Processing math: 5%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (592)

Search Parameters:
Keywords = gravitional waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1400 KiB  
Article
Propagation of Tensor Perturbation in Horndeski-like Gravity
by Fabiano F. Santos and Jackson Levi Said
Symmetry 2025, 17(5), 675; https://doi.org/10.3390/sym17050675 - 28 Apr 2025
Viewed by 143
Abstract
Scalar–tensor theories have shown promise in many sectors of cosmology. However, recent constraints from the speed of gravitational waves have put severe limits on the breadth of models such classes of theories can realize. In this work, we explore the possibility of a [...] Read more.
Scalar–tensor theories have shown promise in many sectors of cosmology. However, recent constraints from the speed of gravitational waves have put severe limits on the breadth of models such classes of theories can realize. In this work, we explore the possibility of a Horndeski Lagrangian that is equipped with two dilaton fields. The evolution of a two-dilaton coupled cosmology is not well known in the literature. We explore the tensor perturbations in order to assess the behavior of the model against the speed of the gravitational wave constraint. Our main result is that this model exhibits a class of cosmological theories that is consistent with this observational constraint. Full article
(This article belongs to the Special Issue Gravitational Physics and Symmetry)
Show Figures

Figure 1

16 pages, 5032 KiB  
Article
A Low-Noise High-Resolution Temperature Measurement Technique Based on Inductive Voltage Divider and Alternating-Current Bridge
by Shanghua Gao, Xiaoyi Zhu, Xiaofeng Zhang, Bing Xue, Jilou Xi, Jiang Li, Bing Zhang, Xiaolei Wang, Yuru Wang, Haoyue Zhang and Xu Wu
Sensors 2025, 25(9), 2777; https://doi.org/10.3390/s25092777 - 28 Apr 2025
Viewed by 158
Abstract
In the field of space gravitational wave detection, high-precision temperature measurement with a resolution at the micro-Kelvin level in the milli-Hertz frequency range is required to mitigate the interference caused by temperature fluctuations around the core components. This is a very challenging task [...] Read more.
In the field of space gravitational wave detection, high-precision temperature measurement with a resolution at the micro-Kelvin level in the milli-Hertz frequency range is required to mitigate the interference caused by temperature fluctuations around the core components. This is a very challenging task due to resistance thermal noise and the inherent 1/f noise of electronic components. To overcome this problem, this paper proposes a low-noise, high-resolution temperature measurement method based on an inductive voltage divider and an alternating-current (AC) bridge. The proposed method has the following three characteristics: (1) it employs an AC excitation signal to drive the temperature measuring bridge to overcome the influence of 1/f noise in electronic components; (2) it uses as few resistance components as possible in the AC bridge and signal detection circuit to reduce the impact of resistance thermal noise on the measurement results; (3) it adopts a frequency-domain data processing algorithm based on discrete Fourier transform to improve the accuracy of the temperature measuring result. Using this method, a circuit board is designed and tested. The results show that the noise floor level of the designed temperature measurement circuit is below 7×106 K/Hz in a frequency range of 0.005~1 Hz. This demonstrates that our proposed method is able to detect extremely weak temperature change signals and meets the temperature measurement requirements of space gravitational wave detection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

11 pages, 2150 KiB  
Article
Physical and Logical Synchronization of Clocks: The Ramsey Approach
by Edward Bormashenko
Foundations 2025, 5(2), 15; https://doi.org/10.3390/foundations5020015 - 28 Apr 2025
Viewed by 212
Abstract
Ramsey analysis is applied to the problem of the relativistic and quantum synchronization of clocks. Various protocols of synchronization are addressed. Einstein and Eddington special relativity synchronization procedures are considered, and quantum synchronization is discussed. Clocks are seen as the vertices of the [...] Read more.
Ramsey analysis is applied to the problem of the relativistic and quantum synchronization of clocks. Various protocols of synchronization are addressed. Einstein and Eddington special relativity synchronization procedures are considered, and quantum synchronization is discussed. Clocks are seen as the vertices of the graph. Clocks may be synchronized or unsynchronized. Thus, introducing complete, bi-colored, Ramsey graphs emerging from the lattices of clocks becomes possible. The transitivity of synchronization plays a key role in the coloring of the Ramsey graph. Einstein synchronization is transitive, while general relativity and quantum synchronization procedures are not. This fact influences the value of the Ramsey number established for the synchronization graph arising from the lattice of clocks. Any lattice built of six clocks, synchronized with quantum entanglement, will inevitably contain the mono-chromatic triangle. The transitive synchronization of logical clocks is discussed. Interrelation between the symmetry of the clock lattice and the structure of the synchronization graph is addressed. Ramsey analysis of synchronization is important for the synchronization of computers in networks, LIGO, and Virgo instruments intended for the registration of gravitational waves and GPS tame-based synchronization. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

