Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = free moving particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 66642 KB  
Article
Counterintuitive Particle Confinement in a Helical Force-Free Plasma
by Adam D. Light, Hariharan Srinivasulu, Christopher J. Hansen and Michael R. Brown
Plasma 2025, 8(2), 20; https://doi.org/10.3390/plasma8020020 - 26 May 2025
Cited by 1 | Viewed by 1071
Abstract
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated [...] Read more.
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated with particle motion, and gyroradii at measured conditions can be large relative to the gradient scale lengths of the magnetic field. Individual particle motion is largely unexplored in force-free systems without axisymmetry, and it is unclear how the large gradients influence confinement. To understand more about how particles remain confined in these configurations, we simulate a thermal distribution of protons moving in a high-aspect-ratio force-free magnetic field using a Boris stepper. The particle loss is logarithmic in time, which suggests trapping and/or periodic orbits. Many particles do remain confined in particular regions of the field, analogous to trapped particles in other magnetic configurations. Some closed flux surfaces can be identified, but particle orbits are not necessarily described by these surfaces. We show examples of orbits that remain on well-defined surfaces and discuss the statistical properties of confined and escaping particles. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

19 pages, 7047 KB  
Article
Insulation Defect Diagnosis Using a Random Forest Algorithm with Optimized Feature Selection in a Gas-Insulated Line Breaker
by Gyeong-Yeol Lee and Gyung-Suk Kil
Electronics 2025, 14(10), 1940; https://doi.org/10.3390/electronics14101940 - 9 May 2025
Viewed by 525
Abstract
Fault diagnosis based on the partial discharge (PD) recognition has been widely applied on a gas-insulated line breaker (GILB) and gas-insulated switchgear (GIS) as a reliable online condition monitoring method. This paper dealt with insulation defect diagnosis based on a Random Forest (RF) [...] Read more.
Fault diagnosis based on the partial discharge (PD) recognition has been widely applied on a gas-insulated line breaker (GILB) and gas-insulated switchgear (GIS) as a reliable online condition monitoring method. This paper dealt with insulation defect diagnosis based on a Random Forest (RF) algorithm with an optimized feature selection method. Four different types of insulation defect models, such as the free-moving particle (FMP) defect, the protrusion-on-conductor (POC) defect, the protrusion-on-enclosure (POE) defect, and the delamination defect, were prepared to simulate representative PD single pulses and PRPD patterns generated from the GILB. The PD signals generated from defect models were detected using the PRPD sensor which can detect phase-synchronized PD signals with the applied high-voltage (HV) signals without the need for additional equipment. Various statistical PD features were extracted from PD single pulses and PRPD patterns according to four kinds of PD defect models, and optimized features were selected with respect to variance importance analysis. Two kinds of PD datasets were established using all statistical features and top-ranked features. From the experimental results, the RF algorithm achieved accuracy rates exceeding 92%, and the PD datasets using only half of the statistical PD features could reduce the computational times while maintaining the accuracy rates. Full article
(This article belongs to the Special Issue Fault Detection Technology Based on Deep Learning)
Show Figures

Figure 1

20 pages, 503 KB  
Article
Probability Representation of Quantum States: Tomographic Representation in Standard Potentials and Peres–Horodecki Criterion for Probabilities
by Julio A. López-Saldívar, Margarita A. Man’ko and Vladimir I. Man’ko
Quantum Rep. 2025, 7(2), 22; https://doi.org/10.3390/quantum7020022 - 24 Apr 2025
Viewed by 892
Abstract
In connection with the International Year of Quantum Science and Technology, a review of joint works of the Lebedev Institute and the Mexican research group at UNAM is presented, especially related to solving the old problem of the state description, not only by [...] Read more.
In connection with the International Year of Quantum Science and Technology, a review of joint works of the Lebedev Institute and the Mexican research group at UNAM is presented, especially related to solving the old problem of the state description, not only by wave functions but also by conventional probability distributions analogous to quasiprobability distributions, like the Wigner function. Also, explicit expressions of tomographic representations describing the quantum states of particles moving in known potential wells are obtained and briefly discussed. In particular, we present the examples of the tomographic distributions for the free evolution, finite and infinite potential wells, and the Morse potential. Additional to this, an extension of the Peres–Horodecki separability criteria for momentum probability distributions is presented in the case of bipartite, asymmetrical, real states. Full article
(This article belongs to the Special Issue 100 Years of Quantum Mechanics)
Show Figures

