Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = genetically encoded voltage indicator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1413 KB  
Review
From the Metabolic Effects and Mechanism of Monovalent Cation Transport to the Actual Measurement of the Plasma Membrane Potential in Yeast
by Antonio Peña, Norma Silvia Sánchez and Martha Calahorra
J. Fungi 2025, 11(7), 522; https://doi.org/10.3390/jof11070522 - 15 Jul 2025
Viewed by 403
Abstract
The effects of potassium (K+) on yeast metabolism were documented as early as 1940. Studies proposing a mechanism for its transport started in 1950, and in 1953, a mechanism for the stimulation of fermentation was suggested. However, it was not until [...] Read more.
The effects of potassium (K+) on yeast metabolism were documented as early as 1940. Studies proposing a mechanism for its transport started in 1950, and in 1953, a mechanism for the stimulation of fermentation was suggested. However, it was not until the 1970s that both mechanisms were clarified in Mexico, and the actual internal pH of the cells was measured. The presence of an H+-ATPase that generates an electric plasma membrane difference (PMP), which is used by specific transporters to facilitate the influx of K+ and other cations into the cells, was discovered. For years, many efforts were made to estimate and measure the value of the PMP; the obtained results were variable and erratic. In the 1980s, a methodology was developed to estimate the plasma membrane potential by following the fluorescence changes in the DiSC3(3) dye and measuring its accumulation, which provided actual but inaccurate values. Similar values were obtained by measuring the accumulation of tetraphenylphosphonium. The most reliable method of measuring the actual values of the plasma membrane potential was only recently devised using the also fluorescent dye thioflavin T. This review presents the attempts and outcomes of these experiments necessary to clarify the results reported by different research groups. Innovative research with Genetically Encoded Voltage Indicators (GEVIs) is also included. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

16 pages, 2407 KB  
Article
Mutations in Genes with a Role in Cell Envelope Biosynthesis Render Gram-Negative Bacteria Highly Susceptible to the Anti-Infective Small Molecule D66
by Samual C. Allgood, Calvin A. Ewing, Weiping Chu, Steffen Porwollik, Michael McClelland and Corrella S. Detweiler
Microorganisms 2025, 13(7), 1521; https://doi.org/10.3390/microorganisms13071521 - 29 Jun 2025
Viewed by 460
Abstract
Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) within cultured macrophages and murine [...] Read more.
Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) within cultured macrophages and murine tissues, with low host toxicity. While D66 fails to inhibit bacterial growth in standard media, the compound is bacteriostatic and disrupts the cell membrane voltage gradient without lysis under growth conditions that permeabilize the outer membrane or reduce efflux pump activity. To gain insights into specific bacterial targets of D66, we pursued two genetic approaches. Selection for resistance to D66 revealed spontaneous point mutations that mapped within the gmhB gene, which encodes a protein involved in the biosynthesis of the lipopolysaccharide core molecule. E. coli and S. Typhimurium gmhB mutants exhibited increased resistance to antibiotics, indicating a more robust barrier to entry. Conversely, S. Typhimurium transposon insertions in genes involved in outer membrane permeability or efflux pump activity reduced fitness in the presence of D66. Together, these observations underscore the significance of the bacterial cell envelope in safeguarding Gram-negative bacteria from small molecules. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

14 pages, 2642 KB  
Article
Engineering of Genetically Encoded Bright Near-Infrared Fluorescent Voltage Indicator
by Xian Xiao, Aimei Yang, Hanbin Zhang, Demian Park, Yangdong Wang, Balint Szabo, Edward S. Boyden and Kiryl D. Piatkevich
Int. J. Mol. Sci. 2025, 26(4), 1442; https://doi.org/10.3390/ijms26041442 - 8 Feb 2025
Viewed by 2235
Abstract
Genetically encoded voltage indicators (GEVIs) allow for the cell-type-specific real-time imaging of neuronal membrane potential dynamics, which is essential to understanding neuronal information processing at both cellular and circuit levels. Among GEVIs, near-infrared-shifted GEVIs offer faster kinetics, better tissue penetration, and compatibility with [...] Read more.
Genetically encoded voltage indicators (GEVIs) allow for the cell-type-specific real-time imaging of neuronal membrane potential dynamics, which is essential to understanding neuronal information processing at both cellular and circuit levels. Among GEVIs, near-infrared-shifted GEVIs offer faster kinetics, better tissue penetration, and compatibility with optogenetic tools, enabling all-optical electrophysiology in complex biological contexts. In our previous work, we employed the directed molecular evolution of microbial rhodopsin Archaerhodopsin-3 (Arch-3) in mammalian cells to develop a voltage sensor called Archon1. Archon1 demonstrated excellent membrane localization, signal-to-noise ratio (SNR), sensitivity, kinetics, and photostability, and full compatibility with optogenetic tools. However, Archon1 suffers from low brightness and requires high illumination intensities, which leads to tissue heating and phototoxicity during prolonged imaging. In this study, we aim to improve the brightness of this voltage sensor. We performed random mutation on a bright Archon derivative and identified a novel variant, monArch, which exhibits satisfactory voltage sensitivity (4~5% ΔF/FAP) and a 9-fold increase in basal brightness compared with Archon1. However, it is hindered by suboptimal membrane localization and compromised voltage sensitivity. These challenges underscore the need for continued optimization to achieve an optimal balance of brightness, stability, and functionality in rhodopsin-based voltage sensors. Full article
(This article belongs to the Special Issue Dysfunctional Neural Circuits and Impairments in Brain Function)
Show Figures

