Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (624)

Search Parameters:
Keywords = free-space measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4678 KB  
Article
Impact of Beacon Feedback on Stabilizing RL-Based Power Optimization in SLM-Controlled FSO Uplinks Under Turbulence
by Erfan Seifi and Peter LoPresti
Photonics 2025, 12(10), 979; https://doi.org/10.3390/photonics12100979 - 1 Oct 2025
Abstract
Atmospheric turbulence severely limits the stability and reliability of free-space optical (FSO) uplinks by inducing wavefront distortions and random intensity fluctuations. This study investigates the use of reinforcement learning (RL) with beacon-based feedback for adaptive beam shaping in a spatial light modulator (SLM)-controlled [...] Read more.
Atmospheric turbulence severely limits the stability and reliability of free-space optical (FSO) uplinks by inducing wavefront distortions and random intensity fluctuations. This study investigates the use of reinforcement learning (RL) with beacon-based feedback for adaptive beam shaping in a spatial light modulator (SLM)-controlled FSO link. The RL agent dynamically adjusts phase patterns to maximize received signal strength, while the beacon channel provides turbulence estimates that guide the optimization process. Experiments under low, moderate, and high turbulence levels demonstrate that incorporating beacon feedback can enhance link stability in severe conditions, reducing signal variability and suppressing extreme fluctuations. In low-turbulence scenarios, the performance is comparable to non-feedback operation, whereas under high turbulence, beacon-assisted control consistently achieves lower coefficients of variation and improved bit error rate (BER) performance. Under high turbulence replay experiments—where the best-performing RL-learned phase patterns are reapplied without learning—further show that configurations trained with feedback retain robustness, even without real-time turbulence measurements under high turbulence. These results highlight the potential of integrating contextual feedback with RL to achieve turbulence-resilient and stable optical uplinks in dynamic atmospheric environments. Full article
Show Figures

Graphical abstract

12 pages, 5483 KB  
Communication
An Antenna Array with Wide Flat-Top Beam and Low Sidelobes for Aerial Target Detection
by Liangzhou Li, Yan Dong, Xiao Cai and Jingqian Tian
Sensors 2025, 25(19), 5991; https://doi.org/10.3390/s25195991 - 28 Sep 2025
Abstract
The misuse of drone technology poses significant risks to public and personal safety, emphasizing the need for accurate and efficient aerial target detection to prevent detection failures due to randomly distributed airborne targets and mitigate interference from undesired directions. Unlike conventional beam-synthesis techniques [...] Read more.
The misuse of drone technology poses significant risks to public and personal safety, emphasizing the need for accurate and efficient aerial target detection to prevent detection failures due to randomly distributed airborne targets and mitigate interference from undesired directions. Unlike conventional beam-synthesis techniques that often require either a large number of array elements or iterative numerical optimization, the proposed method analytically derives the excitation distribution by solving a newly formulated weighted-constraint problem, thereby fully accounting for mutual coupling between elements and ensuring both computational efficiency and design accuracy. In this communication, a 10 × 4 planar microstrip antenna array with a wide flat-top beam and low sidelobe is designed based on the extended method of maximum power transmission efficiency. The optimized distribution of excitations for the antenna array, which achieves a shaped beam with uniform gain over the desired angular range while suppressing sidelobe levels (SLLs) outside the shaped region, is derived by analytically solving a newly formulated weighted constraint problem. To reduce the number of antenna elements and enhance radiation characteristics, the inter-element spacings in the E-plane and H-plane are set to 0.55 λ0 and 0.75 λ0, where λ0 is the free-space wavelength at 3.5 GHz. Measurement results indicate that the flat-top beam in the E-plane has a wide half-power beamwidth (HPBW) of 51.2° and a low SLL of −30.1 dB, while the beam in the H-plane has a narrow HPBW of 20.1° and a low SLL of −30.5 dB, thereby demonstrating its capability in aerial target detection and airborne tracking applications. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Antennas: Second Edition)
Show Figures