Figure 1

14 pages, 26007 KB  
Article
Study of Charged Nanodroplet Deposition into Microcavity Through Many-Body Dissipative Particle Dynamics
by Yiwei Jin, Jiankui Chen, Wei Chen and Zhouping Yin
Micromachines 2025, 16(3), 278; https://doi.org/10.3390/mi16030278 - 27 Feb 2025
Viewed by 569
Abstract
For a near-eye display, a resolution of over 10,000 pixels per inch (PPI) for the display device is needed to eliminate the “screen door effect” and have better display quality. Electrohydrodynamic (EHD) printing techniques, which have the advantages of a high resolution, wide [...] Read more.
For a near-eye display, a resolution of over 10,000 pixels per inch (PPI) for the display device is needed to eliminate the “screen door effect” and have better display quality. Electrohydrodynamic (EHD) printing techniques, which have the advantages of a high resolution, wide material applicability and flexibility in patterning, have been widely used in the printing of high-resolution structures. However, due to factors such as the extremely small size of the droplets, the electric charge, the electric field, and the unavoidable positioning error, various deposition defects can occur. For droplets at a nanoscale, the dynamic deposition process is hard to observe. The continuum hypothesis fails and the fluid cannot be described by the traditional Navier–Stokes equation. In this work, the behaviors of charged nanodroplet deposition into a microcavity in an electric field are studied. The many-body dissipative particle dynamics (MDPD) method is used to examine the deformation of the nanodroplet during the impact process at a mesoscale. The dynamic process of charged droplet deposition into a microcavity under an electric field is revealed. Strategies for failure-free printing are proposed by analyzing the influences of the impact speeds, positioning errors, charge levels and electric intensities on the out-of-pixel spread length. The relationship between the internal charge moves and the deformation of the charged droplet in the deposition process is first discussed. The spreading theory of charged droplet deposition into a microcavity with a positioning error is established by analyzing the Coulombic capillary number. Moreover, the printing parameter space that results in successful printing is acquired. Full article
Show Figures

Figure 1

13 pages, 266 KB  
Article
Conformal Solutions of Static Plane Symmetric Cosmological Models in Cases of a Perfect Fluid and a Cosmic String Cloud
by Ragab M. Gad, Awatif Al-Jedani and Shahad T. Alsulami
Axioms 2025, 14(2), 117; https://doi.org/10.3390/axioms14020117 - 2 Feb 2025
Cited by 2 | Viewed by 827
Abstract
In this work, we obtained exact solutions of Einstein’s field equations for plane symmetric cosmological models by assuming that they admit conformal motion. The space-time geometry of these solutions is found to be nonsingular, non-vacuum and conformally flat. We have shown that in [...] Read more.
In this work, we obtained exact solutions of Einstein’s field equations for plane symmetric cosmological models by assuming that they admit conformal motion. The space-time geometry of these solutions is found to be nonsingular, non-vacuum and conformally flat. We have shown that in the case of a perfect fluid, these solutions have an energy-momentum tensor possessing dark energy with negative pressure and the energy equation of state is ρ+p=0. We have shown that a fluid has acceleration, rotation, shear-free, vanishing expansion, and rotation. In the case of a cosmic string cloud, we found that the tension density and particle density decrease as the fluid moves along the direction of the strings, then vanish at infinity. We shown that the exact conformal solution for a static plane symmetric model reduces to the well-known anti-De Sitter space-time. We obtained that the space-time under consideration admits a conformal vector field orthogonal to the 4-velocity vector and does not admits a vector parallel to the 4-velocity vector. Some physical and kinematic properties of the resulting models are also discussed. Full article
10 pages, 3747 KB  
Article
Non-FFP-Based Magnetic Particle Imaging (NFMPI) with an Open-Type RF Coil System: A Feasibility Study
by Chan Kim, Jiyun Nan, Kim Tien Nguyen, Jong-Oh Park, Eunpyo Choi and Jayoung Kim
Sensors 2025, 25(3), 665; https://doi.org/10.3390/s25030665 - 23 Jan 2025
Viewed by 1175
Abstract
Active drug delivery systems for cancer therapy are gaining attention for their biocompatibility and enhanced efficacy compared to conventional chemotherapy and surgery. To improve precision in targeted drug delivery (TDD), actuating devices using external magnetic fields are employed. However, a key challenge is [...] Read more.
Active drug delivery systems for cancer therapy are gaining attention for their biocompatibility and enhanced efficacy compared to conventional chemotherapy and surgery. To improve precision in targeted drug delivery (TDD), actuating devices using external magnetic fields are employed. However, a key challenge is the inability to visually track magnetic drug carriers in blood vessels, complicating navigation to the target. Magnetic particle imaging (MPI) systems can localize magnetic carriers (MCs) but rely on bulky electromagnetic coils to generate a static magnetic field gradient, creating a field-free point (FFP) within the field of view (FOV). Also, additional coils are required to move the FFP across the FOV, limiting flexibility and increasing the system size. To address these issues, we propose a non-FFP-based, open-type RF coil system with a simplified structure composed of a Tx/Rx coil and a permanent magnet at the coil center, eliminating the need for an FFP. Furthermore, integrating a robotic arm for coil assembly enables easy adjustment of the FOV size and location. Finally, imaging tests with magnetic nanoparticles (MNPs) confirmed the system’s ability to detect and localize a minimum mass of 0.3 mg (Fe) in 80 × 80 mm2. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

