Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = gradient doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
117 pages, 10736 KB  
Review
Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries
by Alain Mauger and Christian M. Julien
Batteries 2025, 11(7), 254; https://doi.org/10.3390/batteries11070254 - 4 Jul 2025
Viewed by 2084
Abstract
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x [...] Read more.
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x ≥ 0.6, have emerged as key cathode materials in lithium-ion batteries due to their high operating voltage and superior energy density. These materials, characterized by low cobalt content, offer a promising path toward sustainable and cost-effective energy storage solutions. However, their electrochemical performance remains below theoretical expectations, primarily due to challenges related to structural instability, limited thermal safety, and suboptimal cycle life. Intensive research efforts have been devoted to addressing these issues, resulting in substantial performance improvements and enabling the development of next-generation lithium-ion batteries with higher nickel content and reduced cobalt dependency. In this review, we present recent advances in material design and engineering strategies to overcome the problems limiting their electrochemical performance (cation mixing, phase stability, oxygen release, microcracks during cycling). These strategies include synthesis methods to optimize the morphology (size of the particles, core–shell and gradient structures), surface modifications of the Ni-rich particles, and doping. A detailed comparison between these strategies and the synergetic effects of their combination is presented. We also highlight the synergistic role of compatible lithium salts and electrolytes in achieving state-of-the-art nickel-rich lithium-ion batteries. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

15 pages, 1831 KB  
Article
Eskebornite CuFeSe2: Solid-State Synthesis and Thermoelectric Properties
by Se-Hyeon Choi and Il-Ho Kim
Inorganics 2025, 13(7), 216; https://doi.org/10.3390/inorganics13070216 - 27 Jun 2025
Viewed by 470
Abstract
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied [...] Read more.
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied antiferromagnetic semiconductor—eskebornite remains relatively underexplored, particularly regarding its solid-state synthesis and thermoelectric performance. To address this gap, pure eskebornite was synthesized via mechanical alloying followed by hot pressing, a method that enables the fine control of its phase composition and microstructural features. The synthesized undoped CuFeSe2 exhibited p-type nondegenerate semiconducting behavior, with electrical conductivity increasing monotonically over the temperature range of 323–623 K, indicative of thermally activated carrier transport. Simultaneously, a decreasing trend in thermal conductivity with temperature was observed, likely resulting from intensified phonon scattering, which serves to suppress heat transport and enhance the thermoelectric efficiency by maintaining a thermal gradient across the material. A peak in the Seebeck coefficient occurred between 473 and 523 K, suggesting the onset of intrinsic carrier excitation and a transition in dominant carrier transport mechanisms. The material exhibited a maximum power factor of 1.55 μWm−1K−2, while the dimensionless thermoelectric figure of merit (ZT) reached a peak value of 0.37 × 10−3 at 523 K. Although the ZT remains low, these results underscore the potential of eskebornite as a thermoelectric candidate, with substantial room for optimization through chemical doping, microstructural engineering, or nanostructuring approaches to enhance the carrier mobility and reduce the lattice thermal conductivity. Full article
(This article belongs to the Special Issue Advances in Thermoelectric Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 3151 KB  
Article
Solid-State Thermal Decomposition in a Cu-Rich Cu-Ti-Zr Alloy
by Chenying Shi, Biaobiao Yang, Yuling Liu, Wei Shao, Yidi Li, Yunping Li, Dewen Zeng and Yong Du
Materials 2025, 18(13), 3042; https://doi.org/10.3390/ma18133042 - 26 Jun 2025
Viewed by 422
Abstract
Solid-state thermal decomposition in the Cu-13.3Ti-3.8Zr (at.%) alloy was studied using a synthesized method, including the temperature–concentration gradient and differential scanning calorimetry experiments within a single experimental cycle, as well as first principle calculations. Experimentally, the decomposition pathway and the solid solubility of [...] Read more.
Solid-state thermal decomposition in the Cu-13.3Ti-3.8Zr (at.%) alloy was studied using a synthesized method, including the temperature–concentration gradient and differential scanning calorimetry experiments within a single experimental cycle, as well as first principle calculations. Experimentally, the decomposition pathway and the solid solubility of Ti/Zr in the Cu matrix in the temperature range of 820 °C to 801.5 °C were observed in the Cu-13.3Ti-3.8Zr (at.%) alloy. The primary solid phase is (Cu) phase and subsequently precipitated Cu51Zr14 and Cu4Ti phases. These features are valuable for understanding the thermal stability and solid-state phase equilibria of the alloy. First principle calculations, including formation enthalpy, charge density, and electron localization function analyses, were conducted to evaluate the thermal, structural, and electrical stability of Cu51Zr14 with and without Ti doping, as well as Cu4Ti. The present work introduces an effective strategy for determining both the solid-state thermal decomposition pathway and the phase diagram within the solid-state region within a single experimental cycle. Full article
Show Figures