Figure 1

19 pages, 4708 KB  
Article
Physical-Layer Encryption for Terahertz Wireless Communication via Logical AND Operation of Dual Beams
by Yoshiki Kamiura, Shinji Iwamoto, Yuya Mikami and Kazutoshi Kato
Electronics 2025, 14(19), 3762; https://doi.org/10.3390/electronics14193762 - 23 Sep 2025
Viewed by 103
Abstract
This paper proposes and experimentally demonstrates a novel physical-layer encryption scheme for terahertz (THz) wireless communication based on a logical AND operation between dual THz beams transmitted from spatially separated sources. Unlike previous studies, confined to chip-scale or waveguide configurations, our approach validates [...] Read more.
This paper proposes and experimentally demonstrates a novel physical-layer encryption scheme for terahertz (THz) wireless communication based on a logical AND operation between dual THz beams transmitted from spatially separated sources. Unlike previous studies, confined to chip-scale or waveguide configurations, our approach validates the concept under free-space transmission, thereby highlighting its applicability to real wireless environments. The system utilizes uni-traveling carrier photodiodes (UTC-PDs) to generate independent THz carriers, and coherent detection combined with envelope extraction enables analog-domain realization of the AND operation. Experimental results confirm successful decryption at data rates up to 1.5 Gbit/s, achieving bit error rates (BERs) below the forward error correction threshold (e.g., 3.13 × 10−10 at 500 Mbit/s). Furthermore, spatial mapping and simulation show strong agreement with measurements, yielding a predictive accuracy of approximately 84% and validating spatial selectivity as a security feature. These findings establish the novelty of applying dual-beam logical operations for secure THz transmission and provide a foundation for scalable, low-complexity physical-layer security in next-generation wireless networks. Full article
Show Figures

Figure 1

14 pages, 3445 KB  
Article
Hybrid Actuation MEMS Micromirror with Decoupled Piezoelectric Fast Axis and Electromagnetic Slow Axis for Crosstalk Suppression
by Haoxiang Li, Jiapeng Hou, Zheng Gong, Huijun Yu, Yue Liu and Wenjiang Shen
Micromachines 2025, 16(9), 1072; https://doi.org/10.3390/mi16091072 - 22 Sep 2025
Viewed by 124
Abstract
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning [...] Read more.
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning patterns that degrade image quality. To tackle this issue, a hybrid actuation scheme is proposed in which a piezoelectric actuator drives the fast axis through an S-shaped spring structure, achieving a resonance frequency of 792 Hz, while the slow axis is independently driven by an electromagnetic actuator operating in quasi-static mode. Finite element simulations and experimental measurements validate that the proposed decoupled design significantly suppresses mechanical crosstalk. When the fast axis is driven to a 40° optical scan angle, the hybrid system reduces the parasitic slow-axis deflection (typically around 1.43°) to a negligible level, thereby producing a clean single-line scan. The piezoelectric fast axis exhibits a quality factor of Q = 110, while the electromagnetic slow axis achieves a linear 20° deflection at 20 Hz. This hybrid design facilitates a distortion-free field of view measuring 40° × 20° with uniform line spacing, presenting a straightforward and effective solution for high-precision scanning applications such as LiDAR (Light Detection and Ranging) and structured light projection. Full article
Show Figures

Figure 1

25 pages, 2357 KB  
Article
Gradient-Based Calibration of a Precipitation Hardening Model for 6xxx Series Aluminium Alloys
by Amir Alizadeh, Maaouia Souissi, Mian Zhou and Hamid Assadi
Metals 2025, 15(9), 1035; https://doi.org/10.3390/met15091035 - 19 Sep 2025
Viewed by 215
Abstract
Precipitation hardening is the primary mechanism for strengthening 6xxx series aluminium alloys. The characteristics of the precipitates play a crucial role in determining the mechanical properties. In particular, predicting yield strength (YS) based on microstructure is experimentally complex and costly because its key [...] Read more.
Precipitation hardening is the primary mechanism for strengthening 6xxx series aluminium alloys. The characteristics of the precipitates play a crucial role in determining the mechanical properties. In particular, predicting yield strength (YS) based on microstructure is experimentally complex and costly because its key variables, such as precipitate radius, spacing, and volume fraction (VF), are difficult to measure. Physics-based models have emerged to tackle these complications utilising advancements in simulation environments. Nevertheless, pure physics-based models require numerous free parameters and ongoing debates over governing equations. Conversely, purely data-driven models struggle with insufficient datasets and physical interpretability. Moreover, the complex dynamics between internal model variables has led both approaches to adopt heuristic optimisation methods, such as the Powell or Nelder–Mead methods, which fail to exploit valuable gradient information. To overcome these issues, we propose a gradient-based optimisation for the Kampmann–Wagner Numerical (KWN) model, incorporating CALPHAD (CALculation of PHAse Diagrams) and a strength model. Our modifications include facilitating differentiability via smoothed approximations of conditional logic, optimising non-linear combinations of free parameters, and reducing computational complexity through a single size-class assumption. Model calibration is guided by a mean squared error (MSE) loss function that aligns the YS predictions with interpolated experimental data using L2 regularisation for penalising deviations from a purely physics-based modelling structure. A comparison shows that the gradient-based adaptive moment estimation (ADAM) outperforms the gradient-free Powell and Nelder–Mead methods by converging faster, requiring fewer evaluations, and yielding more physically plausible parameters, highlighting the importance of calibration techniques in the modelling of 6xxx series precipitation hardening. Full article
(This article belongs to the Special Issue Modeling Thermodynamic Systems and Optimizing Metallurgical Processes)
Show Figures