15 pages, 5039 KiB  
Article
Measurement of Optical Path Difference of Point-Ahead Angle Mechanism with a Multi-Layer Thermal Insulated Equal-Arm Heterodyne Interferometer
by Yue Guo, Jinke Yang, Hongxing Qi, Lingqiang Meng and Jianjun Jia
Appl. Sci. 2025, 15(9), 4863; https://doi.org/10.3390/app15094863 - 27 Apr 2025
Viewed by 101
Abstract
In the detection of gravitational waves in space, during the science phase of the mission, the point-ahead angle mechanism (PAAM) serves to steer a laser beam to compensate for the angle generated by the relative motion of the two spacecrafts (SCs) during the [...] Read more.
In the detection of gravitational waves in space, during the science phase of the mission, the point-ahead angle mechanism (PAAM) serves to steer a laser beam to compensate for the angle generated by the relative motion of the two spacecrafts (SCs) during the approximately 10 s of flight time a laser beam will take from one SC to reach a distant SC of three million kilometers away. The Tilt-to-length (TTL) noise budget for the PAAM is constrained to less than 8  within the frequency range of 1 mHz to 1 Hz. This constraint requires that the measurement noise of the interferometer remains below this threshold to guarantee the precision needed for gravitational wave detection in space. In the present work, an equal-arm heterodyne interferometer, which is fixed in a vacuum system with multilayer thermal shields, is proposed for the OPD (Optical Path Difference) measurement. The background measurement noise of the system is smaller than 60 pm/Hz within the frequency range of 1 mHz to 1 Hz. This corresponds to an 84.6% noise reduction at 1 mHz compared to similar unshielded interferometers utilizing conventional bonding methods, demonstrating that the proposed system effectively suppresses measurement noises, particularly thermal noise, in the low-frequency range. Full article
Show Figures

Figure 1

14 pages, 1094 KiB  
Article
Similarity Solutions of Spherical Strong Shock in an Inhomogeneous Self-Gravitating Medium Using Lie Group Approach
by Antim Chauhan, Amit Tomar, Musrrat Ali and S. Suresh Kumar Raju
Symmetry 2025, 17(5), 662; https://doi.org/10.3390/sym17050662 - 27 Apr 2025
Viewed by 116
Abstract
This paper employs the similarity method to derive self-similar solutions for a model of a spherical shock wave. The discussion involves the propagation of a spherical shock wave within an ideal gas experiencing self-gravitating effects, utilizing the equation of motion and shock conditions. [...] Read more.
This paper employs the similarity method to derive self-similar solutions for a model of a spherical shock wave. The discussion involves the propagation of a spherical shock wave within an ideal gas experiencing self-gravitating effects, utilizing the equation of motion and shock conditions. The expressions of infinitesimal generators within the Lie group of transformations contain arbitrary constants, leading to the identification of four potential solution cases. Among these, we focus on two cases, one following a power-law and the other an exponential law. The outcomes discussed are contingent on the variation of flow variables behind the shock, visually represented through graphical illustrations. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

10 pages, 5511 KiB  
Review
Multimessenger Studies with the Pierre Auger Observatory
by Jon Paul Lundquist and the Pierre Auger Collaboration
Particles 2025, 8(2), 45; https://doi.org/10.3390/particles8020045 - 22 Apr 2025
Viewed by 129
Abstract
The Pierre Auger Observatory, the world’s largest ultra-high-energy (UHE) cosmic ray (CR) detector, plays a crucial role in multi-messenger astroparticle physics with its high sensitivity to UHE photons and neutrinos. Recent Auger Observatory studies have set stringent limits on the diffuse and point-like [...] Read more.
The Pierre Auger Observatory, the world’s largest ultra-high-energy (UHE) cosmic ray (CR) detector, plays a crucial role in multi-messenger astroparticle physics with its high sensitivity to UHE photons and neutrinos. Recent Auger Observatory studies have set stringent limits on the diffuse and point-like fluxes of these particles, enhancing constraints on dark-matter models and UHECR sources. Although no temporal coincidences of neutrinos or photons with LIGO/Virgo gravitational wave events have been observed, competitive limits on the energy radiated in these particles have been established, particularly from the GW170817 binary neutron star merger. Additionally, correlations between the arrival directions of UHECRs and high-energy neutrinos have been explored using data from the IceCube Neutrino Observatory, ANTARES, and the Auger Observatory, providing additional neutrino flux constraints. Efforts to correlate UHE neutron fluxes with gamma-ray sources within our galaxy continue, although no significant excesses have been found. These collaborative and multi-faceted efforts underscore the pivotal role of the Auger Observatory in advancing multi-messenger astrophysics and probing the most extreme environments of the Universe. Full article
Show Figures

