis. Full article
(This article belongs to the Special Issue Ischemic Brain Neurodegeneration 2.0)
Show Figures

Figure 1

19 pages, 10609 KB  
Article
Hypothermia Induced by Oxcarbazepine after Transient Forebrain Ischemia Exerts Therapeutic Neuroprotection through Transient Receptor Potential Vanilloid Type 1 and 4 in Gerbils
by Hyung-Il Kim, Jae-Chul Lee, Dae Won Kim, Myoung Cheol Shin, Jun Hwi Cho, Ji Hyeon Ahn, Soon-Sung Lim, Il Jun Kang, Joon Ha Park, Moo-Ho Won and Tae-Kyeong Lee
Int. J. Mol. Sci. 2022, 23(1), 237; https://doi.org/10.3390/ijms23010237 - 27 Dec 2021
Cited by 8 | Viewed by 3168
Abstract
In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common [...] Read more.
In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 °C). The ischemic gerbils were treated with vehicle, hypothermia (whole-body cooling; 33.0 ± 0.2 °C), or 200 mg/kg OXC. Post-ischemic treatments with vehicle and hypothermia failed to attenuate and improve, respectively, ischemia-induced hyperactivity and cognitive impairment (decline in spatial and short-term memory). However, post-ischemic treatment with OXC significantly attenuated the hyperactivity and the cognitive impairment, showing that OXC treatment significantly reduced body temperature (to about 33 °C). When the hippocampus was histopathologically examined, pyramidal cells (principal neurons) were dead (lost) in the subfield Cornu Ammonis 1 (CA1) of the gerbils treated with vehicle and hypothermia on Day 4 after ischemia, but these cells were saved in the gerbils treated with OXC. In the gerbils treated with OXC after ischemia, the expression of transient receptor potential vanilloid type 1 (TRPV1; one of the transient receptor potential cation channels) was significantly increased in the CA1 region compared with that in the gerbils treated with vehicle and hypothermia. In brief, our results showed that OXC-induced hypothermia after transient forebrain ischemia effectively protected against ischemia–reperfusion injury through an increase in TRPV1 expression in the gerbil hippocampal CA1 region, indicating that TRPV1 is involved in OXC-induced hypothermia. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cerebral Ischemia)
Show Figures

Figure 1

16 pages, 6789 KB  
Article
Ischemia-Induced Cognitive Impairment Is Improved via Remyelination and Restoration of Synaptic Density in the Hippocampus after Treatment with COG-Up® in a Gerbil Model of Ischemic Stroke
by Tae-Kyeong Lee, Junkee Hong, Ji-Won Lee, Sung-Su Kim, Hyejin Sim, Jae-Chul Lee, Dae Won Kim, Soon Sung Lim, Il Jun Kang and Moo-Ho Won
Vet. Sci. 2021, 8(12), 321; https://doi.org/10.3390/vetsci8120321 - 10 Dec 2021
Cited by 13 | Viewed by 3978
Abstract
Cerebrovascular disease such as ischemic stroke develops cognitive impairment due to brain tissue damage including neural loss, demyelination and decrease in synaptic density. In the present study, we developed transient ischemia in the forebrain of the gerbil and found cognitive impairment using the [...] Read more.
Cerebrovascular disease such as ischemic stroke develops cognitive impairment due to brain tissue damage including neural loss, demyelination and decrease in synaptic density. In the present study, we developed transient ischemia in the forebrain of the gerbil and found cognitive impairment using the Barnes maze test and passive avoidance test for spatial memory and learning memory, respectively. In addition, neuronal loss/death was detected in the Cornu Ammonis 1 (CA1) region of the gerbil hippocampus after the ischemia by cresyl violet histochemistry, immunohistochemistry for neuronal nuclei and histofluorescence with Fluoro-Jade B. Furthermore, in the CA1 region following ischemia, myelin and vesicular synaptic density were significantly decreased using immunohistochemistry for myelin basic protein and vesicular glutamate transporter 1. In the gerbils, treatment with COG-up® (a combined extract of Erigeron annuus (L.) Pers. and Brassica oleracea Var.), which was rich in scutellarin and sinapic acid, after the ischemia, significantly improved ischemia-induced decline in memory function when compared with that shown in gerbils treated with vehicle after the ischemia. In the CA1 region of these gerbils, COG-up® treatment significantly promoted the remyelination visualized using immunohistochemistry myelin basic protein, increased oligodendrocytes visualized using a receptor-interacting protein, and restored the density of glutamatergic synapses visualized using double immunofluorescence for vesicular glutamate transporter 1 and microtubule-associated protein, although COG-up® treatment did not protect pyramidal cells (principal neurons) located in the CA1 region form the ischemic insult. Considering the current findings, a gerbil model of ischemic stroke apparently showed cognitive impairment accompanied by ischemic injury in the hippocampus; also, COG-up® can be employed for improving cognitive decline following ischemia-reperfusion injury in brains. Full article
(This article belongs to the Special Issue Addressing New Therapeutic Strategies Using Models)
Show Figures