11 pages, 2518 KB  
Article
MPI System with Bore Sizes of 75 mm and 100 mm Using Permanent Magnets and FMMD Technique
by Jae Chan Jeong, Tae Yi Kim, Hyeon Sung Cho, Beom Su Seo, Hans Joachim Krause and Hyo Bong Hong
Sensors 2024, 24(12), 3776; https://doi.org/10.3390/s24123776 - 10 Jun 2024
Cited by 1 | Viewed by 1711
Abstract
We present two magnetic particle imaging (MPI) systems with bore sizes of 75 mm and 100 mm, respectively, using three-dimensionally arranged permanent magnets for excitation and frequency mixing magnetic detection (FMMD) coils for detection. A rotational and a translational stage were combined to [...] Read more.
We present two magnetic particle imaging (MPI) systems with bore sizes of 75 mm and 100 mm, respectively, using three-dimensionally arranged permanent magnets for excitation and frequency mixing magnetic detection (FMMD) coils for detection. A rotational and a translational stage were combined to move the field free line (FFL) and acquire the MPI signal, thereby enabling simultaneous overall translation and rotational movement. With this concept, the complex coil system used in many MPI systems, with its high energy consumption to generate the drive field, can be replaced. The characteristic signal of superparamagnetic iron oxide (SPIO) nanoparticles was generated via movement of the FFL and acquired using the FMMD coil. The positions of the stages and the occurrence of the f1 + 2f2 harmonics were mapped to reconstruct the spatial location of the SPIO. Image reconstruction was performed using Radon and inverse Radon transformations. As a result, the presented method based on mechanical movement of permanent magnets can be used to measure the MPI, even for samples as large as 100 mm. Our research could pave the way for further technological developments to make the equipment human size, which is one of the ultimate goals of MPI. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

15 pages, 7349 KB  
Article
New Insight into Electric Force in Metal and the Quadratic Electrical Resistivity Law of Metals at Low Temperatures
by Vilius Palenskis
Metals 2024, 14(5), 526; https://doi.org/10.3390/met14050526 - 30 Apr 2024
Cited by 1 | Viewed by 2407
Abstract
Considering that Einstein’s relation between the diffusion coefficient and the drift mobility of free randomly moving charge carriers in homogeneous materials including metals is always valid, it is shown that the effective electric force acting on free electrons in metal depends on the [...] Read more.
Considering that Einstein’s relation between the diffusion coefficient and the drift mobility of free randomly moving charge carriers in homogeneous materials including metals is always valid, it is shown that the effective electric force acting on free electrons in metal depends on the ratio between the kinetic free electron energy at the Fermi surface to the classical particle energy 3 kT/2. The electrical resistivity of elemental metals dependence on very low temperatures has the quadratic term, which has been explained by electron–electron scattering. In this paper, it is shown that the quadratic term of the electrical resistivity at low temperatures is caused by scattering of the free randomly moving electrons by electronic defects due to linear effective free electron scattering cross-section dependence on temperature, but not by electron–electron scattering. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

