Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = fuel cell buses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3297 KiB  
Article
Minimization of Construction and Operation Costs of the Fuel Cell Bus Transportation System
by Po-Han Chiang, Bwo-Ren Ke, Shi-Jim Yen and Wei-Che Chien
Systems 2024, 12(12), 573; https://doi.org/10.3390/systems12120573 - 18 Dec 2024
Viewed by 853
Abstract
This paper took the actual bus transportation system as the object, simulated the operating state of the system, replaced all the current diesel engine buses with fuel cell buses using electrolysis-produced hydrogen, and completed the existing timetable and routes. In the study, the [...] Read more.
This paper took the actual bus transportation system as the object, simulated the operating state of the system, replaced all the current diesel engine buses with fuel cell buses using electrolysis-produced hydrogen, and completed the existing timetable and routes. In the study, the numbers of hydrogen production stations and hydrogen storage stations, the maximum hydrogen storage capacity of the buses, the supplementary hydrogen capacity of the buses, and the hydrogen production capacity of the hydrogen storage stations were used as the optimal adjustment parameters for minimizing the ten-year construction and operating costs of the fuel cell bus transportation system by the artificial bee colony algorithm. Two hydrogen supply methods, decentralized and centralized hydrogen production, were analyzed. This paper used the actual bus timetable to simulate the operation of the buses, including 14 transfer stations and 112 routes. The results showed that the use of centralized hydrogen production and partitioned hydrogen production transfer stations could indeed reduce the construction and operating costs of the fuel cell bus transportation system. Compared with the decentralized hydrogen production case, the construction and operating costs could be reduced by 6.9%, 12.3%, and 14.5% with one, two, and three zones for centralized hydrogen production, respectively. Full article
Show Figures

Figure 1

16 pages, 5036 KiB  
Article
Power Production and Degradation of Pesticide Wastewater Through Microbial Fuel Cells with the Modified Activated Carbon Air Cathode by Hollow-Carbon and Carbon-Encapsulated Structures
by Xueli Zhang, Linhui Jia, Yu Liu, Ziqi Wang, Jumiao Qin, Qiuhong Wang, Xiao Zhao, Ming Zhong, Jianfeng Lang, Guangri Xu, Yanbing Wu and Chengxing Cui
Molecules 2024, 29(23), 5675; https://doi.org/10.3390/molecules29235675 - 30 Nov 2024
Viewed by 773
Abstract
Microbial fuel cell (MFC) can degrade pesticide wastewater and recovery energy simultaneously, and the activated carbon (AC) air cathode has great prospects for practical application. However, insufficient active sites and the limitation of multi-step electron transfer for oxygen reduction reaction (ORR) requires that [...] Read more.
Microbial fuel cell (MFC) can degrade pesticide wastewater and recovery energy simultaneously, and the activated carbon (AC) air cathode has great prospects for practical application. However, insufficient active sites and the limitation of multi-step electron transfer for oxygen reduction reaction (ORR) requires that AC should be modified by highly efficient electrocatalysts. Herein, busing the confinement effect of carbon-encapsulated metal and hollow carbon, we designed a unique ORR catalyst of Fe-Fe3O4-NC through utilizing the 2D leaf-like nanoplates of Zn-ZIF-L to load Prussian blue (PB) particles. The volatilization of low-boiled Zn and the catalysis of iron compounds led to the formation of confined walls of hollow carbon shell and carbon-encapsulated Fe/Fe3O4 particles on N-doped carbon substrate. Multivalent iron, a large surface area (368.11 m2·g−1), N doping, a heterojunction interface, and the confinement effect provided all the Fe-Fe3O4-NC-modified AC air cathodes with excellent ORR activity. The optimal samples of AC-Fe-Fe3O4-NC-3 achieved a peak power density of 1213.8 mW·m−2, demonstrating a substantial 82.8% increase over that of the bare AC. Furthermore, its efficiency in glyphosate removal reached 80.1%, surpassing the 23.2% of the bare AC. This study offers new ideas in constructing composite confined structures and the as-designed Fe-Fe3O4-NC is a promising modification candidate for the commercial adoption of AC air cathodes. Full article
Show Figures

Graphical abstract

21 pages, 392 KiB  
Article
Decarbonizing Public Transportation: A Multi-Criteria Comparative Analysis of Battery Electric Buses and Fuel Cell Electric Buses
by Afnan Fayez Eliyan, Mohamed Haouari and Ahmad Sleiti
Sustainability 2024, 16(21), 9354; https://doi.org/10.3390/su16219354 - 28 Oct 2024
Cited by 2 | Viewed by 1861
Abstract
To combat global warming, many industrialized countries have announced plans to ban vehicles powered by fossil fuel in the near future. In alignment with this global initiative, many countries across the globe are committed to decarbonizing their public transportation sector, which significantly contributes [...] Read more.
To combat global warming, many industrialized countries have announced plans to ban vehicles powered by fossil fuel in the near future. In alignment with this global initiative, many countries across the globe are committed to decarbonizing their public transportation sector, which significantly contributes to increased greenhouse gas emissions. A promising strategy to achieve this goal is the adoption of electric buses, specifically battery electric buses and fuel cell electric buses. Each technology offers distinct advantages and drawbacks, making the decision-making process complex. This research aims to answer two critical questions: What is the optimal choice for decarbonizing the bus transportation sector—electric battery buses or fuel cell electric buses? And what are the best energy carrier pathways for charging or refueling these buses? We propose a methodological framework based on multi-criteria decision-making to address these questions comprehensively. This framework utilizes the entropy weighting and the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) methodologies to rank alternative bus technologies along with energy carrier pathways. The framework evaluates a range of criteria, including economic viability, energy demand, and environmental aspects. To illustrate the framework, we considered Qatar as a case study. Our results indicate that, with respect to economic viability and energy consumption, the operation of battery electric buses is favored over fuel cell electric buses, regardless of the energy pathway utilized during both the energy production and bus operation phases. However, from an environmental perspective, operating both bus alternatives using energy from green sources provides superior performance compared to when these buses are powered by natural gas sources. Full article
Show Figures

Figure 1

17 pages, 1568 KiB  
Review
Fuel Cell Electric Buses: A Systematic Literature Review
by Romeo Danielis, Mariangela Scorrano, Manuela Masutti, Asees Muhammad Awan and Arsalan Muhammad Khan Niazi
Energies 2024, 17(20), 5096; https://doi.org/10.3390/en17205096 - 14 Oct 2024
Cited by 3 | Viewed by 1562
Abstract
This paper presents a comprehensive review of scientific papers and market reports analyzing the economic competitiveness of fuel cell electric buses (FCEBs) with respect to their conventional alternatives via the total cost of ownership (TCO) methodology. We discussed the variables and data taken [...] Read more.
This paper presents a comprehensive review of scientific papers and market reports analyzing the economic competitiveness of fuel cell electric buses (FCEBs) with respect to their conventional alternatives via the total cost of ownership (TCO) methodology. We discussed the variables and data taken into account and compared the resulting outcomes by year and geographical areas. It emerged that FCBs are not currently cost competitive. The decreasing trend in acquisition and fuel costs, however, indicates potential for future competitiveness. We find that the current TCO literature on FCEBs presents several areas of uncertainty and weakness. Potential improvements can be achieved by: (i) extending the geographic coverage to Asian and African developing countries; (ii) making use of real-world data instead of simulated data, in particular, concerning acquisition costs, hydrogen costs under different pathways, fuel efficiency, and maintenance costs; (iii) clarifying the role of infrastructural costs; (iv) exploring the existence of economies of scale at fleet level; (v) distinguishing among different bus sizes. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 8265 KiB  
Article
Potentials of Green Hydrogen Production in P2G Systems Based on FPV Installations Deployed on Pit Lakes in Former Mining Sites by 2050 in Poland
by Mateusz Sikora and Dominik Kochanowski
Energies 2024, 17(18), 4660; https://doi.org/10.3390/en17184660 - 19 Sep 2024
Cited by 1 | Viewed by 1323
Abstract
Green hydrogen production is expected to play a major role in the context of the shift towards sustainable energy stipulated in the Fit for 55 package. Green hydrogen and its derivatives have the capacity to act as effective energy storage vectors, while fuel [...] Read more.
Green hydrogen production is expected to play a major role in the context of the shift towards sustainable energy stipulated in the Fit for 55 package. Green hydrogen and its derivatives have the capacity to act as effective energy storage vectors, while fuel cell-powered vehicles will foster net-zero emission mobility. This study evaluates the potential of green hydrogen production in Power-to-Gas (P2G) systems operated in former mining sites where sand and gravel aggregate has been extracted from lakes and rivers under wet conditions (below the water table). The potential of hydrogen production was assessed for the selected administrative unit in Poland, the West Pomerania province. Attention is given to the legal and organisational aspects of operating mining companies to identify the sites suitable for the installation of floating photovoltaic facilities by 2050. The method relies on the use of GIS tools, which utilise geospatial data to identify potential sites for investments. Basing on the geospatial model and considering technical and organisational constraints, the schedule was developed, showing the potential availability of the site over time. Knowing the surface area of the water reservoir, the installed power of the floating photovoltaic plant, and the production capacity of the power generation facility and electrolysers, the capacity of hydrogen production in the P2G system can be evaluated. It appears that by 2050 it should be feasible to produce green fuel in the P2G system to support a fleet of city buses for two of the largest urban agglomerations in the West Pomerania province. Simulations revealed that with a water coverage ratio increase and the planned growth of green hydrogen generation, it should be feasible to produce fuel for net-zero emission urban mobility systems to power 200 buses by 2030, 550 buses by 2040, and 900 buses by 2050 (for the bus models Maxi (40 seats) and Mega (60 seats)). The results of the research can significantly contribute to the development of projects focused on the production of green hydrogen in a decentralised system. The disclosure of potential and available locations over time can be compared with competitive solutions in terms of spatial planning, environmental and societal impact, and the economics of the undertaking. Full article
(This article belongs to the Special Issue Energy Consumption at Production Stages in Mining)
Show Figures

Figure 1

20 pages, 8187 KiB  
Article
Comparative Life Cycle Assessment of Battery and Fuel Cell Electric Cars, Trucks, and Buses
by Anne Magdalene Syré, Pavlo Shyposha, Leonard Freisem, Anton Pollak and Dietmar Göhlich
World Electr. Veh. J. 2024, 15(3), 114; https://doi.org/10.3390/wevj15030114 - 15 Mar 2024
Cited by 7 | Viewed by 6858
Abstract
Addressing the pressing challenge of global warming, reducing greenhouse gas emissions in the transportation sector is a critical imperative. Battery and fuel cell electric vehicles have emerged as promising solutions for curbing emissions in this sector. In this study, we conducted a comprehensive [...] Read more.
Addressing the pressing challenge of global warming, reducing greenhouse gas emissions in the transportation sector is a critical imperative. Battery and fuel cell electric vehicles have emerged as promising solutions for curbing emissions in this sector. In this study, we conducted a comprehensive life cycle assessment (LCA) for typical passenger vehicles, heavy-duty trucks, and city buses using either proton-exchange membrane fuel cells or Li-ion batteries with different cell chemistries. To ensure accuracy, we supplemented existing studies with data from the literature, particularly for the recycling phase, as database limitations were encountered. Our results highlight that fuel cell and battery systems exhibit large emissions in the production phase. Recycling can significantly offset some of these emissions, but a comparison of the technologies examined revealed considerable differences. Overall, battery electric vehicles consistently outperform fuel cell electric vehicles regarding absolute greenhouse gas emissions. Hence, we recommend prioritizing battery electric over fuel cell vehicles. However, deploying fuel cell electric vehicles could become attractive in a hydrogen economy scenario where other factors, e.g., the conversion and storage of surplus renewable electricity via electrolysis, become important. Full article
Show Figures

Figure 1

12 pages, 4644 KiB  
Article
Energy Efficiency Analysis of a Fuel Cell Bus Model Using Real Scenarios Generated by Data Collection
by Horațiu Cărăușan, Bogdan Ovidiu Varga, Dan Moldovanu, Gabriel Prunean and Ioan-Tudor Oargă
Sustainability 2024, 16(5), 1863; https://doi.org/10.3390/su16051863 - 24 Feb 2024
Cited by 2 | Viewed by 1669
Abstract
Modernizing public transportation is crucial, given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years, the Battery [...] Read more.
Modernizing public transportation is crucial, given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years, the Battery Electric Buses (BEBs) have been the vehicle of choice for public transportation. However, an emerging contender in this sector is the Fuel Cell Electric Bus (FCEB). This paper aims to evaluate the way one such vehicle would perform in terms of energy efficiency while being exploited in an urban scenario generated from collected data. Full article
(This article belongs to the Special Issue Advances in Sustainability Research from the University of Oradea)
Show Figures

Figure 1

25 pages, 3223 KiB  
Article
Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives
by Zhetao Chen and Hao Wang
Sustainability 2024, 16(1), 259; https://doi.org/10.3390/su16010259 - 27 Dec 2023
Cited by 7 | Viewed by 4420
Abstract
In the transition to sustainable public transportation with zero-emission buses, hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However, assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination, encompassing [...] Read more.
In the transition to sustainable public transportation with zero-emission buses, hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However, assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination, encompassing both sensitivity and probabilistic analyses, to assess the total cost of ownership (TCO) for the bus fleet and its corresponding infrastructure. It considers various hydrogen supply options, encompassing on-site electrolysis, on-site steam methane reforming, and off-site hydrogen procurement with both gaseous and liquid delivery methods. The analysis covers critical cost elements, encompassing bus acquisition costs, infrastructure capital expenses, and operational and maintenance costs for both buses and infrastructure. This paper conducted two distinct case studies: one involving a current small bus fleet of five buses and another focusing on a larger fleet set to launch in 2028. For the current small fleet, the off-site gray hydrogen purchase with a gaseous delivery option is the most cost-effective among hydrogen alternatives, but it still incurs a 26.97% higher TCO compared to diesel buses. However, in the case of the expanded 2028 fleet, the steam methane-reforming method without carbon capture emerges as the most likely option to attain the lowest TCO, with a high probability of 99.5%. Additionally, carbon emission costs were incorporated in response to the growing emphasis on environmental sustainability. The findings indicate that although diesel buses currently represent the most economical option in terms of TCO for the existing small fleet, steam methane reforming with carbon capture presents a 69.2% likelihood of being the most cost-effective solution, suggesting it is a strong candidate for cost efficiency for the expanded 2028 fleet. Notably, substantial investments are required to increase renewable energy integration in the power grid and to enhance electrolyzer efficiency. These improvements are essential to make the electrolyzer a more competitive alternative to steam methane reforming. Overall, the findings in this paper underscore the substantial impact of the hydrogen supply chain and carbon emission costs on the TCO of zero-emission buses. Full article
(This article belongs to the Special Issue Towards Green and Smart Cities: Urban Transport and Land Use)
Show Figures

Figure 1

16 pages, 2460 KiB  
Article
Battery Electric Buses or Fuel Cell Electric Buses? A Decarbonization Case Study in the City of Brescia, Italy
by Fabio Borghetti, Michela Longo, Michela Bonera, Marco Libretti, Claudio Somaschini, Valentina Martinelli, Marco Medeghini and Renato Mazzoncini
Infrastructures 2023, 8(12), 178; https://doi.org/10.3390/infrastructures8120178 - 11 Dec 2023
Cited by 7 | Viewed by 4233
Abstract
Nowadays, designing and adopting sustainable and greener transport systems is of upmost interest. The European Commission and different EU countries are developing plans and programs—but also delivering resources—aimed at the decarbonization of cities and transport by 2030. In this paper, the case study [...] Read more.
Nowadays, designing and adopting sustainable and greener transport systems is of upmost interest. The European Commission and different EU countries are developing plans and programs—but also delivering resources—aimed at the decarbonization of cities and transport by 2030. In this paper, the case study of the city of Brescia, a city of about 200,000 inhabitants located in northern Italy, is addressed. Specifically, a preliminary operational and financial feasibility study is performed assuming the replacement of the entire compressed natural gas (CNG) powered bus fleet of a specific line; the two alternatives considered are battery electric buses (BEBs) and fuel cell electric buses (FCEBs). For the comparison and evaluation of the two alternatives, specific economic parameters of the three alternatives (BEB, FCEB and the current solution CNGB) were considered: CAPEX (CAPital EXpenditure) and OPEX (OPerational EXpenditure). This allowed us to determine the TCO (total cost of ownership) and TCRO (total cost and revenues of ownership) along three annuities (2022, 2025 and 2030). For the BEB alternative, the TCO and TCRO values are between EUR 0.58/km and EUR 0.91/km. In the case of the FCEB solution, the values of TCO and TCRO are between EUR 1.75/km and EUR 2.15/km. Considering the current CNGB solution, the TCO and TCRO values range between EUR 1.43/km and EUR 1.51/km. Full article
(This article belongs to the Special Issue Sustainable Infrastructures for Urban Mobility)
Show Figures

Figure 1

24 pages, 1892 KiB  
Article
Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review
by Dinesh Kumar Madheswaran, Mohanraj Thangamuthu, Sakthivel Gnanasekaran, Suresh Gopi, Tamilvanan Ayyasamy and Sujit S. Pardeshi
Sustainability 2023, 15(22), 15923; https://doi.org/10.3390/su152215923 - 14 Nov 2023
Cited by 26 | Viewed by 7223
Abstract
This comprehensive review explores recent developments in Proton Exchange Membrane Fuel Cells (PEMFCs) and evaluates their alignment with the ambitious targets established by the U.S. Department of Energy (DOE). Notable advancements have been made in developing catalysts, membrane technology advancements, gas diffusion layers [...] Read more.
This comprehensive review explores recent developments in Proton Exchange Membrane Fuel Cells (PEMFCs) and evaluates their alignment with the ambitious targets established by the U.S. Department of Energy (DOE). Notable advancements have been made in developing catalysts, membrane technology advancements, gas diffusion layers (GDLs), and enhancements in bipolar plates. Notable findings include using carbon nanotubes and graphene oxide in membranes, leading to substantial performance enhancements. Innovative coatings and materials for bipolar plates have demonstrated improved corrosion resistance and reduced interfacial contact resistance, approaching DOE targets. Nevertheless, the persistent trade-off between durability and cost remains a formidable challenge. Extending fuel cell lifetimes to DOE standards often necessitates higher catalyst loadings, conflicting with cost reduction objectives. Despite substantial advancements, the ultimate DOE goals of USD 30/kW for fuel cell electric vehicles (FCEVs) and USD 600,000 for fuel cell electric buses (FCEBs) remain elusive. This review underscores the necessity for continuous research and innovation, emphasizing the importance of collaborative efforts among academia, industry, and government agencies to overcome the remaining technical barriers. Full article
(This article belongs to the Special Issue Research and Application of Renewable Energy: Novel Fuel Cells)
Show Figures

Figure 1

14 pages, 1709 KiB  
Article
Assessing the Feasibility of Hydrogen and Electric Buses for Urban Public Transportation using Rooftop Integrated Photovoltaic Energy in Cuenca Ecuador
by Antonia Cevallos-Escandón, Edgar Antonio Barragan-Escandón, Esteban Zalamea-León, Xavier Serrano-Guerrero and Julio Terrados-Cepeda
Energies 2023, 16(14), 5569; https://doi.org/10.3390/en16145569 - 24 Jul 2023
Cited by 4 | Viewed by 2584
Abstract
A main restriction of renewables from intermittent sources is the mismatch between energy resource availability and energy requirements, especially when extensive power plants are producing at their highest potential causing huge energy surpluses. In these cases, excess power must be stored or curtailed. [...] Read more.
A main restriction of renewables from intermittent sources is the mismatch between energy resource availability and energy requirements, especially when extensive power plants are producing at their highest potential causing huge energy surpluses. In these cases, excess power must be stored or curtailed. One alternative is increasing urban solar potential which could be integrated to feed electric buses directly or alternatively through hydrogen (H2) as an energy vector. H2 from renewable electricity can be stored and used directly or through fuel cells. This study aims to determine the H2 capability that could be achieved when integrating large-scale photovoltaic (PV) generation in urban areas. This analysis was carried out by determining the PV energy potentially generated by installing PV in Cuenca City downtown (Ecuador). Cuenca is in the process of adopting renewal of the public transport vehicle fleet, introducing a new model with an electric tram main network combined with “clean type buses”. The conventional diesel urban transport could be replaced, establishing a required vehicle fleet of 475 buses spread over 29 routes, emitting 112 tons of CO2 and burning 11,175 gallons of diesel daily. Between the main findings, we concluded that the electricity that could be produced in the total roof area exceeds the actual demand in the study area by 5.5 times. Taking into account the energy surplus, it was determined that the available PV power will cover from 97% to 127% of the total demand necessary to mobilize the city bus fleet. The novelty of this work is the proposal of a combined methodology to find the potential to feed urban transport with urban solar power in cities, close to the equatorial line. Full article
(This article belongs to the Special Issue Advances in Hydrogen and Energy Transition)
Show Figures

Figure 1

26 pages, 56618 KiB  
Review
Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects
by Omar Fakhreddine, Yousef Gharbia, Javad Farrokhi Derakhshandeh and A. M. Amer
World Electr. Veh. J. 2023, 14(6), 156; https://doi.org/10.3390/wevj14060156 - 13 Jun 2023
Cited by 37 | Viewed by 16862
Abstract
Conventional transportation systems are facing many challenges related to reducing fuel consumption, noise, and pollutants to satisfy rising environmental and economic criteria. These requirements have prompted many researchers and manufacturers in the transportation sector to look for cleaner, more efficient, and more sustainable [...] Read more.
Conventional transportation systems are facing many challenges related to reducing fuel consumption, noise, and pollutants to satisfy rising environmental and economic criteria. These requirements have prompted many researchers and manufacturers in the transportation sector to look for cleaner, more efficient, and more sustainable alternatives. Powertrains based on fuel cell systems could partially or completely replace their conventional counterparts used in all modes of transport, starting from small ones, such as scooters, to large mechanisms such as commercial airplanes. Since hydrogen fuel cells (HFCs) emit only water and heat as byproducts and have higher energy conversion efficiency in comparison with other conventional systems, it has become tempting for many scholars to explore their potential for resolving the environmental and economic concerns associated with the transportation sector. This paper thoroughly reviews the principles and applications of fuel cell systems for the main transportation schemes, including scooters, bicycles, motorcycles, cars, buses, trains, and aerial vehicles. The review showed that fuel cells would soon become the powertrain of choice for most modes of transportation. For commercial long-rage airplanes, however, employing fuel cells will be limited due to the replacement of the axillary power unit (APU) in the foreseeable future. Using fuel cells to propel such large airplanes would necessitate redesigning the airplane structure to accommodate the required hydrogen tanks, which could take a bit more time. Full article
(This article belongs to the Topic Transportation in Sustainable Energy Systems)
Show Figures

Figure 1

15 pages, 4937 KiB  
Article
A Novel Minimal-Cost Power Allocation Strategy for Fuel Cell Hybrid Buses Based on Deep Reinforcement Learning Algorithms
by Kunang Li, Chunchun Jia, Xuefeng Han and Hongwen He
Sustainability 2023, 15(10), 7967; https://doi.org/10.3390/su15107967 - 12 May 2023
Cited by 6 | Viewed by 2038
Abstract
Energy management strategy (EMS) is critical for improving the economy of hybrid powertrains and the durability of energy sources. In this paper, a novel EMS based on a twin delayed deep deterministic policy gradient algorithm (TD3) is proposed for a fuel cell hybrid [...] Read more.
Energy management strategy (EMS) is critical for improving the economy of hybrid powertrains and the durability of energy sources. In this paper, a novel EMS based on a twin delayed deep deterministic policy gradient algorithm (TD3) is proposed for a fuel cell hybrid electric bus (FCHEB) to optimize the driving cost of the vehicle. First, a TD3-based energy management strategy is established to embed the limits of battery aging and fuel cell power variation into the strategic framework to fully exploit the economic potential of FCHEB. Second, the TD3-based EMS is compared and analyzed with the deep deterministic policy gradient algorithm (DDPG)-based EMS using real-world collected driving conditions as training data. The results show that the TD3-based EMS has 54.69% higher training efficiency, 36.82% higher learning ability, and 2.45% lower overall vehicle operating cost compared to the DDPG-based EMS, validating the effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

17 pages, 3444 KiB  
Article
Adaptive Equivalent Consumption Minimization Strategy for Fuel Cell Buses Based on Driving Style Recognition
by Kun He, Dongchen Qin, Jiangyi Chen, Tingting Wang, Hongxia Wu and Peizhuo Wang
Sustainability 2023, 15(10), 7781; https://doi.org/10.3390/su15107781 - 9 May 2023
Cited by 5 | Viewed by 2188
Abstract
Driving style has a significant effect on the operating economy of fuel cell buses (FCBs). To reduce hydrogen consumption and prolong the fuel cell life of FCBs, this paper proposes an online adaptive equivalent consumption minimum strategy (A-ECMS) based on driving style recognition. [...] Read more.
Driving style has a significant effect on the operating economy of fuel cell buses (FCBs). To reduce hydrogen consumption and prolong the fuel cell life of FCBs, this paper proposes an online adaptive equivalent consumption minimum strategy (A-ECMS) based on driving style recognition. Firstly, driving data from various drivers is collected, and a standard driving cycle is created. Neural networks are then used to identify driving conditions, and three fuzzy logic recognizers are developed to identify driving styles for different driving conditions. The driving style factor is associated with the equivalent factor using an optimization algorithm that incorporates hydrogen consumption cost and fuel cell degradation cost into the objective function. Simulation results demonstrate that the proposed A-ECMS can reduce equivalent hydrogen consumption, prolong fuel cell life, and result in a 6.2% reduction in total operating cost compared to the traditional method. Full article
(This article belongs to the Special Issue Intelligent Technologies in Energy Management of New Energy Vehicle)
Show Figures

Figure 1

13 pages, 1107 KiB  
Article
Impact of Fuel Production Technologies on Energy Consumption and GHG Emissions from Diesel and Electric–Hydrogen Hybrid Buses in Rio de Janeiro, Brazil
by Camila Padovan, Júlia A. G. Fagundes, Márcio de Almeida D’Agosto, Ana Carolina M. Angelo and Pedro J. P. Carneiro
Sustainability 2023, 15(9), 7400; https://doi.org/10.3390/su15097400 - 29 Apr 2023
Cited by 1 | Viewed by 2179
Abstract
In view of the GHG reduction targets to be met, Brazilian researchers are looking for cleaner alternatives to energy sources. These alternatives are primarily to be applied in the transport sector, which presents high energy consumption, as well as high CO2 emissions. [...] Read more.
In view of the GHG reduction targets to be met, Brazilian researchers are looking for cleaner alternatives to energy sources. These alternatives are primarily to be applied in the transport sector, which presents high energy consumption, as well as high CO2 emissions. In this sense, this research developed an LCI study considering two bus alternatives for the city of Rio de Janeiro: diesel-powered internal combustion buses (ICEB) and a hydrogen-powered polymer fuel cell hybrid bus (FCHB). For the FCHB, three hydrogen production methods were also included: water electrolysis (WE), ethanol steam reforming (ESR) and natural gas steam reforming (NGSR). The research was aimed at estimating energy consumption, including the percentage of energy that is renewable, as well as CO2 emissions. The results show diesel as the energy source with the highest emissions as well as the highest fossil energy consumption. Regarding the alternatives for hydrogen production, water electrolysis stood out with the lowest emissions. Full article
Show Figures

Figure 1

Back to TopTop