Graphical abstract

14 pages, 3555 KB  
Article
A DFT Study on the Effect of Biaxial Strain on the Electronic Properties of Graphene Doped with B, N, Al, Si, S, and Ga
by Dinara Akhmetsadyk, Daniyar Ismailov, Danatbek Murzalinov, Gulmaira Partizan and Valentina Grichshenko
Materials 2025, 18(12), 2791; https://doi.org/10.3390/ma18122791 - 13 Jun 2025
Viewed by 580
Abstract
This study presents a density functional theory (DFT) investigation of the electronic response of graphene doped with various atoms (B, N, Al, Si, S, Ga) under biaxial strain. The calculations were performed using the PBE exchange–correlation functional within the generalized gradient approximation (GGA), [...] Read more.
This study presents a density functional theory (DFT) investigation of the electronic response of graphene doped with various atoms (B, N, Al, Si, S, Ga) under biaxial strain. The calculations were performed using the PBE exchange–correlation functional within the generalized gradient approximation (GGA), as implemented in the DMol3 code. The Fermi energy was used as the primary indicator to evaluate strain sensitivity across a deformation range from −0.05 to +0.05. The results reveal a strong dependence of the electronic response on the type of dopant. Ga- and Al-doped graphene systems exhibit the most pronounced Fermi level shifts, up to 0.6 eV, indicating high sensitivity to mechanical strain. In contrast, B- and N-doped graphene show more moderate but stable and linear changes, which may be advantageous for predictable sensor behavior. These findings highlight the critical role of dopant selection in engineering strain-responsive graphene materials and support a design framework for their integration into high-performance flexible electronics and sensing applications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

9 pages, 1716 KB  
Article
Internal Stress of Titanium-Based Nitride with Penetration Depth and Surface Roughness by sin2ψ Method Using HR-XRD
by Sungju Yoo, Eunpyo Hong, Youngkue Choi and Heesoo Lee
Nanomaterials 2025, 15(11), 813; https://doi.org/10.3390/nano15110813 - 28 May 2025
Viewed by 418
Abstract
The test method for internal stress of titanium-based nitride was optimized via penetration depth and surface roughness. Through the test method, the variations in the mechanical properties due to the ratio of the carbon gradient layer were investigated in terms of internal stress. [...] Read more.
The test method for internal stress of titanium-based nitride was optimized via penetration depth and surface roughness. Through the test method, the variations in the mechanical properties due to the ratio of the carbon gradient layer were investigated in terms of internal stress. TiN coatings were deposited on SUS 304 using RF/DC magnetron sputtering, and the penetration depth was adjusted by varying the X-ray power of HR-XRD for test specimens with the same coating thickness of 1 μm. The gradient of diagram for internal stress remained constant regardless of the penetration depth, and this was attributed to the analysis of internal stress focusing on the preferred growth orientation of the coating and excluding the influence of the substrate. In addition, we tested different surface roughness values (0.01 Sa, 0.02 Sa, and 0.03 Sa) to observe the effect on internal stress measurement. The results showed negligible difference in internal stress, confirming that this measurement method is valid for coatings with a surface roughness of 0.03 Sa or less. The test method was applied to analyze the carbon-doped TiZrN coating. TiZrN coatings were deposited on SUS 304, and coating thicknesses of 0.5 μm, 1 μm, and 2 μm were used to control the ratio of the carbon gradient layer. After applying the carbon paste for carbon doping, the TiZrN coating was irradiated with a pulsed laser. The compressive internal stress increased from −1263 MPa to −1687 MPa at a coating thickness of 0.5 μm, where the ratio of the carbon gradient layer was the highest. It was confirmed that the increase in internal stress with the ratio of the carbon gradient layer improved the mechanical properties of the carbon-doped TiZrN coating by laser carburization. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