Figure 1

25 pages, 4708 KB  
Article
Insulin and α-Tocopherol Enhance the Protective Effect of Each Other on Brain Cortical Neurons under Oxidative Stress Conditions and in Rat Two-Vessel Forebrain Ischemia/Reperfusion Injury
by Irina O. Zakharova, Liubov V. Bayunova, Inna I. Zorina, Tatiana V. Sokolova, Alexander O. Shpakov and Natalia F. Avrova
Int. J. Mol. Sci. 2021, 22(21), 11768; https://doi.org/10.3390/ijms222111768 - 29 Oct 2021
Cited by 13 | Viewed by 2945
Abstract
Clinical trials show that insulin administered intranasally is a promising drug to treat neurodegenerative diseases, but at high doses its use may result in cerebral insulin resistance. Identifying compounds which could enhance the protective effects of insulin, may be helpful to reduce its [...] Read more.
Clinical trials show that insulin administered intranasally is a promising drug to treat neurodegenerative diseases, but at high doses its use may result in cerebral insulin resistance. Identifying compounds which could enhance the protective effects of insulin, may be helpful to reduce its effective dose. Our aim was thus to study the efficiency of combined use of insulin and α-tocopherol (α-T) to increase the viability of cultured cortical neurons under oxidative stress conditions and to normalize the metabolic disturbances caused by free radical reaction activation in brain cortex of rats with two-vessel forebrain ischemia/reperfusion injury. Immunoblotting, flow cytometry, colorimetric, and fluorometric techniques were used. α-T enhanced the protective and antioxidative effects of insulin on neurons in oxidative stress, their effects were additive. At the late stages of oxidative stress, the combined action of insulin and α-T increased Akt-kinase activity, inactivated GSK-3beta and normalized ERK1/2 activity in cortical neurons, it was more effective than either drug action. In the brain cortex, ischemia/reperfusion increased the lipid peroxidation product content and caused Na+,K+-ATPase oxidative inactivation. Co-administration of insulin (intranasally, 0.25 IU/rat) and α-T (orally, 50 mg/kg) led to a more pronounced normalization of the levels of Schiff bases, conjugated dienes and trienes and Na+,K+-ATPase activity than administration of each drug alone. Thus, α-T enhances the protective effects of insulin on cultured cortical neurons in oxidative stress and in the brain cortex of rats with cerebral ischemia/reperfusion injury. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 2.0)
Show Figures

Graphical abstract

18 pages, 12672 KB  
Article
Populus tomentiglandulosa Extract Is Rich in Polyphenols and Protects Neurons, Astrocytes, and the Blood-Brain Barrier in Gerbil Striatum Following Ischemia-Reperfusion Injury
by Tae-Kyeong Lee, Jae-Chul Lee, Jong-Dai Kim, Dae-Won Kim, Ji-Hyeon Ahn, Joon-Ha Park, Hyung-Il Kim, Jun-Hwi Cho, Soo-Young Choi, Moo-Ho Won and II-Jun Kang
Molecules 2021, 26(18), 5430; https://doi.org/10.3390/molecules26185430 - 7 Sep 2021
Cited by 7 | Viewed by 3143
Abstract
Transient ischemia in brains causes neuronal damage, gliosis, and blood–brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus [...] Read more.
Transient ischemia in brains causes neuronal damage, gliosis, and blood–brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury. Full article
Show Figures