Figure 1

17 pages, 540 KiB  
Article
Linear Stability of a Viscoelastic Liquid Film on an Oscillating Plane
by Jing Zhang, Quansheng Liu, Ruigang Zhang and Zhaodong Ding
Nanomaterials 2025, 15(8), 610; https://doi.org/10.3390/nano15080610 - 16 Apr 2025
Viewed by 210
Abstract
This paper investigates the linear stability of the liquid film of Oldroyd-B fluid on an oscillating plate. The time-dependent Orr–Sommerfeld boundary-value problem is formulated through the assumption of a normal modal solution and the introduction of the stream function, which is further transformed [...] Read more.
This paper investigates the linear stability of the liquid film of Oldroyd-B fluid on an oscillating plate. The time-dependent Orr–Sommerfeld boundary-value problem is formulated through the assumption of a normal modal solution and the introduction of the stream function, which is further transformed into the Floquet system. A long-wavelength expansion analysis is performed to derive the analytical solution of the Orr–Sommerfeld equation. The results indicate that long-wave instability occurs only within specific bandwidths related to the Ohnesorge number (Oh). Fixing the elasticity parameter (El) and increasing the relaxation-to-delay time ratio (λ˜) from 2 to 4 or fixing (λ˜) and increasing (El) from 0.001 to 0.01 decreases the number of unstable bandwidths while enhancing the intensity of unstable modes. Increasing the surface-tension-related parameter (ζ) from 0 to 100 suppresses the wave growth rate, stabilizing the system. Additionally, increasing (λ˜) from 2 to 4 reduces the maximum values of the coupling of viscoelastic, gravitational, and surface-tension forces, as well as the maximum value of the Floquet exponent, further stabilizing the system. These findings provide supplements to the theoretical research on the stability of viscoelastic fluids and also offer a scientific basis for engineering applications in multiple fields. Full article
(This article belongs to the Special Issue Trends and Prospects in Nanoscale Thin Films and Coatings)
Show Figures

Graphical abstract

32 pages, 3983 KiB  
Article
Parameter Estimation Precision with Geocentric Gravitational Wave Interferometers: Monochromatic Signals
by Manoel Felipe Sousa, Tabata Aira Ferreira and Massimo Tinto
Universe 2025, 11(4), 122; https://doi.org/10.3390/universe11040122 - 7 Apr 2025
Viewed by 244
Abstract
We present a Fisher information matrix study of the parameter estimation precision achievable by a class of future space-based, “mid-band”, gravitational wave interferometers observing monochromatic signals. The mid-band is the frequency region between that accessible by the Laser Interferometer Space Antenna (LISA) and [...] Read more.
We present a Fisher information matrix study of the parameter estimation precision achievable by a class of future space-based, “mid-band”, gravitational wave interferometers observing monochromatic signals. The mid-band is the frequency region between that accessible by the Laser Interferometer Space Antenna (LISA) and ground-based interferometers. We analyze monochromatic signals observed by the TianQin mission, gLISA (a LISA-like interferometer in a geosynchronous orbit) and a descoped gLISA mission, gLISAd, characterized by an acceleration noise level that is three orders of magnitude worse than that of gLISA. We find that all three missions achieve their best angular source reconstruction precision in the higher part of their accessible frequency band, with an error box better than 1010 sr in the frequency band [101,10] Hz when observing a monochromatic gravitational wave signal of amplitude h0=1021 that is incoming from a given direction. In terms of their reconstructed frequencies and amplitudes, TianQin achieves its best precision values in both quantities in the frequency band [102,4×101] Hz, with a frequency precision σfgw=2×1011 Hz and an amplitude precision σh0=2×1024. gLISA matches these precisions in a frequency band slightly higher than that of TianQin, [3×102,1] Hz, as a consequence of its smaller arm length. gLISAd, on the other hand, matches the performance of gLISA only over the narrower frequency region, [7×101,1] Hz, as a consequence of its higher acceleration noise at lower frequencies. The angular, frequency, and amplitude precisions as functions of the source sky location are then derived by assuming an average signal-to-noise ratio of 10 at a selected number of gravitational wave frequencies covering the operational bandwidth of TianQin and gLISA. Similar precision functions are then derived for gLISAd by using the amplitudes resulting in the gLISA average SNR being equal to 10 at the selected frequencies. We find that, for any given source location, all three missions display a marked precision improvement in the three reconstructed parameters at higher gravitational wave frequencies. Full article
Show Figures

Figure 1

17 pages, 17326 KiB  
Article
Enhanced Adaptive Sine Multi-Taper Power Spectral Density Estimation for System Performance Evaluation in Low-Frequency Gravitational Wave Detection
by Caiyun Liu, Yang Li, Changkang Fu, Hongming Zhang, Qiang Wang, Dong He and Yongmei Huang
Appl. Sci. 2025, 15(7), 3919; https://doi.org/10.3390/app15073919 - 3 Apr 2025
Viewed by 214
Abstract
The power spectral density estimation algorithms, logarithmic frequency axis for power spectral density (LPSD), and the LISA-LPSD algorithm are widely utilized in the implementation of system evaluations for space-based gravitational-wave-detection projects, particularly in the low-frequency band ranging from 0.1 mHz to 1 Hz. [...] Read more.
The power spectral density estimation algorithms, logarithmic frequency axis for power spectral density (LPSD), and the LISA-LPSD algorithm are widely utilized in the implementation of system evaluations for space-based gravitational-wave-detection projects, particularly in the low-frequency band ranging from 0.1 mHz to 1 Hz. However, existing adaptive sine multi-taper algorithms suffer from low resolution and high computational complexity in obtaining the optimal cone number across the entire frequency domain, which has hindered its application in this field. These algorithms often face challenges related to inadequate resolution when dealing with low-frequency signals, as well as the issue of high computational demands. In response to these challenges, this paper introduces an advanced adaptive sine multi-taper algorithm designed to optimize the determination of the cone number. By balancing the relationship between bias and variance, this approach facilitates gradient processing of the cone number specifically tailored for low-frequency signals. Comparative evaluations against the LPSD algorithm, the original adaptive sine multi-taper algorithm, and the LISA-LPSD algorithm reveal that the proposed method demonstrates superior spectral resolution and reduced algorithmic complexity. This improvement offers a more effective solution for the system evaluation of low-frequency gravitational-wave-detection projects. Full article
Show Figures

Figure 1

16 pages, 4512 KiB  
Article
Experimental Study on Blocky Cuttings Transport in Shale Gas Horizontal Wells
by Di Yao, Xiaofeng Sun, Huixian Zhang and Jingyu Qu
Water 2025, 17(7), 1016; https://doi.org/10.3390/w17071016 - 30 Mar 2025
Viewed by 264
Abstract
The widespread application of horizontal drilling technology has significantly enhanced the development efficiency of unconventional resources, particularly shale gas, by overcoming key technical challenges in reservoir exploitation. However, wellbore instability remains a critical challenge during shale gas horizontal drilling, as borehole wall collapse [...] Read more.
The widespread application of horizontal drilling technology has significantly enhanced the development efficiency of unconventional resources, particularly shale gas, by overcoming key technical challenges in reservoir exploitation. However, wellbore instability remains a critical challenge during shale gas horizontal drilling, as borehole wall collapse often results in the accumulation of large-sized cuttings (or blocky cuttings), increasing the risk of stuck pipe incidents. In this study, a large-scale circulating loop experimental system was developed to investigate the hydrodynamic behavior of blocky cuttings transport under the influence of multiple factors, including rate of penetration (ROP), well inclination, flow rate, drilling fluid rheology, and block size. The experimental results reveal that when ROP exceeds 15 m/h, the annular solid-phase concentration increases non-linearly. At a well inclination of 60°, the axial and radial components of gravitational force reach a dynamic equilibrium, resulting in the maximum cuttings bed height. To enhance cuttings transport efficiency and mitigate deposition, a minimum flow rate of 35 L/s and a drill pipe rotation speed of 90 rpm are required to maintain sufficient turbulence in the annulus. Drilling fluid plastic viscosity (PV) in the range of 65–75 mPa·s optimizes suspension efficiency while minimizing circulating pressure loss. Additionally, increasing fluid density enhances the transport efficiency of large blocky cuttings. A drill pipe rotation speed of 80 rpm is recommended to prevent the formation of sand-wave-like cuttings beds. These findings provide valuable hydrodynamic insights and practical guidelines for optimizing hole-cleaning strategies, ensuring safer and more efficient drilling operations in shale gas horizontal wells. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