18 pages, 25199 KB  
Article
Uneven Hydrophilic–Hydrophobic Nanoflowers Enhancing Solar Interface Evaporation: Se-Doped Carbon Loaded with Gradient Distribution of CoSe/Co
by Linhui Jia, Zhenhao Liu, Hongxun Hao and Zhongxin Liu
Materials 2025, 18(10), 2409; https://doi.org/10.3390/ma18102409 - 21 May 2025
Viewed by 623
Abstract
Solar interface evaporation is a promising technology for sustainable freshwater acquisition. Regulating the hydrophilicity/hydrophobicity of the evaporator can optimize the water transport, heat transfer, and evaporation enthalpy during the evaporation process, thereby significantly improving the evaporation performance. The CoSe/Co-SeC nanoflower was prepared by [...] Read more.
Solar interface evaporation is a promising technology for sustainable freshwater acquisition. Regulating the hydrophilicity/hydrophobicity of the evaporator can optimize the water transport, heat transfer, and evaporation enthalpy during the evaporation process, thereby significantly improving the evaporation performance. The CoSe/Co-SeC nanoflower was prepared by high-temperature selenization of ZIF-67. Each petal of the nanoflower is loaded with a density-gradient distribution CoSe/Co, forming an uneven hydrophilic and hydrophobic surface that transitions from bottom hydrophilicity to top hydrophobicity. During the evaporation process, the hydrophilic bottom of the petals promotes rapid water supply, while the hydrophobic top of the petals protrudes from the water surface to form a large number of solid–liquid–gas three-phase interfaces. Therefore, water clusters activated by the strong hydrophilic sites at the bottom of the petals can reach the gas–liquid interface after a very short transmission distance and achieve water cluster evaporation. In addition, the nanoflower optimized the heat transfer at the solid–liquid interface and further promoted the increase in evaporation rate through micro-meniscus evaporation (MME). As a result, the evaporation rate and energy efficiency of the CoSe/Co-SeC evaporator are as high as 2.44 kg m−2 h−1 and 95.5%. This work passes controllable preparation of the gradient CoSe/Co-SeC and shows the enormous potential of micro-hydrophobic and hydrophilic regulation for improving solar interface evaporation performance. Full article
(This article belongs to the Special Issue Progress in Carbon-Based Materials)
Show Figures

Graphical abstract

13 pages, 7137 KB  
Communication
Co-Doping Effects on the Electronic and Optical Properties of β-Ga2O3: A First-Principles Investigation
by Ya-Rui Wang and Su-Zhen Luan
Materials 2025, 18(9), 2005; https://doi.org/10.3390/ma18092005 - 28 Apr 2025
Cited by 1 | Viewed by 744
Abstract
To meet the demands for functional layers in inverted flexible perovskite solar cells, high-performance formamidinium-based perovskite solar cells, and high-performance photodetectors in future applications, it is crucial to appropriately reduce the bandgap of third-generation wide-bandgap semiconductor materials. In this study, we first optimized [...] Read more.
To meet the demands for functional layers in inverted flexible perovskite solar cells, high-performance formamidinium-based perovskite solar cells, and high-performance photodetectors in future applications, it is crucial to appropriately reduce the bandgap of third-generation wide-bandgap semiconductor materials. In this study, we first optimized doping sites through Ag-Cl and Ag-S configurations to establish stable substitution patterns, followed by density functional theory (DFT) calculations using the Generalized Gradient Approximation with the Perdew–Burke–Ernzerhof (GGA-PBE) functional, implemented in the Vienna Ab initio Simulation Package (VASP). A plane-wave basis set with a cutoff energy of 450 eV and a 3 × 4 × 3 Γ-centered k-mesh were adopted to investigate the effects of Mg-Cl, Mg-S, Zn-Cl, and Zn-S co-doping on the structural stability, electronic properties, and optical characteristics of β-Ga2O3. Based on structural symmetry, six doping sites were considered, with Ag-S/Cl systems revealing preferential occupation at octahedral Ga(1) sites through site formation energy analysis. The results demonstrate that Mg-Cl, Mg-S, Zn-Cl, and Zn-S co-doped systems exhibit thermodynamic stability. The bandgap of pristine β-Ga2O3 was calculated to be 2.08 eV. Notably, Zn-Cl co-doping achieves the lowest bandgap reduction to 1.81 eV. Importantly, all co-doping configurations, including Mg-Cl, Mg-S, Zn-Cl, and Zn-S, effectively reduce the bandgap of β-Ga2O3. Furthermore, the co-doped systems show enhanced visible light absorption (30% increase at 500 nm) and improved optical storage performance compared to the pristine material. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