Graphical abstract

17 pages, 74736 KB  
Article
Neuroprotective Effects of Salicin in a Gerbil Model of Transient Forebrain Ischemia by Attenuating Oxidative Stress and Activating PI3K/Akt/GSK3β Pathway
by Joon-Ha Park, Tae-Kyeong Lee, Dae-Won Kim, Hyejin Sim, Jae-Chul Lee, Jong-Dai Kim, Ji-Hyeon Ahn, Choong-Hyun Lee, Young-Myeong Kim, Moo-Ho Won and Soo-Young Choi
Antioxidants 2021, 10(4), 629; https://doi.org/10.3390/antiox10040629 - 20 Apr 2021
Cited by 14 | Viewed by 4086
Abstract
Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate [...] Read more.
Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate the neuroprotective potential of salicin against ischemia and reperfusion (IR) injury and its mechanisms in the hippocampus using a gerbil model of 5-min transient ischemia (TI) in the forebrain, in which a massive loss (death) of pyramidal neurons cells occurred in the subfield Cornu Ammonis 1 (CA1) among the hippocampal subregions (CA1-3) at 5 days after TI. To examine neuroprotection by salicin, gerbils were pretreated with salicin alone or together with LY294002, which is a phosphatidylinositol 3-kinase (PI3K) inhibitor, once daily for 3 days before TI. Treatment with 20 mg/kg of salicin significantly protected CA1 pyramidal neurons against the ischemic injury. Treatment with 20 mg/kg of salicin significantly reduced the TI-induced increase in superoxide anion generation and lipid peroxidation in the CA1 pyramidal neurons after TI. The treatment also reinstated the TI-induced decrease in superoxide dismutases (SOD1 and SOD2), catalase, and glutathione peroxidase in the CA1 pyramidal cells after TI. Moreover, salicin treatment significantly elevated the levels of phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β), which is a major downstream target of PI3K, in the ischemic CA1. Notably, the neuroprotective effect of salicin was abolished by LY294002. Taken together, these findings clearly indicate that salicin protects against ischemic brain injury by attenuating oxidative stress and activating the PI3K/Akt/GSK3β pathway. Full article
Show Figures

Graphical abstract

18 pages, 4353 KB  
Article
Experimental Pretreatment with Chlorogenic Acid Prevents Transient Ischemia-Induced Cognitive Decline and Neuronal Damage in the Hippocampus through Anti-Oxidative and Anti-Inflammatory Effects
by Tae-Kyeong Lee, Il-Jun Kang, Bora Kim, Hye Jin Sim, Dae- Won Kim, Ji Hyeon Ahn, Jae-Chul Lee, Sungwoo Ryoo, Myoung Cheol Shin, Jun Hwi Cho, Young-Myeong Kim, Joon Ha Park, Soo Young Choi and Moo-Ho Won
Molecules 2020, 25(16), 3578; https://doi.org/10.3390/molecules25163578 - 6 Aug 2020
Cited by 69 | Viewed by 4255
Abstract
Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is among the phenolic acid compounds which can be naturally found in green coffee extract and tea. CGA has been studied since it displays significant pharmacological properties. The aim of this study [...] Read more.
Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is among the phenolic acid compounds which can be naturally found in green coffee extract and tea. CGA has been studied since it displays significant pharmacological properties. The aim of this study was to investigate the effects of CGA on cognitive function and neuroprotection including its mechanisms in the hippocampus following transient forebrain ischemia in gerbils. Memory and learning following the ischemia was investigated by eight-arm radial maze and passive avoidance tests. Neuroprotection was examined by immunohistochemistry for neuronal nuclei-specific protein and Fluoro-Jade B histofluorescence staining. For mechanisms of the neuroprotection, alterations in copper, zinc-superoxide dismutase (SOD1), SOD2 as antioxidant enzymes, dihydroethidium and 4-hydroxy-2-nonenal as indicators for oxidative stress, and anti-inflammatory cytokines (interleukin (IL)-4 and IL-13) and pro-inflammatory cytokines (tumor necrosis factor α (TNF-α) and IL-2) were examined by Western blotting and/or immunohistochemistry. As a result, pretreatment with 30 mg/kg CGA attenuated cognitive impairment and displayed a neuroprotective effect against transient forebrain ischemia (TFI). In Western blotting, the expression levels of SOD2 and IL-4 were increased due to pretreatment with CGA and, furthermore, 4-HNE production and IL-4 expressions were inhibited by CGA pretreatment. Additionally, pretreated CGA enhanced antioxidant enzymes and anti-inflammatory cytokines and, in contrast, attenuated oxidative stress and pro-inflammatory cytokine expression. Based on these results, we suggest that CGA can be a useful neuroprotective material against ischemia-reperfusion injury due to its antioxidant and anti-inflammatory efficacies. Full article
Show Figures