12 pages, 6674 KiB  
Article
Development of a Micro-Radian Phasemeter and Verification Based on Single Pilot Tone for Space Gravitational Wave Detection
by Tao Yu, Ke Xue, Hongyu Long, Mingzhong Pan, Zhi Wang and Yunqing Liu
Symmetry 2025, 17(4), 519; https://doi.org/10.3390/sym17040519 - 30 Mar 2025
Viewed by 220
Abstract
Space gravitational wave detection uses a three-satellite formation scheme, with the distance between satellites reaching hundreds of thousands or millions of kilometers. According to the principle of laser heterodyne interferometry, the distance change between the inter-satellite inertial references caused by the gravitational wave [...] Read more.
Space gravitational wave detection uses a three-satellite formation scheme, with the distance between satellites reaching hundreds of thousands or millions of kilometers. According to the principle of laser heterodyne interferometry, the distance change between the inter-satellite inertial references caused by the gravitational wave event is converted into the phase change of the heterodyne interference signal. The payload for measuring the phase change information is the phasemeter. The mission requires that the phasemeter’s ranging accuracy is 1 picometer, and the corresponding phase measurement accuracy is required to reach 2π μrad/Hz1/2 @(0.1 mHz–1 Hz). Due to the inter-satellite Doppler effect, the dynamic range of the interference signal frequency reaches 5 MHz to 25 MHz. Due to the sampling jitter noise of the interference signal, it is necessary to suppress the noise through a single pilot tone. This paper introduces the development of the phasemeter, which uses a single pilot tone to suppress sampling jitter noise. The test results show that when the dynamic range of the interference signal frequency is 5 MHz to 25 MHz, the phasemeter meets the mission indicator requirement of 2π μrad/Hz1/2 @(0.1 mHz–1 Hz). Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

36 pages, 538 KiB  
Review
Advanced Suspension Techniques in Interferometric Gravitational Wave Detectors: An Overview
by Vishnu G. Nair
Galaxies 2025, 13(2), 28; https://doi.org/10.3390/galaxies13020028 - 26 Mar 2025
Viewed by 1592
Abstract
Interferometric gravitational wave (GW) detectors are sophisticated instruments that require suspended mirrors to be effectively isolated from all forms of vibrations and noise. This isolation is crucial for enabling the detectors to function efficiently at low frequencies, which directly impacts their capacity to [...] Read more.
Interferometric gravitational wave (GW) detectors are sophisticated instruments that require suspended mirrors to be effectively isolated from all forms of vibrations and noise. This isolation is crucial for enabling the detectors to function efficiently at low frequencies, which directly impacts their capacity to detect distant events from the universe’s past. To address this challenge, various suspension systems have been developed, utilizing passive, active, or hybrid control mechanisms. The effectiveness of these systems in suppressing noise determines the lowest detectable frequencies. Designing and managing mirror suspensions present significant challenges across all interferometric GW detectors. Detectors such as LIGO, VIRGO, TAMA300, KAGRA, and GEO600 implement unique suspension designs and techniques to enhance their performance. A comprehensive comparison of these systems would offer valuable insights. This paper provides an overview of the different suspension systems employed in major global interferometric GW detectors, alongside a brief examination of proposed future detectors. It discusses the rationale behind each design, the materials utilized, and other relevant details, serving as a useful resource for the gravitational wave detector community. Full article
Show Figures