24 pages, 2707 KB  
Article
Recoverable Detection of Dichloromethane by MEMS Gas Sensor Based on Mo and Ni Co-Doped SnO2 Nanostructure
by Mengxue Xu, Yihong Zhong, Hongpeng Zhang, Yi Tao, Qingqing Shen, Shumin Zhang, Pingping Zhang, Xiaochun Hu, Xingqi Liu, Xuhui Sun and Zhenxing Cheng
Sensors 2025, 25(9), 2634; https://doi.org/10.3390/s25092634 - 22 Apr 2025
Cited by 2 | Viewed by 2493
Abstract
The challenging problem of chlorine “poisoning” SnO2 for poorly recoverable detection of dichloromethane has been solved in this work. The materials synthesized by Ni or/and Mo doping SnO2 were spread onto the micro-hotplates (<1 mm3) to fabricate the MEMS [...] Read more.
The challenging problem of chlorine “poisoning” SnO2 for poorly recoverable detection of dichloromethane has been solved in this work. The materials synthesized by Ni or/and Mo doping SnO2 were spread onto the micro-hotplates (<1 mm3) to fabricate the MEMS sensors with a low power consumption (<45 mW). The sensor based on Mo·Ni co-doped SnO2 is evidenced to have the best sensing performance of significant response and recoverability to dichloromethane between 0.07 and 100 ppm at the optimized temperature of 310 °C, in comparison with other sensors in this work and the literature. It can be attributed to a synergetic effect of Mo·Ni co-doping into SnO2 as being supported by characterization of geometrical and electronic structures. The sensing mechanism of dichloromethane on the material is investigated. In situ infrared spectroscopy (IR) peaks identify that the corresponding adsorbed species are too strong to desorb, although it has demonstrated a good recoverability of the material. A probable reason is the formation rates of the strongly adsorbed species are much slower than those of the weakly adsorbed species, which are difficult to form significant IR peaks but easy to desorb, thus enabling the material to recover. Theoretical analysis suggests that the response process is kinetically determined by molecular transport onto the surface due to the free convection from the concentration gradient during the redox reaction, and the output steady voltage thermodynamically follows the equation only formally identical to the Langmuir–Freundlich equation for physisorption but is newly derived from statistical mechanics. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

19 pages, 4227 KB  
Article
Mechanical and Electrical Properties of Cementitious Composites Reinforced with Multi-Scale Carbon Fibers
by Nueraili Maimaitituersun, Jing Wang, Danna Wang and Zuojun Ning
Materials 2025, 18(8), 1830; https://doi.org/10.3390/ma18081830 - 16 Apr 2025
Cited by 2 | Viewed by 456
Abstract
Carbon fibers, with high modulus of elasticity, tensile strength, and electrical conductivity, can modify the mechanical and electrical properties of cementitious composites, facilitating their practical application in smart infrastructure. This study investigates the effects of carbon nanofibers (including carbon nanotubes, a special type [...] Read more.
Carbon fibers, with high modulus of elasticity, tensile strength, and electrical conductivity, can modify the mechanical and electrical properties of cementitious composites, facilitating their practical application in smart infrastructure. This study investigates the effects of carbon nanofibers (including carbon nanotubes, a special type of carbon nanofibers) and micron carbon fibers with different aspect ratios and surface treatments on the uniaxial tensile and electrical properties of cementitious composites. The results demonstrate that appropriate carbon fiber doping markedly improves the uniaxial tensile strength of cementitious composites, with enhancement effects following a gradient trend based on a geometric scale: carbon nanotubes (CNTs) < carbon nanofibers (CNFs) < short-cut carbon fibers (CFs). Hydroxyl-functionalized multi-walled carbon nanotubes (MWCNTs) form continuous conductive networks due to surface active groups (-OH content: 5.58 wt.%), increasing the composite’s electrical conductivity by two orders of magnitude (from 3.56 × 108 to 2.74 × 106 Ω·cm), with conductivity enhancement becoming more pronounced at higher doping levels. Short-cut CFs also improve conductivity, with longer fibers (6 mm) exhibiting a 12.4% greater reduction in resistivity. However, exceeding the percolation threshold (0.5–1.0 vol.%) leads to limited conductivity improvement (<5%) and mechanical degradation (8.7% tensile strength reduction) due to fiber agglomeration-induced interfacial defects. This study is a vital reference for material design and lays the groundwork for self-sensing cementitious composites. Full article
Show Figures

Figure 1

15 pages, 5787 KB  
Communication
Theoretical Analysis and Characteristic Study of Li-Doped P-Type ZnO Ultra-Thin Cantilever Beam Accelerometer
by Yingqi Shang, Jiayu Bi, Weiwei Liu, Chunpeng Ai and Hongquan Zhang
Materials 2025, 18(8), 1766; https://doi.org/10.3390/ma18081766 - 11 Apr 2025
Viewed by 360
Abstract
Nonlinear correction was performed on the mechanical motion of ultra-thin cantilever beams, and strain effects were calculated on ultra-thin multi-layer heterogeneous material stacked cantilever beams. The atomic structure and piezoelectric properties of ZnO were studied using first-principles calculations. In this study, generalized gradient [...] Read more.
Nonlinear correction was performed on the mechanical motion of ultra-thin cantilever beams, and strain effects were calculated on ultra-thin multi-layer heterogeneous material stacked cantilever beams. The atomic structure and piezoelectric properties of ZnO were studied using first-principles calculations. In this study, generalized gradient approximations of Perdew–Burke–Erzerhof (GGA-PBE) functionals and Plain Wave Basis Sets were used to calculate the electronic structure, density of states, energy bands, charge density, and piezoelectric coefficient of intrinsic ZnO. Research and calculations were conducted on Li-doped ZnO with different ratios. According to our calculations, as the Li doping ratio increases from 0 to 10%, the bandgap width of ZnO material increases from 0.74 to 1.21 eV. The results for the density of states and partial density of states indicate that the increase in band gap is due to the movement of Zn-3d states towards the high-energy end, and the piezoelectric coefficient of the material increases from 2.07 to 3.3 C/m2. Meanwhile, based on the optimized Li-doped ZnO cantilever beam accelerometer, an ultra-thin cantilever beam accelerometer with a sensitivity of 7.04 mV/g was fabricated. Full article
Show Figures

Figure 1

9 pages, 1934 KB  
Communication
Four-Channel Nanosecond Pulse Combination in the Non-Polarization-Maintaining Fiber System
by Xinyu Wang, Qiang Shu, Qiuhui Chu, Chenxu Liu, Yuefang Yan, Jing Wen, Kegong Dong, Rumao Tao, Haoyu Zhang, Honghuan Lin and Jianjun Wang
Photonics 2025, 12(4), 363; https://doi.org/10.3390/photonics12040363 - 10 Apr 2025
Viewed by 369
Abstract
We report a novel coherent nanosecond pulse combination approach using four-channel non-polarization-maintaining large-mode-area (LMA) Ytterbium-doped (Yb-doped) fiber amplifiers. The stochastic parallel gradient descent (SPGD) and frequency dithering algorithm are introduced to stabilize the synchronization in polarizations and phases among all the channels. The [...] Read more.
We report a novel coherent nanosecond pulse combination approach using four-channel non-polarization-maintaining large-mode-area (LMA) Ytterbium-doped (Yb-doped) fiber amplifiers. The stochastic parallel gradient descent (SPGD) and frequency dithering algorithm are introduced to stabilize the synchronization in polarizations and phases among all the channels. The system delivers an average power of ~250 W and a pulse duration of 4 ns with a combination efficiency of around 87% when the repetition rate of a single pulse is limited to 1 MHz, the polarization extinction ratio (PER) at 30 μm core diameter and 250 μm cladding diameter remains around 96%. Full article
(This article belongs to the Special Issue Advances in Ultrafast Science and Applications)
Show Figures