Graphical abstract

14 pages, 7638 KB  
Article
Laminarin Pretreatment Provides Neuroprotection against Forebrain Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Neuroinflammation in Aged Gerbils
by Joon Ha Park, Ji Hyeon Ahn, Tae-Kyeong Lee, Cheol Woo Park, Bora Kim, Jae-Chul Lee, Dae Won Kim, Myoung Cheol Shin, Jun Hwi Cho, Choong-Hyun Lee, Soo Young Choi and Moo-Ho Won
Mar. Drugs 2020, 18(4), 213; https://doi.org/10.3390/md18040213 - 15 Apr 2020
Cited by 36 | Viewed by 4580
Abstract
Laminarin is a polysaccharide isolated from brown algae that has various biological and pharmacological activities, such as antioxidant and anti-inflammatory properties. We recently reported that pretreated laminarin exerted neuroprotection against transient forebrain ischemia/reperfusion (IR) injury when we pretreated with 50 mg/kg of laminarin [...] Read more.
Laminarin is a polysaccharide isolated from brown algae that has various biological and pharmacological activities, such as antioxidant and anti-inflammatory properties. We recently reported that pretreated laminarin exerted neuroprotection against transient forebrain ischemia/reperfusion (IR) injury when we pretreated with 50 mg/kg of laminarin once a day for seven days in adult gerbils. However, there have been no studies regarding a neuroprotective effect of pretreated laminarin against IR injury in aged animals and its related mechanisms. Therefore, in this study, we intraperitoneally inject laminarin (50 mg/kg) once a day to aged gerbils for seven days before IR (5-min transient ischemia) surgery and examine the neuroprotective effect of laminarin treatment and the mechanisms in the gerbil hippocampus. IR injury in vehicle-treated gerbils causes loss (death) of pyramidal neurons in the hippocampal CA1 field at five days post-IR. Pretreatment with laminarin effectively protects the CA1 pyramidal neurons from IR injury. Regarding the laminarin-treated gerbils, production of superoxide anions, 4-hydroxy-2-nonenal expression and pro-inflammatory cytokines [interleukin(IL)-1β and tumor necrosis factor-α] expressions are significantly decreased in the CA1 pyramidal neurons after IR. Additionally, laminarin treatment significantly increases expressions of superoxide dismutase and anti-inflammatory cytokines (IL-4 and IL-13) in the CA1 pyramidal neurons before and after IR. Taken together, these findings indicate that laminarin can protect neurons from ischemic brain injury in an aged population by attenuating IR-induced oxidative stress and neuroinflammation. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory Agents 2020)
Show Figures

Figure 1

16 pages, 7952 KB  
Article
Pre-Treatment with Laminarin Protects Hippocampal CA1 Pyramidal Neurons and Attenuates Reactive Gliosis Following Transient Forebrain Ischemia in Gerbils
by Tae-Kyeong Lee, Ji Hyeon Ahn, Cheol Woo Park, Bora Kim, Young Eun Park, Jae-Chul Lee, Joon Ha Park, Go Eun Yang, Myoung Cheol Shin, Jun Hwi Cho, Il-Jun Kang and Moo-Ho Won
Mar. Drugs 2020, 18(1), 52; https://doi.org/10.3390/md18010052 - 12 Jan 2020
Cited by 26 | Viewed by 4463
Abstract
Transient brain ischemia triggers selective neuronal death/loss, especially in vulnerable regions of the brain including the hippocampus. Laminarin, a polysaccharide originating from brown seaweed, has various pharmaceutical properties including an antioxidant function. To the best of our knowledge, few studies have been conducted [...] Read more.
Transient brain ischemia triggers selective neuronal death/loss, especially in vulnerable regions of the brain including the hippocampus. Laminarin, a polysaccharide originating from brown seaweed, has various pharmaceutical properties including an antioxidant function. To the best of our knowledge, few studies have been conducted on the protective effects of laminarin against ischemic injury induced by ischemic insults. In this study, we histopathologically investigated the neuroprotective effects of laminarin in the Cornu Ammonis 1 (CA1) field of the hippocampus, which is very vulnerable to ischemia-reperfusion injury, following transient forebrain ischemia (TFI) for five minutes in gerbils. The neuroprotective effect was examined by cresyl violet staining, Fluoro-Jade B histofluorescence staining and immunohistochemistry for neuronal-specific nuclear protein. Additionally, to study gliosis (glial changes), we performed immunohistochemistry for glial fibrillary acidic protein to examine astrocytes, and ionized calcium-binding adaptor molecule 1 to examine microglia. Furthermore, we examined alterations in pro-inflammatory M1 microglia by using double immunofluorescence. Pretreatment with 10 mg/kg laminarin failed to protect neurons in the hippocampal CA1 field and did not attenuate reactive gliosis in the field following TFI. In contrast, pretreatment with 50 or 100 mg/kg laminarin protected neurons, attenuated reactive gliosis and reduced pro-inflammatory M1 microglia in the CA1 field following TFI. Based on these results, we firmly propose that 50 mg/kg laminarin can be strategically applied to develop a preventative against injuries following cerebral ischemic insults. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Graphical abstract

Back to TopTop