17 pages, 674 KB  
Article
Asymptotic Antipodal Solutions as the Limit of Elliptic Relative Equilibria for the Two- and n-Body Problems in the Two-Dimensional Conformal Sphere
by Rubén Darío Ortiz Ortiz, Ana Magnolia Marín Ramírez and Ismael Oviedo de Julián
Mathematics 2024, 12(7), 1025; https://doi.org/10.3390/math12071025 - 29 Mar 2024
Viewed by 1042
Abstract
We consider the two- and n-body problems on the two-dimensional conformal sphere MR2, with a radius R>0. We employ an alternative potential free of singularities at antipodal points. We study the limit of relative equilibria under [...] Read more.
We consider the two- and n-body problems on the two-dimensional conformal sphere MR2, with a radius R>0. We employ an alternative potential free of singularities at antipodal points. We study the limit of relative equilibria under the SO(2) symmetry; we examine the specific conditions under which a pair of positive-mass particles, situated at antipodal points, can maintain a state of relative equilibrium as they traverse along a geodesic. It is identified that, under an appropriate radius–mass relationship, these particles experience an unrestricted and free movement in alignment with the geodesic of the canonical Killing vector field in MR2. An even number of bodies with pairwise conjugated positions, arranged in a regular n-gon, all with the same mass m, move freely on a geodesic with suitable velocities, where this geodesic motion behaves like a relative equilibrium. Also, a center of mass formula is included. A relation is found for the relative equilibrium in the two-body problem in the sphere similar to the Snell law. Full article
Show Figures

Figure 1

16 pages, 1274 KB  
Article
An Efficient Explicit Moving Particle Simulation Solver for Simulating Free Surface Flow on Multicore CPU/GPUs
by Yu Zhao, Fei Jiang and Shinsuke Mochizuki
Modelling 2024, 5(1), 276-291; https://doi.org/10.3390/modelling5010015 - 19 Feb 2024
Cited by 1 | Viewed by 2234
Abstract
The moving particle simulation (MPS) method is a simulation technique capable of calculating free surface and incompressible flows. As a particle-based method, MPS requires significant computational resources when simulating flow in a large-scale domain with a huge number of particles. Therefore, improving computational [...] Read more.
The moving particle simulation (MPS) method is a simulation technique capable of calculating free surface and incompressible flows. As a particle-based method, MPS requires significant computational resources when simulating flow in a large-scale domain with a huge number of particles. Therefore, improving computational speed is a crucial aspect of current research in particle methods. In recent decades, many-core CPUs and GPUs have been widely utilized in scientific simulations to significantly enhance computational efficiency. However, the implementation of MPS on different types of hardware is not a trivial task. In this study, we present an implementation method for the explicit MPS that utilizes the Taichi parallel programming language. When it comes to CPU computing, Taichi’s computational efficiency is comparable to that of OpenMP. Nevertheless, when GPU computing is utilized, the acceleration of Taichi in parallel computing is not as fast as the CUDA implementation. Our developed explicit MPS solver demonstrates significant performance improvements in simulating dam-break flow dynamics. Full article
Show Figures

Figure 1

24 pages, 11376 KB  
Article
Resolved CFD-DEM Simulation of Free Settling of Polyhedral Particles with Various Orientations: Insights Provided by Oscillation Behavior in Quiescent Liquid
by Zhimin Zhang, Yuanyi Qiu, Hao Xiong and Rui Tang
J. Mar. Sci. Eng. 2023, 11(9), 1685; https://doi.org/10.3390/jmse11091685 - 26 Aug 2023
Cited by 5 | Viewed by 2802
Abstract
Particle settling is the process by which particulates move toward the bottom of a liquid, which can affect the sediment transport and energy balance of marine systems. However, the deficiency in understanding the resolved fluid–particle interactions with complex boundaries in the settling process [...] Read more.
Particle settling is the process by which particulates move toward the bottom of a liquid, which can affect the sediment transport and energy balance of marine systems. However, the deficiency in understanding the resolved fluid–particle interactions with complex boundaries in the settling process awaits resolution. This study employs a hybrid approach that combines computational fluid dynamics (CFD) with the discrete element method (DEM) to fully simulate the free-settling behavior of polyhedral particles in water. The accuracy of the method is verified by comparing numerical results with experimental data of ellipsoidal particle settling. Two series of tests with horizontal and vertical particle release directions are established to investigate the effects of particle shape features, such as the aspect ratio (AR) and corner (C), on the particles’ mechanical behavior and hydrodynamic characteristics. The results demonstrate that particle shape exerts a substantial influence on fluid resistance, rotational motion, and fluid disturbance throughout the settling process. The maximum velocities in vertically released cases are roughly 1.2–1.3 times greater than those in horizontally released cases. The study highlights the potency of the resolved CFD-DEM method as a robust technique for comprehending fluid–particle phenomena within the marine geotechnical engineering, including sedimentation and erosion of seabed sediments. Full article
(This article belongs to the Special Issue Advances in Numerical Modeling of Coupled CFD Problems)
Show Figures

Figure 1

18 pages, 6805 KB  
Article
Mathematical Modelling and Fluidic Thrust Vectoring Control of a Delta Wing UAV
by Ahsan Tanveer and Sarvat Mushtaq Ahmad
Aerospace 2023, 10(6), 563; https://doi.org/10.3390/aerospace10060563 - 16 Jun 2023
Cited by 1 | Viewed by 4078
Abstract
Pitch control of an unmanned aerial vehicle (UAV) using fluidic thrust vectoring (FTV) is a relatively novel technique requiring no moving control surfaces, such as elevators. In this paper, the authors’ previous work on the characterization of a static co-flow FTV rig is [...] Read more.
Pitch control of an unmanned aerial vehicle (UAV) using fluidic thrust vectoring (FTV) is a relatively novel technique requiring no moving control surfaces, such as elevators. In this paper, the authors’ previous work on the characterization of a static co-flow FTV rig is further validated using the free to pitch dynamic test bench. The deflection of a primary jet after injection of a high-velocity secondary jet was captured using the tuft flow visualization technique, along with the experimental recording of subsequent normal force impinged on the Coanda surface resulting in the pitching moment. The effect of primary and secondary flow velocities on exhaust jet deflection, as well as on the pitch angle of the aircraft, is examined. Aerodynamic gain as well as the inertia of a delta wing UAV test bench are computed through experiments and fed into the equation of motion (e.o.m). The e.o.m developed aided in the design of a model-based PID controller for pitch motion control using the multi-parameter root locus technique. The root locus tuned controller serves as a benchmark controller for performance evaluation of the genetic algorithm (GA) and particle swarm optimization (PSO) tuned controllers. Furthermore, the frequency domain metric of gain and phase margins were also employed to reach a robust control design. Experiments conducted in a simulation environment reveal that PSO-PID results in a better response of the UAV in comparison to the baseline pitch controller. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 9965 KB  
Article
Regular Wave Seakeeping Analysis of a Planing Hull by Smoothed Particle Hydrodynamics: A Comprehensive Validation
by Salvatore Capasso, Bonaventura Tagliafierro, Simone Mancini, Iván Martínez-Estévez, Corrado Altomare, José M. Domínguez and Giacomo Viccione
J. Mar. Sci. Eng. 2023, 11(4), 700; https://doi.org/10.3390/jmse11040700 - 24 Mar 2023
Cited by 18 | Viewed by 4748 | Correction
Abstract
In this work, the dynamics of a planing hull in regular head waves was investigated using the Smoothed Particle Hydrodynamics (SPH) meshfree method. The simulation of the interaction of such vessels with wave trains features several challenging characteristics, from the complex physical interaction, [...] Read more.
In this work, the dynamics of a planing hull in regular head waves was investigated using the Smoothed Particle Hydrodynamics (SPH) meshfree method. The simulation of the interaction of such vessels with wave trains features several challenging characteristics, from the complex physical interaction, due to large dynamic responses, to the likewise heavy numerical workload. A novel numerical wave flume implemented within the SPH-based code DualSPHysics fulfills both demands, guaranteeing comparable accuracy with an established proprietary Computational Fluid Dynamics (CFD) solver without sharpening the computational load. The numerical wave flume uses ad hoc open-boundary conditions to reproduce the flow characteristics encountered by the hull during its motion, combining the current and waves while adjusting their properties with respect to the vessel’s experimental towing speed. It follows a relatively small three-dimensional domain, where the potentiality of the SPH method in modeling free-surface flows interacting with moving structures is unleashed. The results in different wave conditions show the feasibility of this novel approach, considering the overall good agreement with the experiments; hence, an interesting alternative procedure to simulate the seakeeping test in several marine conditions with bearable effort and satisfying accuracy is established. Full article
(This article belongs to the Special Issue Seakeeping and Performance in Waves of Marine Vessels)
Show Figures

Figure 1

23 pages, 7915 KB  
Article
A Modified MPS Method with a Split-Pressure Poisson Equation and a Virtual Particle for Simulating Free Surface Flows
by Date Li, Huaixin Zhang and Guangfei Qin
J. Mar. Sci. Eng. 2023, 11(1), 215; https://doi.org/10.3390/jmse11010215 - 13 Jan 2023
Cited by 4 | Viewed by 2888
Abstract
As a Lagrangian mesh-free method, the moving particle semi-implicit (MPS) method can easily handle complex incompressible flow with a free surface. However, some deficiencies of the MPS method, such as inaccurate results, unphysical pressure oscillation, and particle thrust near the free surface, still [...] Read more.
As a Lagrangian mesh-free method, the moving particle semi-implicit (MPS) method can easily handle complex incompressible flow with a free surface. However, some deficiencies of the MPS method, such as inaccurate results, unphysical pressure oscillation, and particle thrust near the free surface, still need to be further resolved. Here, we propose a modified MPS method that uses the following techniques: (1) a modified MPS scheme with a split-pressure Poisson equation is proposed to reproduce hydrostatic pressure stably; (2) a new virtual particle technique is developed to ensure the symmetrical distribution of particles on the free surface; (3) a Laplacian operator that is consistent with the original gradient operator is introduced to replace the original Laplacian operator. In addition, a two-judgment technique for distinguishing free surface particles is introduced in the proposed MPS method. Four free surface flows were adopted to verify the proposed MPS method, including two hydrostatic problems, a dam-breaking problem, and a violent sloshing problem. The enhancement of accuracy and stability by these improvements was demonstrated. Moreover, the numerical results of the proposed MPS method showed good agreement with analytical solutions and experimental results. Full article
(This article belongs to the Special Issue Computational Fluid Mechanics II)
Show Figures

Figure 1

22 pages, 5443 KB  
Article
MODELING of Rarefied Gas Flows Inside a Micro-Nozzle Based on the DSMC Method Coupled with a Modified Gas–Surface Interaction Model
by Xuhui Liu, Dong Li, Xinju Fu, Yong Gao and Xudong Wang
Energies 2023, 16(1), 505; https://doi.org/10.3390/en16010505 - 2 Jan 2023
Cited by 5 | Viewed by 2921
Abstract
In this study, we first considered the influence of micro-nozzle wall roughness structure on molecular collision and reflection behavior and established a modified CLL model. The DSMC method was used to simulate and analyze the flow of the micro-nozzle in the cold gas [...] Read more.
In this study, we first considered the influence of micro-nozzle wall roughness structure on molecular collision and reflection behavior and established a modified CLL model. The DSMC method was used to simulate and analyze the flow of the micro-nozzle in the cold gas micro-propulsion system, and the deviation of simulation results before and after the improvement of CLL model were compared. Then, the rarefied flow characteristics under a small needle valve opening (less than 1%) were focused on the research, and the particle position, molecular number density, and spatial distribution of internal energy in the micro-nozzle were calculated. The spatial distributions of the flow mechanism in the micro-nozzle under different needle valve openings were compared and analyzed. It was found that when the needle valve opening is lower than 1%, the slip flow and transition flow regions move significantly upstream of the nozzle, the free molecular flow distribution region expands significantly, and the relationship between thrust force and needle valve opening is obviously different from that of medium and large needle valve openings. The effect of nitrogen temperature on the rarefied flow and thrust force is also discussed in this research. The numerical results showed that as gas temperature increases, the molecular internal energy, momentum, and molecular number density near the nozzle exit are enhanced. The thrust at small needle valve openings was significantly affected by the temperature of the working mass. The results of this study will provide key data for the design and development of cold gas micro-thrusters. Full article
(This article belongs to the Special Issue Recent Advances and Challenges in Space Propulsion Technology)
Show Figures

Figure 1

Back to TopTop