Figure 1

28 pages, 17558 KB  
Article
Machine-Learning-Assisted Multi-Element Optimization of Mechanical Properties in Spinel Refractory Materials
by Zhiyuan Chen, Daoyuan Yang, Xianghui Li, Jinfeng Li, Huiyu Yuan and Junyan Cui
Materials 2025, 18(8), 1719; https://doi.org/10.3390/ma18081719 - 9 Apr 2025
Viewed by 646
Abstract
Using machine learning models, this study innovatively introduces multi-element compositions to optimize the performance of spinel refractories. A total of 1120 spinel samples were fabricated at 1600 °C for 2 h, and an experimental database containing 112 data points was constructed. High-throughput performance [...] Read more.
Using machine learning models, this study innovatively introduces multi-element compositions to optimize the performance of spinel refractories. A total of 1120 spinel samples were fabricated at 1600 °C for 2 h, and an experimental database containing 112 data points was constructed. High-throughput performance predictions and experimental verifications were conducted, identifying the sample with the highest hardness, (Al2Fe0.25Zn0.25Mg0.25Mn0.25)O4 (1770.6 ± 79.1 HV1, 3.35 times that of MgAl2O4), and the highest flexural strength, (Al2Cr0.5Zn0.1Mg0.2Mn0.2)O4 (161.2 ± 9.7 MPa, 1.4 times that of MgAl2O4). Further analysis of phase composition and microstructure shows that the mechanism of hardness enhancement is mainly the solid solution strengthening of multi-element doping, the energy dissipation of the large-grain layered structure, and the reinforcement of the zigzag grain boundary. In addition to solid solution strengthening and a compact low-pore structure, the mechanism of improving bending strength also includes second-phase strengthening and phase concentration gradient distribution. This method provides a promising way to optimize the performance of refractory materials. Full article
Show Figures

Figure 1

24 pages, 5885 KB  
Article
Trace Zr Addition Enhances Strength and Plasticity in Cu-Zr/Al2Cu/Al Alloys via Local FCC-to-BCC Transition: Molecular Dynamics Insights on Interface-Specific Deformation and Strain Rate Effects
by Shuang Li, Wenyan Wang, Yunfeng Cui, Jingpei Xie, Aiqin Wang, Zhiping Mao and Feiyang Zhang
Materials 2025, 18(7), 1480; https://doi.org/10.3390/ma18071480 - 26 Mar 2025
Viewed by 394
Abstract
This study investigates how Zr doping influences the deformation behavior of Cu-Zr/Al2Cu/Al composites through molecular dynamics simulations. The impact of Zr content (ranging from 0 to 0.8 wt%) and strain rate on phase evolution, dislocation dynamics, and fracture mechanisms under vertical [...] Read more.
This study investigates how Zr doping influences the deformation behavior of Cu-Zr/Al2Cu/Al composites through molecular dynamics simulations. The impact of Zr content (ranging from 0 to 0.8 wt%) and strain rate on phase evolution, dislocation dynamics, and fracture mechanisms under vertical and horizontal tensile loading was examined. The results indicate that Zr doping achieves a balance between strength and plasticity by means of solute drag, amorphization, and phase competition. At a Zr concentration of 0.2 wt%, the formation of the body-centered cubic (BCC) phase reached a peak (22.04% at ε = 0.11), resulting in a maximum tensile strength of 9.369 GPa while maintaining plasticity due to limited face-centered cubic (FCC) decomposition. A moderate Zr content of 0.6 wt% maximizes strength through amorphization but significantly diminishes plasticity due to excessive FCC-to-BCC transitions. Higher Zr concentrations (0.8 wt%) lead to solute supersaturation, which suppresses phase transitions and slightly reduces toughness by causing hexagonal close-packed (HCP) phase accumulation. The strain rate markedly enhances both strength and plasticity in vertical loading by accelerating dislocation interactions. Vertical tensile deformation initiates brittle fracture, whereas horizontal loading results in ductile failure through sequential load transfer from Al2Cu layers to Al/Cu interfaces, ultimately causing interfacial decohesion. These findings underscore the essential roles of Zr content and strain rate in modulating phase transformations and interface responses. The research offers a framework for creating gradient Zr-doped or multi-scale composites with optimized strength, plasticity, and damage tolerance suitable for aerospace and electronics applications, where trace Zr additions can reinforce Cu matrices. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Laminated Materials)
Show Figures

Figure 1

13 pages, 7667 KB  
Article
The Effect of B2O3 Doping on the Properties of Electrical and Thermal Conductivity for SnO2 Varistors
by Siqiao Gong and Hongfeng Zhao
Materials 2025, 18(7), 1399; https://doi.org/10.3390/ma18071399 - 21 Mar 2025
Viewed by 381
Abstract
This study investigates SnO2-based varistors in the SnO2-Co3O4-Cr2O3-Nb2O5 system with varying B2O3 doping concentrations to optimize both electrical properties and thermal conductivity. The experimental formulation [...] Read more.
This study investigates SnO2-based varistors in the SnO2-Co3O4-Cr2O3-Nb2O5 system with varying B2O3 doping concentrations to optimize both electrical properties and thermal conductivity. The experimental formulation involved doping B2O3 with fixed concentration ratios of Co3O4, Cr2O3, and Nb2O5 (ranging from 0 mol% to 0.35 mol%), and the microstructure, electrical properties, and thermoelectric coefficient of the samples were measured in order to identify the optimal doping proportion. The varistor doped with 0.25 mol% B2O3 exhibited optimal performance, demonstrating a maximum voltage gradient of 525 V/mm, a minimum leakage current density of 11.2 μA/cm2, and a peak nonlinear coefficient of 36. Furthermore, the optimized formulation achieved enhanced thermal performance with a maximum thermal conductivity of 6.13 W·m−1·K−1. Full article
Show Figures

Figure 1

21 pages, 7139 KB  
Article
Investigation of Short Channel Effects in Al0.30Ga0.60As Channel-Based Junctionless Cylindrical Gate-All-Around FET for Low Power Applications
by Pooja Srivastava, Aditi Upadhyaya, Shekhar Yadav, Chandra Mohan Singh Negi and Arvind Kumar Singh
J. Low Power Electron. Appl. 2025, 15(1), 12; https://doi.org/10.3390/jlpea15010012 - 21 Feb 2025
Cited by 1 | Viewed by 813
Abstract
In this work, a cylindrical gate-all-around junctionless field effect transistor (JLFET) was investigated. Junctions and doping concentration gradients are unavailable in JLFET. According to the results, the suggested device has a novel architecture that significantly enhances transistor performance while exhibiting a decreased vulnerability [...] Read more.
In this work, a cylindrical gate-all-around junctionless field effect transistor (JLFET) was investigated. Junctions and doping concentration gradients are unavailable in JLFET. According to the results, the suggested device has a novel architecture that significantly enhances transistor performance while exhibiting a decreased vulnerability to short-channel effects (SCEs). The Atlas 3D device simulator has been used to analyze the proposed JLFET’s performance, especially for low-power applications for different channel lengths ranging from 10 nm to 60 nm with Al0.30Ga0.60As as III-V materials. The comparative simulated study has been based on various performance parameters, including subthreshold slope (SS), drain-induced barrier lowering (DIBL), transconductance, threshold voltage, and ION to IOFF ratio. The results of the simulations demonstrated that the III-V JLFET exhibited a favorable SS and decreased DIBL compared to other circuit topologies. In the suggested study, gallium arsenide (GaAs) and its compound materials have demonstrated a strong correlation between the SS and DIBL values. The SS is approximately 63 mV/dec, extremely near the ideal 60 mV/dec value. Gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) exhibit DIBL of approximately 30 mV/V and an SS value of around 64 mV/dec. Full article
Show Figures

Figure 1

Back to TopTop