Figure 1

12 pages, 13084 KB  
Article
Characterization of Sub-Resonant Dielectric Spheres by Millimeter-Wave Scattering Measurements
by Max Lippoldt and Jan Hesselbarth
Sensors 2025, 25(18), 5687; https://doi.org/10.3390/s25185687 - 12 Sep 2025
Viewed by 285
Abstract
When measuring the size or relative permittivity of a dielectric particle, usually one of the parameters needs to be known for determining the other one. Scattering measurement methods offer an alternative that allows for extracting both the size and the permittivity of the [...] Read more.
When measuring the size or relative permittivity of a dielectric particle, usually one of the parameters needs to be known for determining the other one. Scattering measurement methods offer an alternative that allows for extracting both the size and the permittivity of the particle under test at the same time. In this paper, bi-static scattering measurements at millimeter-wave frequencies are applied to characterize sub-resonant dielectric spheres of sub-wavelength size. The size and relative permittivity are extracted simultaneously from measurements at Ka-band (26.5–40 GHz). The experimental setup and the data processing procedure are detailed in depth, and the sources of the systematic errors are discussed. Alumina ceramic spheres (with relative permittivity of approximately 10) of diameter as small as 0.8 mm (less than 1/10 of free-space wavelength) were investigated. The extracted diameters and permittivities agree well with the expected values. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

13 pages, 2559 KB  
Article
Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization
by Antoine Deubaibe, M. Podda Abouna, Mathis Granger, Bernard Bayard and Bruno Sauviac
Photonics 2025, 12(9), 895; https://doi.org/10.3390/photonics12090895 - 5 Sep 2025
Viewed by 347
Abstract
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided [...] Read more.
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided structure. The beam exhibits the hallmark features of an electromagnetic jet: strong near-field focusing, a subwavelength beam width surpassing the diffraction limit, and a quasi-planar wavefront sustained over a propagation distance of about 2λ. The lens design was systematically optimized, and its performance was assessed through full-wave finite element simulations and experimentally validated on a fabricated prototype. Excellent agreement between the simulation and measurement confirms the robustness of the approach. Beyond its simplicity and low cost, this solution achieves state-of-the-art focusing performance compared to free-space and guided-wave alternatives. It offers strong potential for applications in high-resolution imaging, precision sensing, and material characterization, particularly in opaque or highly lossy environments. Full article
Show Figures

Figure 1

16 pages, 490 KB  
Article
Generalized Planck–Einstein Relation in Curved Spacetimes: Implications for Light Propagation Near Black Holes
by Václav Vavryčuk
Symmetry 2025, 17(9), 1419; https://doi.org/10.3390/sym17091419 - 1 Sep 2025
Cited by 1 | Viewed by 539
Abstract
By applying Maxwell’s equations to curved spacetimes, the Planck–Einstein energy–frequency relation for photons, originally formulated in Minkowski space, is generalized for application in Riemann space. According to this relation, photon energy depends not only on the photon frequency but also on the physical [...] Read more.
By applying Maxwell’s equations to curved spacetimes, the Planck–Einstein energy–frequency relation for photons, originally formulated in Minkowski space, is generalized for application in Riemann space. According to this relation, photon energy depends not only on the photon frequency but also on the physical speed of photons, which may vary when locally measured in non-inertial static frames. In Minkowski space, the energy of free photons is conserved as neither frequency shifts nor changes in photon speed are observed. In Riemann space, energy of free photons also remains conserved as gravitational redshift is compensated by a corresponding variation in photon speed. The generalized Planck–Einstein relation may have significant astrophysical implications, particularly for gravitational lensing, observations of neutron star mergers, supernovae and quasars, the propagation of light near black holes, and expanding cosmologies. Full article
(This article belongs to the Special Issue Gravitational Physics, Black Holes and Space–Time Symmetry)
Show Figures