Figure 1

11 pages, 2367 KB  
Article
High-Affinity Plasma Membrane Ca2+ Channel Cch1 Modulates Adaptation to Sodium Dodecyl Sulfate-Triggered Rise in Cytosolic Ca2+ Concentration in Ogataea parapolymorpha
by Maria Kulakova, Maria Pakhomova, Victoria Bidiuk, Alexey Ershov, Alexander Alexandrov and Michael Agaphonov
Int. J. Mol. Sci. 2024, 25(21), 11450; https://doi.org/10.3390/ijms252111450 - 25 Oct 2024
Viewed by 1157
Abstract
The cytosolic calcium concentration ([Ca2+]cyt) in yeast cells is maintained at a low level via the action of different transporters sequestrating these cations in the vacuole. Among them, the vacuolar Ca2+ ATPase Pmc1 crucially contributes to this process. [...] Read more.
The cytosolic calcium concentration ([Ca2+]cyt) in yeast cells is maintained at a low level via the action of different transporters sequestrating these cations in the vacuole. Among them, the vacuolar Ca2+ ATPase Pmc1 crucially contributes to this process. Its inactivation in Ogataea yeasts was shown to cause sodium dodecyl sulfate (SDS) hypersensitivity that can be alleviated by the inactivation of the plasma membrane high-affinity Ca2+ channel Cch1. Here, we show that SDS at low concentrations induces a rapid influx of external Ca2+ into cells, while the plasma membrane remains impermeable for propidium iodide. The inactivation of Pmc1 disturbs efficient adaptation to this activity of SDS. The inactivation of Cch1 partially restores the ability of pmc1 mutant cells to cope with an increased [Ca2+]cyt that correlates with the suppression of SDS hypersensitivity. At the same time, Cch1 is unlikely to be directly involved in SDS-induced Ca2+ influx, since its inactivation does not decrease the amplitude of the rapid [Ca2+]cyt elevation in the pmc1-Δ mutant. The obtained data suggest that the effects of CCH1 inactivation on SDS sensitivity and coping with increased [Ca2+]cyt are related to an additional Cch1 function beyond its direct involvement in Ca2+ transport. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 233 KB  
Article
Association of SCN1A Polymorphisms rs3812718 and rs2298771 with Epilepsy
by Martha-Spyridoula Katsarou, Anna Siatouni, Danae Tsikrika, Elena Kokkiou, Maria Stefanatou, Anastasia Verentzioti, Athanasia Alexoudi, Stylianos Gatzonis, Nikolaos Drakoulis and Maria Papasavva
Genes 2024, 15(9), 1224; https://doi.org/10.3390/genes15091224 - 19 Sep 2024
Cited by 2 | Viewed by 1929
Abstract
Background/Objectives: Epilepsy is a brain disease with both environmental and genetic inputs. Ion channel dysfunction seems to be of great significance for abnormal neuronal behavior during epileptic seizures. Within neurons, the voltage-gated sodium channels are crucial proteins contributing to the initiation and propagation [...] Read more.
Background/Objectives: Epilepsy is a brain disease with both environmental and genetic inputs. Ion channel dysfunction seems to be of great significance for abnormal neuronal behavior during epileptic seizures. Within neurons, the voltage-gated sodium channels are crucial proteins contributing to the initiation and propagation of action potentials. The voltage-gated sodium channel α subunit 1 (SCN1A) gene encodes for the α subunit of a voltage-gated ion channel. The aim of the study was to investigate the relation of two common SCN1A variants, i.e., rs3812718 and rs2298771, with distinct epileptic phenotypes in a South-Eastern European population. Methods: DNA was extracted from 214 unrelated participants with focal onset, focal to bilateral tonic–clonic, or generalized onset epileptic seizures and genotyped using real-time PCR (LightSNiP assays) followed by melting curve analysis. Statistical analysis of the results was performed using IBM SPSS Statistics software (version 29.0 for Windows). Results: Genotype frequency distribution analysis indicated an association for the A-allele-containing genotypes of both rs3812718 and rs2298771 polymorphisms of SCN1A with generalized onset seizures and focal to bilateral tonic–clonic seizures versus focal onset seizures. Conclusions: Consequently, the study provides evidence that supports a potential association of the investigated SCN1A polymorphisms with distinct seizure subtype susceptibility in South-Eastern Europeans. Full article
Show Figures

Graphical abstract

11 pages, 2380 KB  
Article
Interplay between Electric Field Strength and Number of Short-Duration Pulses for Efficient Gene Electrotransfer
by Ernestas Urbanskas, Baltramiejus Jakštys, Justinas Venckus, Paulina Malakauskaitė, Ingrida Šatkauskienė, Inga Morkvėnaitė-Vilkončienė and Saulius Šatkauskas
Pharmaceuticals 2024, 17(7), 825; https://doi.org/10.3390/ph17070825 - 23 Jun 2024
Cited by 2 | Viewed by 1713
Abstract
Electroporation is a method that shows great promise as a non-viral approach for delivering genes by using high-voltage electric pulses to introduce DNA into cells to induce transient gene expression. This research aimed to evaluate the interplay between electric pulse intensity and 100 [...] Read more.
Electroporation is a method that shows great promise as a non-viral approach for delivering genes by using high-voltage electric pulses to introduce DNA into cells to induce transient gene expression. This research aimed to evaluate the interplay between electric pulse intensity and 100 µs-duration pulse numbers as an outcome of gene electrotransfer efficacy and cell viability. Our results indicated a close relationship between pulse number and electric field strength regarding gene electrotransfer efficacy; higher electric pulse intensity resulted in fewer pulses needed to achieve the same gene electrotransfer efficacy. Subsequently, an increase in pulse number had a more negative impact on overall gene electrotransfer by significantly reducing cell viability. Based on our data, the best pulse parameters to transfect CHO cells with the pMax-GFP plasmid were using 5 HV square wave pulses of 1000 V/cm and 2 HV of 1600 V/cm, correspondingly resulting in 55 and 71% of transfected cells and maintaining 79 and 54% proliferating cells. This shows ESOPE-like 100 µs-duration pulse protocols can be used simultaneously to deliver cytotoxic drugs as well as immune response regulating genetically encoded cytokines. Full article
Show Figures

Figure 1

17 pages, 3513 KB  
Article
Functional Characteristics of the Nav1.1 p.Arg1596Cys Mutation Associated with Varying Severity of Epilepsy Phenotypes
by Grzegorz Witkowski, Bartlomiej Szulczyk, Ewa Nurowska, Marta Jurek, Michal Pasierski, Agata Lipiec, Agnieszka Charzewska, Mateusz Dawidziuk, Michal Milewski, Szymon Owsiak, Rafal Rola, Halina Sienkiewicz Jarosz and Dorota Hoffman-Zacharska
Int. J. Mol. Sci. 2024, 25(3), 1745; https://doi.org/10.3390/ijms25031745 - 1 Feb 2024
Cited by 1 | Viewed by 2276
Abstract
Mutations of the SCN1A gene, which encodes the voltage-dependent Na+ channel’s α subunit, are associated with diverse epileptic syndromes ranging in severity, even intra-family, from febrile seizures to epileptic encephalopathy. The underlying cause of this variability is unknown, suggesting the involvement of [...] Read more.
Mutations of the SCN1A gene, which encodes the voltage-dependent Na+ channel’s α subunit, are associated with diverse epileptic syndromes ranging in severity, even intra-family, from febrile seizures to epileptic encephalopathy. The underlying cause of this variability is unknown, suggesting the involvement of additional factors. The aim of our study was to describe the properties of mutated channels and investigate genetic causes for clinical syndromes’ variability in the family of five SCN1A gene p.Arg1596Cys mutation carriers. The analysis of additional genetic factors influencing SCN1A-associated phenotypes was conducted through exome sequencing (WES). To assess the impact of mutations, we used patch clamp analysis of mutated channels expressed in HEK cells and in vivo neural excitability studies (NESs). In cells expressing the mutant channel, sodium currents were reduced. NESs indicated increased excitability of peripheral motor neurons in mutation carriers. WES showed the absence of non-SCA1 pathogenic variants that could be causative of disease in the family. Variants of uncertain significance in three genes, as potential modifiers of the most severe phenotype, were identified. The p.Arg1596Cys substitution inhibits channel function, affecting steady-state inactivation kinetics. Its clinical manifestations involve not only epileptic symptoms but also increased excitability of peripheral motor fibers. The role of Nav1.1 in excitatory neurons cannot be ruled out as a significant factor of the clinical phenotype. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy)
Show Figures