Figure 1

14 pages, 6833 KiB  
Communication
Research on Interferometric Tilt Sensor for Vibration Isolation Platform
by Weigang Bai, Wenwu Feng, Peigen Wang, Ziliang Zhang and Guoying Zhao
Sensors 2025, 25(6), 1777; https://doi.org/10.3390/s25061777 - 13 Mar 2025
Viewed by 394
Abstract
Low-frequency seismic vibrations extremely limit the performance of ground simulation facilities for space-borne gravitational wave detections, which need to be substantially suppressed. Active vibration systems are thus required. However, the tilt-translation coupling of inertial sensors strongly limits the performance of vibration isolation platforms [...] Read more.
Low-frequency seismic vibrations extremely limit the performance of ground simulation facilities for space-borne gravitational wave detections, which need to be substantially suppressed. Active vibration systems are thus required. However, the tilt-translation coupling of inertial sensors strongly limits the performance of vibration isolation platforms in the low frequency range, which requires a precise measurement of the low-frequency tilt signal. This study compares two methods for the tilt signal measurement: the differential-mode method and the direct method. The differential-mode method estimates tilt signals by analyzing differential motion between two inertial sensors, while the direct method utilizes an interferometric tilt sensor (ITS) which consists of a suspended rotational beam system and an interferometer for the readout. Experimental results show that ITS achieves a lower noise floor. Its noise floor is dominated by the thermal-mechanical noise below 0.25 Hz and the readout noise of the interferometer above 0.25 Hz. The findings highlight the potential of ITS for improving the performance of vibration isolation platforms in the low-frequency range. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

12 pages, 330 KiB  
Article
On the Stability of Non-Singular Solutions in Effective Theory from Kaluza–Klein Unimodular Gravity
by Júlio C. Fabris and Richard Kerner
Symmetry 2025, 17(3), 419; https://doi.org/10.3390/sym17030419 - 11 Mar 2025
Viewed by 349
Abstract
Unimodular theory incorporating the Kaluza–Klein construction in five dimensions leads, after reduction to four dimensions, to a new class of scalar–tensor theory. The vacuum cosmological solutions display a bounce with non-singular behavior the effective lower dimension model: from the four-dimensional point of view, [...] Read more.
Unimodular theory incorporating the Kaluza–Klein construction in five dimensions leads, after reduction to four dimensions, to a new class of scalar–tensor theory. The vacuum cosmological solutions display a bounce with non-singular behavior the effective lower dimension model: from the four-dimensional point of view, the solutions are completely regular. However, the propagation of gravitational waves in this geometry displays the presence of instabilities which reflect singular features of the original five-dimensional structure connected to a degenerate metric at the bounce. A four-dimensional quantum model with cosmological constant, which has a similar background behavior, is discussed and revealed to be stable. Full article
(This article belongs to the Special Issue Symmetry and Cosmology)
Show Figures

Figure 1

14 pages, 1007 KiB  
Article
A Nested Inverted Pendulum as a Possible Pre-Isolator for the ET-LF Seismic Isolation System
by Lucia Trozzo, Alcide Bertocco, Matteo Bruno, Rosario De Rosa, Luciano Di Fiore, Domenico D’Urso, Franco Frasconi, Alberto Gennai, Leonardo Lucchesi, Moreno Nacca, Federico Pilo, Paolo Prosperi, Davide Rozza, Paolo Ruggi, Valeria Sipala and Francesca Spada
Galaxies 2025, 13(2), 21; https://doi.org/10.3390/galaxies13020021 - 7 Mar 2025
Viewed by 499
Abstract
The third-generation instrument era is approaching, and the Einstein Telescope (ET) giant interferometer is becoming a reality, with the potential to be installed at an underground site where seismic noise is about 100 times lower than at the surface. Moreover, new available technologies [...] Read more.
The third-generation instrument era is approaching, and the Einstein Telescope (ET) giant interferometer is becoming a reality, with the potential to be installed at an underground site where seismic noise is about 100 times lower than at the surface. Moreover, new available technologies and the experience acquired from operating advanced detectors are key to further extending the detection bandwidth down to 2–3 Hz, with the possibility of suspending a cryogenic payload. The New Generation of Super-Attenuator (NGSA) is an R&D project aimed at the improvement of vibration isolation performance for thirrd-generation detectors of gravitational waves, assuming that the present mechanical system adopted for the advanced VIRGO interferometer (second generation) is compliant with a third-generation detector. In this paper, we report the preliminary results obtained from a simulation activity devoted to the characterization of a mechanical system based on a multi-stage pendulum and a double-inverted pendulum in a nested configuration (NIP). The final outcomes provide guidelines for the construction of a reduced-scale prototype to be assembled and tested in the “PLANET” laboratory at INFN Naples, where the multi-stage pendulum—equipped with a new magnetic anti-spring (nMAS)—will be hung from the NIP structure. Full article
Show Figures

Figure 1

Back to TopTop