Figure 1

13 pages, 2992 KB  
Article
Effect of Magnetic Stirring on the Microstructure of Eutectic Al-Si Alloys
by Éva Kócsák, András Roósz, Arnold Rónaföldi and Zsolt Veres
Crystals 2025, 15(9), 778; https://doi.org/10.3390/cryst15090778 - 30 Aug 2025
Viewed by 442
Abstract
This study focuses on the detailed investigation of the eutectic Aluminium Silicon (Al-12.6 wt% Si) alloy, which was solidified without and with a 10 mT induction rotating magnetic field (RMF). The experiments were conducted as part of the MICAST Hungary project, as the [...] Read more.
This study focuses on the detailed investigation of the eutectic Aluminium Silicon (Al-12.6 wt% Si) alloy, which was solidified without and with a 10 mT induction rotating magnetic field (RMF). The experiments were conducted as part of the MICAST Hungary project, as the mirror experiments were solidified in the Solidification and Quenching Furnace (SQF) at the International Space Station (ISS). The mirror samples were solidified using solidification parameters similar to the ISS experiments. This study examined the meso-structure of the samples and the eutectic microstructure in both stirred (RMF-applied) and non-stirred (RMF-free) samples. Special attention was given to the influence of magnetic stirring on key microstructural features, such as the eutectic lamellae distance, the length of the lamellae, and the spatial orientation of the lamellae were investigated. Measuring and analysing these parameters gives us an overall picture of the microstructure of the eutectics. The 10 mT low-intensity RMF used in the experiment has a demonstrable effect on the formation of the eutectic structure; short aluminium dendrites concentrate at both edges of the stirred sample, and their proportion decreases as the sample approaches its end. In contrast, in the non-stirred sample, long, elongated Al dendrites solidify parallel to the direction of heat removal, and their proportion and size continuously increase as the sample progresses. Furthermore, a possible relationship was found between the decrease in the eutectic lamella length and the lamellae’s average distance. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

25 pages, 358 KB  
Article
The Rights to and Within Education in Armed Conflicts: The Case of Gaza 2023–2025
by Guadalupe Francia and Tabisa Arlet Verdejo Valenzuela
Soc. Sci. 2025, 14(9), 524; https://doi.org/10.3390/socsci14090524 - 30 Aug 2025
Viewed by 1314
Abstract
The systematic attacks against the civilian population in Gaza, including educational institutions, constitute war crimes that violate the right to education and affect not only children but also an entire culture’s ability to recover post-conflict and maintain its identity. This document review analysed [...] Read more.
The systematic attacks against the civilian population in Gaza, including educational institutions, constitute war crimes that violate the right to education and affect not only children but also an entire culture’s ability to recover post-conflict and maintain its identity. This document review analysed the reports issued by Nations agencies to identify the types of violence that occur in educational contexts, the victims of such violence, the impact on the rights to and within education, and the educational measures implemented in response. A thematic analysis guided by Karma Nabulsi’s concept of “scholasticide”, Rita Segato’s “pedagogy of cruelty”, and Sara Ahmed’s “witness” was conducted. The findings reveal that the attacks on educational spaces can be interpreted as ideological strategies against the Palestinian culture due to their critical role in cultural resilience and the recovery of the Palestinian people. The reports highlight significant limitations in recognising education as a priority dimension within the framework of international humanitarian aid. Finally, the analysed documents show that children in Gaza experience feelings of abandonment based on the inaction of the international community to guarantee their right to be free from all kinds of violence. Full article
(This article belongs to the Special Issue Revisiting School Violence: Safety for Children in Schools)
14 pages, 1633 KB  
Article
Draw-Induced Structural Optimization of PAN-Based Carbon Fibers During High-Temperature Carbonization
by Seungmin Yu, Hyun-Jae Cho, Tae-Hoon Ko, Hak-Yong Kim, Yong-Sik Chung and Byoung-Suhk Kim
Nanomaterials 2025, 15(17), 1335; https://doi.org/10.3390/nano15171335 - 30 Aug 2025
Viewed by 792
Abstract
This study investigates the effect of tensile strain during high-temperature carbonization on the microstructural development and mechanical properties of polyacrylonitrile (PAN)-based carbon fibers. The wet-spun stabilized PAN precursor fibers were carbonized at 1400 °C under various tensile draw ratios (0%, 5%, 10%, and [...] Read more.
This study investigates the effect of tensile strain during high-temperature carbonization on the microstructural development and mechanical properties of polyacrylonitrile (PAN)-based carbon fibers. The wet-spun stabilized PAN precursor fibers were carbonized at 1400 °C under various tensile draw ratios (0%, 5%, 10%, and 15%), followed by stress-free graphitization at 2400 °C in an argon atmosphere for 1 h to isolate the effects of the carbonization-stage tension. Structural characterization using XRD, 2D-XRD, Raman spectroscopy, and HR-TEM revealed that moderate tensile strain (5–10%) promoted significant improvements in crystallinity, orientation, and graphene layer alignment. Notably, the fiber drawn at 10% performed the best, with a reduced interlayer spacing (d002), increased lateral crystallite size (La), high orientation factor, and minimal turbostratic disorder. These structural developments translated into the best mechanical properties, including a tensile strength of ~2.44 GPa, a Young’s modulus of ~408.6 GPa, and the highest measured density (1.831 g/cm3). In contrast, excessive strain (15%) induced microstructural defects and reduced performance, underscoring the detrimental effects of overstretching. The findings highlight the critical role of draw control during carbonization in optimizing the structure–property relationships of carbon fibers, offering valuable insight for the design of high-performance fiber processing strategies. Full article
Show Figures