Figure 1

17 pages, 6392 KB  
Article
Enhanced Membrane Incorporation of H289Y Mutant GluK1 Receptors from the Audiogenic Seizure-Prone GASH/Sal Model: Functional and Morphological Impacts on Xenopus Oocytes
by Sandra M. Díaz-Rodríguez, Isabel Ivorra, Javier Espinosa, Celia Vegar, M. Javier Herrero-Turrión, Dolores E. López, Ricardo Gómez-Nieto and Armando Alberola-Die
Int. J. Mol. Sci. 2023, 24(23), 16852; https://doi.org/10.3390/ijms242316852 - 28 Nov 2023
Cited by 1 | Viewed by 2464
Abstract
Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. [...] Read more.
Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte’s membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy)
Show Figures

Figure 1

25 pages, 1968 KB  
Review
Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies
by Nikolay Aseyev, Violetta Ivanova, Pavel Balaban and Evgeny Nikitin
Biosensors 2023, 13(6), 648; https://doi.org/10.3390/bios13060648 - 13 Jun 2023
Cited by 4 | Viewed by 4416
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics [...] Read more.
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research. Full article
Show Figures

Figure 1

15 pages, 3552 KB  
Article
Cortical Correlates of Psychedelic-Induced Shaking Behavior Revealed by Voltage Imaging
by Tobias Buchborn, Taylor Lyons, Chenchen Song, Amanda Feilding and Thomas Knöpfel
Int. J. Mol. Sci. 2023, 24(11), 9463; https://doi.org/10.3390/ijms24119463 - 30 May 2023
Cited by 1 | Viewed by 3975
Abstract
(1) From mouse to man, shaking behavior (head twitches and/or wet dog shakes) is a reliable readout of psychedelic drug action. Shaking behavior like psychedelia is thought to be mediated by serotonin 2A receptors on cortical pyramidal cells. The involvement of pyramidal cells [...] Read more.
(1) From mouse to man, shaking behavior (head twitches and/or wet dog shakes) is a reliable readout of psychedelic drug action. Shaking behavior like psychedelia is thought to be mediated by serotonin 2A receptors on cortical pyramidal cells. The involvement of pyramidal cells in psychedelic-induced shaking behavior remains hypothetical, though, as experimental in vivo evidence is limited. (2) Here, we use cell type-specific voltage imaging in awake mice to address this issue. We intersectionally express the genetically encoded voltage indicator VSFP Butterfly 1.2 in layer 2/3 pyramidal neurons. We simultaneously capture cortical hemodynamics and cell type-specific voltage activity while mice display psychedelic shaking behavior. (3) Shaking behavior is preceded by high-frequency oscillations and overlaps with low-frequency oscillations in the motor cortex. Oscillations spectrally mirror the rhythmics of shaking behavior and reflect layer 2/3 pyramidal cell activity complemented by hemodynamics. (4) Our results reveal a clear cortical fingerprint of serotonin-2A-receptor-mediated shaking behavior and open a promising methodological avenue relating a cross-mammalian psychedelic effect to cell-type specific brain dynamics. Full article
(This article belongs to the Special Issue Role of Serotonin in Brain Function)
Show Figures

Graphical abstract

20 pages, 2939 KB  
Review
Fluorescence Imaging of Cell Membrane Potential: From Relative Changes to Absolute Values
by Dmitrii M. Nikolaev, Vladimir N. Mironov, Andrey A. Shtyrov, Iaroslav D. Kvashnin, Andrey S. Mereshchenko, Andrey V. Vasin, Maxim S. Panov and Mikhail N. Ryazantsev
Int. J. Mol. Sci. 2023, 24(3), 2435; https://doi.org/10.3390/ijms24032435 - 26 Jan 2023
Cited by 13 | Viewed by 5057
Abstract
Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur [...] Read more.
Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review. Full article
(This article belongs to the Special Issue Molecular Biosensing: From Theory to Point of Care Analytical Device)
Show Figures

Figure 1

20 pages, 1272 KB  
Article
Analysis of CACNA1C and KCNH2 Risk Variants on Cardiac Autonomic Function in Patients with Schizophrenia
by Alexander Refisch, Shoko Komatsuzaki, Martin Ungelenk, Andy Schumann, Ha-Yeun Chung, Susann S. Schilling, Wibke Jantzen, Sabine Schröder, Markus M. Nöthen, Thomas W. Mühleisen, Christian A. Hübner and Karl-Jürgen Bär
Genes 2022, 13(11), 2132; https://doi.org/10.3390/genes13112132 - 16 Nov 2022
Cited by 5 | Viewed by 2895
Abstract
Background: Cardiac autonomic dysfunction (CADF) is a major contributor to increased cardiac mortality in schizophrenia patients. The aberrant function of voltage-gated ion channels, which are widely distributed in the brain and heart, may link schizophrenia and CADF. In search of channel-encoding genes that [...] Read more.
Background: Cardiac autonomic dysfunction (CADF) is a major contributor to increased cardiac mortality in schizophrenia patients. The aberrant function of voltage-gated ion channels, which are widely distributed in the brain and heart, may link schizophrenia and CADF. In search of channel-encoding genes that are associated with both CADF and schizophrenia, CACNA1C and KCNH2 are promising candidates. In this study, we tested for associations between genetic findings in both genes and CADF parameters in schizophrenia patients whose heart functions were not influenced by psychopharmaceuticals. Methods: First, we searched the literature for single-nucleotide polymorphisms (SNPs) in CACNA1C and KCNH2 that showed genome-wide significant association with schizophrenia. Subsequently, we looked for such robust associations with CADF traits at these loci. A total of 5 CACNA1C SNPs and 9 KCNH2 SNPs were found and genotyped in 77 unmedicated schizophrenia patients and 144 healthy controls. Genotype-related impacts on heart rate (HR) dynamics and QT variability indices (QTvi) were analyzed separately in patients and healthy controls. Results: We observed significantly increased QTvi in unmedicated patients with CADF-associated risk in CACNA1C rs2283274 C and schizophrenia-associated risk in rs2239061 G compared to the non-risk allele in these patients. Moreover, unmedicated patients with previously identified schizophrenia risk alleles in KCNH2 rs11763131 A, rs3807373 A, rs3800779 C, rs748693 G, and 1036145 T showed increased mean HR and QTvi as compared to non-risk alleles. Conclusions: We propose a potential pleiotropic role for common variation in CACNA1C and KCNH2 associated with CADF in schizophrenia patients, independent of antipsychotic medication, that predisposes them to cardiac arrhythmias and premature death. Full article
(This article belongs to the Special Issue Genetic Basis of Stress-Related Neuropsychiatric Disorders)
Show Figures

Graphical abstract

15 pages, 5589 KB  
Article
Zebrafish Embryos Display Characteristic Bioelectric Signals during Early Development
by Martin R. Silic, Ziyu Dong, Yueyi Chen, Adam Kimbrough and Guangjun Zhang
Cells 2022, 11(22), 3586; https://doi.org/10.3390/cells11223586 - 12 Nov 2022
Cited by 7 | Viewed by 4240
Abstract
Bioelectricity is defined as endogenous electrical signaling mediated by the dynamic distribution of charged molecules. Recently, increasing evidence has revealed that cellular bioelectric signaling is critical for regulating embryonic development, regeneration, and congenital diseases. However, systematic real-time in vivo dynamic electrical activity monitoring [...] Read more.
Bioelectricity is defined as endogenous electrical signaling mediated by the dynamic distribution of charged molecules. Recently, increasing evidence has revealed that cellular bioelectric signaling is critical for regulating embryonic development, regeneration, and congenital diseases. However, systematic real-time in vivo dynamic electrical activity monitoring of whole organisms has been limited, mainly due to the lack of a suitable model system and voltage measurement tools for in vivo biology. Here, we addressed this gap by utilizing a genetically stable zebrafish line, Tg (ubiquitin: ASAP1), and ASAP1 (Accelerated sensor of action potentials 1), a genetically encoded voltage indicator (GEVI). With light-sheet microscopy, we systematically investigated cell membrane potential (Vm) signals during different embryonic stages. We found cells of zebrafish embryos showed local membrane hyperpolarization at the cleavage furrows during the cleavage period of embryogenesis. This signal appeared before cytokinesis and fluctuated as it progressed. In contrast, whole-cell transient hyperpolarization was observed during the blastula and gastrula stages. These signals were generally limited to the superficial blastomere, but they could be detected within the deeper cells during the gastrulation period. Moreover, the zebrafish embryos exhibit tissue-level cell Vm signals during the segmentation period. Middle-aged somites had strong and dynamic Vm fluctuations starting at about the 12-somite stage. These embryonic stage-specific characteristic cellular bioelectric signals suggest that they might play a diverse role in zebrafish embryogenesis that could underlie human congenital diseases. Full article
(This article belongs to the Special Issue Molecular Bioelectricity and Cell Behaviour)
Show Figures

Figure 1

11 pages, 2479 KB  
Article
Combining Cortical Voltage Imaging and Hippocampal Electrophysiology for Investigating Global, Multi-Timescale Activity Interactions in the Brain
by Rafael Pedrosa, Chenchen Song, Thomas Knöpfel and Francesco Battaglia
Int. J. Mol. Sci. 2022, 23(12), 6814; https://doi.org/10.3390/ijms23126814 - 19 Jun 2022
Cited by 1 | Viewed by 4213
Abstract
A new generation of optogenetic tools for analyzing neural activity has been contributing to the elucidation of classical open questions in neuroscience. Specifically, voltage imaging technologies using enhanced genetically encoded voltage indicators have been increasingly used to observe the dynamics of large circuits [...] Read more.
A new generation of optogenetic tools for analyzing neural activity has been contributing to the elucidation of classical open questions in neuroscience. Specifically, voltage imaging technologies using enhanced genetically encoded voltage indicators have been increasingly used to observe the dynamics of large circuits at the mesoscale. Here, we describe how to combine cortical wide-field voltage imaging with hippocampal electrophysiology in awake, behaving mice. Furthermore, we highlight how this method can be useful for different possible investigations, using the characterization of hippocampal–neocortical interactions as a case study. Full article
(This article belongs to the Special Issue Optogenetics)
Show Figures

Figure 1

18 pages, 8855 KB  
Article
Generation and Characterization of the Drosophila melanogaster paralytic Gene Knock-Out as a Model for Dravet Syndrome
by Andrea Tapia, Carlo N. Giachello, Martina Palomino-Schätzlein, Richard A. Baines and Máximo Ibo Galindo
Life 2021, 11(11), 1261; https://doi.org/10.3390/life11111261 - 18 Nov 2021
Cited by 7 | Viewed by 3961
Abstract
Dravet syndrome is a severe rare epileptic disease caused by mutations in the SCN1A gene coding for the Nav1.1 protein, a voltage-gated sodium channel alpha subunit. We have made a knock-out of the paralytic gene, the single Drosophila melanogaster gene encoding this type [...] Read more.
Dravet syndrome is a severe rare epileptic disease caused by mutations in the SCN1A gene coding for the Nav1.1 protein, a voltage-gated sodium channel alpha subunit. We have made a knock-out of the paralytic gene, the single Drosophila melanogaster gene encoding this type of protein, by homologous recombination. These flies showed a heat-induced seizing phenotype, and sudden death in long term seizures. In addition to seizures, neuromuscular alterations were observed in climbing, flight, and walking tests. Moreover, they also manifested some cognitive alterations, such as anxiety and problems in learning. Electrophysiological analyses from larval motor neurons showed a decrease in cell capacitance and membrane excitability, while persistent sodium current increased. To detect alterations in metabolism, we performed an NMR metabolomic profiling of heads, which revealed higher levels in some amino acids, succinate, and lactate; and also an increase in the abundance of GABA, which is the main neurotransmitter implicated in Dravet syndrome. All these changes in the paralytic knock-out flies indicate that this is a good model for epilepsy and specifically for Dravet syndrome. This model could be a new tool to understand the pathophysiology of the disease and to find biomarkers, genetic modifiers and new treatments. Full article
(This article belongs to the Special Issue Rare Neurological Diseases)
Show Figures

Figure 1

Back to TopTop