Graphical abstract

14 pages, 3390 KB  
Article
Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity
by Jiamin Chen, Gengchen Zhang, Hejin Wang, Qianyu Ren, Yongqiu Zheng and Chenyang Xue
Micromachines 2025, 16(9), 998; https://doi.org/10.3390/mi16090998 - 29 Aug 2025
Viewed by 705
Abstract
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit [...] Read more.
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit by virtue of the integrated structure of homogeneous materials. The reflectivity of the VBG is a key parameter determining the performance of the F-P cavity, and its accurate measurement is very important for the pre-evaluation of the device’s sensing ability. Based on the reflectivity measurement of quartz-based VBG with a large aspect ratio, a free-space optical path reflective measurement system is proposed. The ZEMAX simulation is used to optimize the optical transmission path and determine the position of each component when the optimal spot size is achieved. After completing the construction of the VBG reflectivity measurement system, the measurement error is calibrated by measuring the optical path loss, and the maximum error is only 1.2%. Finally, the reflectivity of the VBG measured by the calibrated system is 30.84%, which is basically consistent with the multi-physical field simulation results, showing a deviation as low as 0.85%. The experimental results fully verify the availability and high measurement accuracy of the reflectivity measurement system. This research work provides a new method for testing the characteristics of micron-scale grating size VBGs. Additionally, this work combines optical characterization methods to verify the good effect of VBG preparation technology, providing core technical support for the realization of subsequent homogeneous integrated Fabry–Perot cavity sensors. Furthermore, it holds important application value in the field of optical sensing and micro-nano integration. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 358 KB  
Article
Ideal (I2) Convergence in Fuzzy Paranormed Spaces for Practical Stability of Discrete-Time Fuzzy Control Systems Under Lacunary Measurements
by Muhammed Recai Türkmen and Hasan Öğünmez
Axioms 2025, 14(9), 663; https://doi.org/10.3390/axioms14090663 - 29 Aug 2025
Viewed by 405
Abstract
We investigate the stability of linear discrete-time control systems with a fuzzy logic feedback under sporadic sensor data loss. In our framework, each state measurement is a fuzzy number, and occasional “packet dropouts” are modeled by a lacunary subsequence of missing readings. We [...] Read more.
We investigate the stability of linear discrete-time control systems with a fuzzy logic feedback under sporadic sensor data loss. In our framework, each state measurement is a fuzzy number, and occasional “packet dropouts” are modeled by a lacunary subsequence of missing readings. We introduce a novel mathematical approach using lacunary statistical convergence in fuzzy paranormed spaces to analyze such systems. Specifically, we treat the sequence of fuzzy measurements as a double sequence (indexed by time and state component) and consider an admissible ideal of “negligible” index sets that includes the missing–data pattern. Using the concept of ideal fuzzy—paranorm convergence (I-fp convergence), we formalize a lacunary statistical consistency condition on the fuzzy measurements. We prove that if the closed-loop matrix ABK is Schur stable (i.e., ABK<1) in the absence of dropouts, then under the lacunary statistical consistency condition, the controlled system is practically stable despite intermittent measurement losses. In other words, for any desired tolerance, the state eventually remains within that bound (though not necessarily converging to zero). Our result yields an explicit, non-probabilistic (distribution-free) analytical criterion for robustness to sensor dropouts, without requiring packet-loss probabilities or Markov transition parameters. This work merges abstract convergence theory with control application: it extends statistical and ideal convergence to double sequences in fuzzy normed spaces and applies it to ensure stability of a networked fuzzy control system. Full article
(This article belongs to the Special Issue Mathematical Modeling and Control: Theory and Applications)
18 pages, 1829 KB  
Article
Consumer Characterization of Commercial Gluten-Free Crackers Through Rapid Methods and Its Comparison to Descriptive Panel Data
by Japneet Brar, Rajesh Kumar and Martin J. Talavera
Foods 2025, 14(17), 2972; https://doi.org/10.3390/foods14172972 - 26 Aug 2025
Viewed by 587
Abstract
Despite the continued growth of the gluten-free food market, there is a dearth of sensory and consumer knowledge on commercial products. The existing research is mostly limited to hedonic measurements and ingredient effects instead of analytical methods for a better understanding of product [...] Read more.
Despite the continued growth of the gluten-free food market, there is a dearth of sensory and consumer knowledge on commercial products. The existing research is mostly limited to hedonic measurements and ingredient effects instead of analytical methods for a better understanding of product characteristics of gluten-free crackers specifically. In this work, a semi-trained consumer panel used projective mapping to choose objectively different plain/original crackers from a pool of sixteen commercial gluten-free cracker varieties. The cracker samples represented a widespread sensory space originating from different key ingredients such as brown rice, white rice, flaxseed, cassava flour, nut flour blend, millet blend, and tapioca/potato starch blend. Based on projective mapping results, the crackers that mostly represented the sensory space were selected for characterization by a modified flash profiling method. The consumer panel developed 74 descriptors: 30 aromas, 28 flavors, 15 texture terms, and a mouthfeel attribute. The samples were monadically rated for intensity on a 4-point scale (0 = none, 1 = low, 2 = medium, and 3 = high). Rice, toasted, salt, grain, burnt, flaxseed, bitter, earthy, nutty, seeds, and grass were the prevalent aromas and flavors. Others were specific to cracker type. Some of these attributes can be traced back to the ingredients list. Results suggest that ingredients used in small portions are defining the flavor properties over the major grains/flour blends. All samples had some degree of crunchiness, crispness, and pasty mouthfeel; rice crackers were particularly firm, hard, and chewy; brown rice crackers were gritty; crackers with tuber starches/flours were more airy, soft, smooth, and flaky. Overall, the samples shared more aroma and flavor notes than texture attributes. In comparison to trained panel results, consumers generated a greater number of terms and were successful in finding subtle differences primarily in texture but had many overlapped flavors. The developed consumer terminology will facilitate the gluten-free industry to tailor communication that better resonates with consumer experiences, needs, and product values. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

11 pages, 2855 KB  
Article
A Compact Dual-Band Dual-Mode Wearable Button Antenna for WBAN Applications
by Xue-Ping Li, Xue-Lin Zhang, Xue-Qing Yang, Zhen-Yong Dong, Xue-Mei Feng and Wei Li
Micromachines 2025, 16(9), 975; https://doi.org/10.3390/mi16090975 - 25 Aug 2025
Viewed by 572
Abstract
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a [...] Read more.
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a compact size. In the low-frequency band, the monopole structure generates an omnidirectional radiation pattern, facilitating efficient on-body communication. Meanwhile, the PIFA structure in the high-frequency band exhibits directed radiation, optimizing off-body communication. To enhance bandwidth, a parasitic structure is incorporated into the design. Both numerical simulations and experimental measurements are conducted to evaluate the antenna’s bandwidth and radiation performance in free space and on-body environments, with results showing excellent agreement. The measured bandwidth of the antenna on the human tissue is 300 MHz (2.3–2.6 GHz) in the low-frequency band and 4.5 GHz (5.5–10 GHz) in the high-frequency band. The maximum radiation efficiency reaches 76% in the low band (2.4–2.4835 GHz) and 93% in the upper band (5.725–5.875 GHz). Additionally, the peak gain on the human body can achieve 2.5 dB and 6.9 dB for the low and upper bands, respectively. The results confirm that the antenna meets the design requirements for Industrial, Scientific, and Medical (ISM) band applications, making it a promising candidate for WBAN systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop