Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = haematopoietic stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2568 KB  
Review
Total Body Irradiation in Haematopoietic Stem Cell Transplantation: A Comprehensive Literature Review and Institutional Experience from the Policlinico of Catania
by Maria Chiara Lo Greco, Roberto Milazzotto, Grazia Acquaviva, Rocco Luca Emanuele Liardo, Giorgia Marano, Madalina La Rocca, Antonio Basile, Pietro Valerio Foti, Stefano Palmucci, Emanuele David, Corrado Iní, Lorenzo Aliotta, Vincenzo Salamone, Viviana Anna La Monaca, Stefano Pergolizzi and Corrado Spatola
Medicina 2025, 61(9), 1503; https://doi.org/10.3390/medicina61091503 - 22 Aug 2025
Viewed by 231
Abstract
Background and Objectives: Total body irradiation (TBI) remains a cornerstone of conditioning for allogeneic haematopoietic stem-cell transplantation (HSCT). Whereas early research debated the need for irradiation, contemporary investigations focus on optimising dose, fractionation and delivery techniques. Material and Methods: We synthesised [...] Read more.
Background and Objectives: Total body irradiation (TBI) remains a cornerstone of conditioning for allogeneic haematopoietic stem-cell transplantation (HSCT). Whereas early research debated the need for irradiation, contemporary investigations focus on optimising dose, fractionation and delivery techniques. Material and Methods: We synthesised six decades of evidence, spanning from single-fraction cobalt treatments to modern helical tomotherapy and intensity-modulated total-marrow/lymphoid irradiation (TMI/TMLI). To complement the literature, we reported our institutional experience on 77 paediatric and adult recipients treated with conventional extended-source-to-skin-distance TBI at the University Hospital Policlinico “G. Rodolico–San Marco” between 2015 and 2025. Results: According to literature data, fractionated myeloablative schedules, typically 12 Gy in 6 fractions, provide superior overall survival and lower rates of severe graft-versus-host disease (GVHD) compared with historical single-dose regimens. Conversely, reduced-intensity protocols of 2–4 Gy broaden HSCT eligibility for older or comorbid patients with acceptable toxicity. Conformal planning reliably decreases mean lung dose without compromising engraftment, and early-phase trials are testing selective escalation to 16–20 Gy or omission of TBI in molecularly favourable cases. With regard to our institutional retrospective series, 92% of patients completed a 12-Gy regimen with only transient grade 1–2 nausea, fatigue or hypotension; all transplanted patients engrafted, and no grade ≥ 3 radiation pneumonitis occurred. Conclusions: Collectively, the published evidence and our experience support TBI as an irreplaceable component of HSCT conditioning and suggest that coupling it with advanced imaging, organ-sparing dosimetry and molecular response monitoring can deliver safer, more personalised therapy in the coming decade. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

25 pages, 2729 KB  
Article
Therapeutic Effects of Neuro-Cells on Amyloid Pathology, BDNF Levels, and Insulin Signalling in APPswe/PSd1E9 Mice
by Johannes P. J. M. de Munter, Andrey Tsoy, Kseniia Sitdikova, Erik Ch. Wolters, Kirill Chaprov, Konstantin B. Yenkoyan, Hamlet Torosyan, Sholpan Askarova, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(16), 1293; https://doi.org/10.3390/cells14161293 - 20 Aug 2025
Viewed by 497
Abstract
Stem cell therapies, including mesenchymal (MSCs) and haematopoietic stem cells (HSCs), have shown promise in neurodegenerative diseases. Here, we investigated the therapeutic effects of a defined combination of unmanipulated MSCs and CD34+ HSCs, termed Neuro-Cells (NC), in a murine model of Alzheimer’s [...] Read more.
Stem cell therapies, including mesenchymal (MSCs) and haematopoietic stem cells (HSCs), have shown promise in neurodegenerative diseases. Here, we investigated the therapeutic effects of a defined combination of unmanipulated MSCs and CD34+ HSCs, termed Neuro-Cells (NC), in a murine model of Alzheimer’s disease (AD), the APPswe/PS1dE9 mouse. At 12 months of age, mice received intracisternal injections of NC (1.39 × 106 MSCs + 5 × 105 HSCs) or vehicle. After 45 days, behavioural testing, immunohistochemical analyses of amyloid plaque density (APD), and cortical gene expression profiling were conducted. NC-treated APP/PS1 mice exhibited preserved object recognition memory and reduced anxiety-like behaviours, contrasting with deficits observed in untreated transgenic controls. Histologically, NC treatment significantly reduced the density of small amyloid plaques (<50 μm2) in the hippocampus and thalamus, and total plaque burden in the thalamus. Gene expression analysis revealed that NC treatment normalised or reversed disease-associated changes in insulin receptor (IR) signalling and neurotrophic pathways. Specifically, NC increased expression of Bdnf, Irs2, and Pgc-1α, while attenuating aberrant upregulation of Insr, Igf1r, and markers of ageing and AD-related pathology (Sirt1, Gdf15, Arc, Egr1, Cldn5). These findings indicate that NC therapy mitigates behavioural and molecular hallmarks of AD, potentially via restoration of BDNF and insulin receptor-mediated signalling. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

20 pages, 1605 KB  
Article
Latent Human Cytomegalovirus Infection Activates the STING Pathway but p-IRF3 Translocation Is Limited
by Wang Ka Lee, Zuodong Ye and Allen Ka Loon Cheung
Viruses 2025, 17(8), 1109; https://doi.org/10.3390/v17081109 - 12 Aug 2025
Viewed by 451
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that establishes lifelong latent infection in CD34+ haematopoietic stem and progenitor cells. A unique subset of viral genes is expressed during latency, which functions to modulate cellular mechanisms without supporting viral replication. One potential function [...] Read more.
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that establishes lifelong latent infection in CD34+ haematopoietic stem and progenitor cells. A unique subset of viral genes is expressed during latency, which functions to modulate cellular mechanisms without supporting viral replication. One potential function of these genes is to regulate the differentiation state of latently infected CD34+ cells, thereby preventing their progression into antigen-presenting cells, e.g., dendritic cells. In this study, we first compared CD34+ cells that supported productive and latent infections using the RV-TB40-BACKL7-SE-EGFP virus. Over a seven-day time course, the proportion of latently infected CD34+ cell subsets within the myeloid progenitor population remained similar to that in the mock-infected control. However, starting from day 3 post-infection, there was an increase in the proportion of the early progenitor subsets, including haematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). In contrast, productively infected cells, which constituted less than 1% of the population, only accounted for a small portion of the myeloid progenitors. Importantly, our data revealed that the innate immune STING/p-TBK1/p-IRF3 pathway was activated in latently infected CD34+ cells, yet type I interferon (IFN) expression was decreased. This decrease was attributed to impaired p-IRF3 nuclear translocation, limiting the induction of an autocrine type I IFN response. However, treatment with IFN-β could induce myelopoiesis in latently infected cells. In summary, HCMV modulates a key component of the STING pathway to inhibit antiviral immune responses by decreasing the type I IFN-mediated cell differentiation of CD34+ progenitor cells. This study uncovered a new mechanism of latent HCMV-mediated regulation of the host cell differentiation response. Full article
(This article belongs to the Special Issue Viral Infections and Immune Dysregulation 2024–2025)
Show Figures

Graphical abstract

7 pages, 669 KB  
Case Report
Pathologically Confirmed Dual Coronavirus Disease 2019-Associated Tracheobronchial Aspergillosis and Pulmonary Mucormycosis in a Non-Endemic Region: A Case Report
by Keon Oh, Sung-Yeon Cho, Dong-Gun Lee, Dukhee Nho, Dong Young Kim, Hye Min Kweon, Minseung Song and Raeseok Lee
J. Clin. Med. 2025, 14(15), 5526; https://doi.org/10.3390/jcm14155526 - 5 Aug 2025
Viewed by 401
Abstract
Background: Coronavirus disease 2019 (COVID-19) has led to the expansion of the spectrum of invasive fungal infections beyond traditional immunocompromised populations. Although COVID-19-associated pulmonary aspergillosis is increasingly being recognised, COVID-19-associated mucormycosis remains rare, particularly in non-endemic regions. Concurrent COVID-19-associated invasive tracheobronchial aspergillosis and [...] Read more.
Background: Coronavirus disease 2019 (COVID-19) has led to the expansion of the spectrum of invasive fungal infections beyond traditional immunocompromised populations. Although COVID-19-associated pulmonary aspergillosis is increasingly being recognised, COVID-19-associated mucormycosis remains rare, particularly in non-endemic regions. Concurrent COVID-19-associated invasive tracheobronchial aspergillosis and pulmonary mucormycosis with histopathological confirmation is exceedingly uncommon and poses significant diagnostic and therapeutic challenges. Case presentation: We report the case of a 57-year-old female with myelodysplastic syndrome who underwent haploidentical allogeneic haematopoietic stem cell transplantation. During post-transplant recovery, she developed COVID-19 pneumonia, complicated by respiratory deterioration and radiological findings, including a reverse halo sign. Bronchoscopy revealed multiple whitish plaques in the right main bronchus. Despite negative serum and bronchoalveolar lavage fluid galactomannan assay results, cytopathological examination revealed septate hyphae and Aspergillus fumigatus was subsequently identified. Given the patient’s risk factors and clinical features, liposomal amphotericin B therapy was initiated. Subsequent surgical resection and histopathological analysis confirmed the presence of Rhizopus microsporus. Following antifungal therapy and surgical intervention, the patient recovered and was discharged in stable condition. Conclusions: This case highlights the critical need for heightened clinical suspicion of combined invasive fungal infections in severely immunocompromised patients with COVID-19, even in non-endemic regions for mucormycosis. Early tissue-based diagnostic interventions and prompt initiation of optimal antifungal therapy are essential for obtaining ideal outcomes when co-infection is suspected. Full article
Show Figures

Figure 1

12 pages, 1111 KB  
Article
Pilot Study Comparing the In Vitro Response of Circulating Monocytes to Aspergillus fumigatus Swollen Conidia in Patients with Chronic Graft-Versus-Host Disease and Healthy Volunteers
by Claire Kenny, Charles Oliver Morton, Eibhlin Conneally, Ann Atzberger, Anthony Davies, Hermann Einsele, Juergen Loeffler and Thomas R. Rogers
J. Fungi 2025, 11(6), 444; https://doi.org/10.3390/jof11060444 - 11 Jun 2025
Viewed by 895
Abstract
Invasive fungal disease (IFD) is a recognised and potentially life-threatening complication of chronic graft-versus-host disease (cGVHD) and its treatment. Invasive aspergillosis (IA), most often due to the species Aspergillus fumigatus, is the leading IFD in this setting. IA can occur during the [...] Read more.
Invasive fungal disease (IFD) is a recognised and potentially life-threatening complication of chronic graft-versus-host disease (cGVHD) and its treatment. Invasive aspergillosis (IA), most often due to the species Aspergillus fumigatus, is the leading IFD in this setting. IA can occur during the early weeks following allogeneic haematopoietic stem cell transplantation (HSCT) coinciding with profound neutropenia, but increasingly, cases of IA occur after engraftment, coinciding with the occurrence of cGVHD. Immunomodulatory treatments of cGVHD can impair innate immune responses to inhaled Aspergillus conidia, increasing the risk of developing IA. Here, in a pilot study, we present an analysis of the phenotypic characteristics (phagocytic efficiency, fungal killing, and cytokine release) of circulating monocytes derived from patients with cGVHD compared to healthy volunteers. We found that there was no statistically significant difference in their ability to phagocytose A. fumigatus conidia, and while there was a trend in their reduced ability to kill conidia, this was not significant when compared to the ability of volunteers’ monocytes to do so. Although we could not demonstrate in this small cohort of patients with cGVHD that monocytes may be a factor in the increased susceptibility to IA, further investigation of larger numbers of study subjects is warranted so that in vitro biomarkers may be developed for immune responses to Aspergillus in patients with cGVHD. Full article
Show Figures

Figure 1

15 pages, 6399 KB  
Article
Characterisation of Mesenchymal Stromal Cells (MSCs) from Human Adult Thymus as a Potential Cell Source for Regenerative Medicine
by Martina Ramsperger-Gleixner, Chang Li, Nina Wallon, Annika Kuckhahn, Volker Weisbach, Michael Weyand and Christian Heim
J. Clin. Med. 2025, 14(10), 3474; https://doi.org/10.3390/jcm14103474 - 15 May 2025
Viewed by 706
Abstract
Background: Mesenchymal stem cell-based therapy may be indicated in ischaemic heart disease. The use of autologous adipose-derived mesenchymal stromal cells (AdMSCs) offers regenerative potential due to their paracrine effects. The aim of this study was to expand and characterise adult human thymus-derived MSCs [...] Read more.
Background: Mesenchymal stem cell-based therapy may be indicated in ischaemic heart disease. The use of autologous adipose-derived mesenchymal stromal cells (AdMSCs) offers regenerative potential due to their paracrine effects. The aim of this study was to expand and characterise adult human thymus-derived MSCs harvested during open heart surgery with respect to their stem cell and paracrine properties. Methods: Enzymatically and non-enzymatically isolated human thymic AdMSCs (ThyAdMSCs) were cultured in xeno-free media containing pooled human platelet lysate (pPL). MSC characterisation was performed. Ex vivo expanded ThyAdMSCs were differentiated into three lineages. Proliferative capacity and immunomodulatory properties were assessed by proliferation assays and mixed lymphocyte reaction, respectively. Gene expression analysis was performed by qPCR. Results: Both isolation methods yielded fibroblast-like cells with plastic adherence and high proliferation. Flow cytometry revealed distinct expression of MSC markers in the absence of haematopoietic cell surface markers. Ex vivo expanded ThyAdMSCs could be differentiated into adipocytes, osteocytes, and chondrocytes. Activated peripheral blood mononuclear cells were significantly reduced when co-cultured with ThyAdMSCs, indicating their ability to inhibit immune cells in vitro. Gene expression analysis showed significantly less IFNγ and TNFα, indicating an alteration of the activated and pro-inflammatory state in the presence of ThyAdMSCs. Conclusions: These results demonstrate an efficient method to generate AdMSCs from human thymus. These MSCs have a strong immunomodulatory capacity and are, therefore, a promising cell source for regenerative medicine. The culture conditions are crucial for cells to proliferate in culture. Further research could explore the use of ThyAdMSCs or their secretome in surgical procedures. Full article
Show Figures

Graphical abstract

16 pages, 595 KB  
Review
The Emerging Oncogenic Role of RARγ: From Stem Cell Regulation to a Potential Cancer Therapy
by Geoffrey Brown
Int. J. Mol. Sci. 2025, 26(9), 4357; https://doi.org/10.3390/ijms26094357 - 3 May 2025
Cited by 1 | Viewed by 717
Abstract
Retinoic acid receptor (RAR) γ expression is restricted during adult haematopoiesis to haematopoietic stem cells and their immediate offspring and is required for their maintenance. From zebrafish studies, RARγ is selectively expressed by stem cells and agonism in the absence of exogenous all- [...] Read more.
Retinoic acid receptor (RAR) γ expression is restricted during adult haematopoiesis to haematopoietic stem cells and their immediate offspring and is required for their maintenance. From zebrafish studies, RARγ is selectively expressed by stem cells and agonism in the absence of exogenous all-trans retinoic acid blocked stem cell development. Recent findings for the expression of RARγ have revealed an oncogenic role in acute myeloid leukaemia and cholangiocarcinoma and colorectal, head and neck, hepatocellular, ovarian, pancreatic, prostate, and renal cancer. Overexpression and agonism of RARγ enhanced cell proliferation for head and neck, hepatocellular, and prostate cancer. RARγ antagonism, pan-RAR antagonism, and RARγ downregulation led to cell growth which was often followed by cell death for acute myeloid leukaemia, astrocytoma, and cholangiocarcinoma as well as hepatocellular, primitive, neuroectodermal ovarian, and prostate cancer. Histological studies have associated high level RARγ expression with high-grade disease, metastasis, and a poor prognosis for cholangiocarcinoma and ovarian, pancreatic, and prostate cancer. RARγ is expressed by cancer stem cells and is a targetable drive of cancer cell growth and survival. Full article
(This article belongs to the Special Issue The Hallmarks of Cancer Stem Cells)
Show Figures

Figure 1

26 pages, 2166 KB  
Article
Kinetics of Circulating Progenitor Cells and Chemotactic Factors in Full-Term Neonates with Encephalopathy: Indications of Participation in the Endogenous Regenerative Process
by Nikolaos Efstathiou, Georgios Koliakos, Katerina Kantziou, Georgios Kyriazis, Aristeidis Slavakis, Vasiliki Drossou and Vasiliki Soubasi
Biomolecules 2025, 15(3), 427; https://doi.org/10.3390/biom15030427 - 17 Mar 2025
Viewed by 772
Abstract
Preclinical studies have shown that progenitor cells (PCs) are mobilized toward injured tissues to ameliorate damage and contribute to regeneration. The exogenous therapeutic administration of PCs in children affected by neonatal encephalopathy (NE) is a promising, yet underreported, topic. In this prospective study, [...] Read more.
Preclinical studies have shown that progenitor cells (PCs) are mobilized toward injured tissues to ameliorate damage and contribute to regeneration. The exogenous therapeutic administration of PCs in children affected by neonatal encephalopathy (NE) is a promising, yet underreported, topic. In this prospective study, we investigated whether endogenous circulating progenitor cells (CPCs) are involved in intrinsic regeneration mechanisms following neonatal brain injury. Thirteen full-term infants with moderate/severe NE, eleven with perinatal stress, and twelve controls were enrolled. Blood samples were collected on days 1, 3, 9, 18, and 45, as well as at 8 and 24 months of life, and were analyzed with a focus on Endothelial Progenitor Cells, Haematopoietic Stem Cells, and Very Small Embryonic-Like Stem Cells, in addition to chemotactic factors (erythropoietin, IGF-1, and SDF-1). Correlations between CPCs, chemotactic factors, and brain injury were assessed using serum levels of brain injury biomarkers (S100B and neuron-specific enolase), brain MRIs, and Bayley III developmental scores. Increased brain injury biomarkers were followed by the upregulation of SDF-1 receptor and erythropoietin and, finally, by elevated CPCs. These findings suggest a potential endogenous regenerative effort, primarily observed in the moderate encephalopathy group, but this is suppressed in cases of severe brain injury. Mimicking and enhancing endogenous regeneration pathways in cases of failure—regarding cell type and timeframe—could provide a novel therapeutic model. Full article
Show Figures

Figure 1

15 pages, 290 KB  
Article
Decreased Physical Activity and Endurance Capacity in Patients Qualified for Haematopoietic Stem Cell Transplantation (HSCT)
by Michał Chmielewski, Agnieszka Szeremet, Małgorzata Stefańska, Paula Jabłonowska-Babij, Maciej Majcherek, Anna Czyż, Tomasz Wróbel and Iwona Malicka
J. Clin. Med. 2025, 14(1), 186; https://doi.org/10.3390/jcm14010186 - 31 Dec 2024
Viewed by 1063
Abstract
Background: Haematological malignancies and their treatment regimens often lead to various complications that impair patients’ physical functioning. This study aimed to assess the level of physical activity and exercise capacity in patients with haematological malignancies who were qualified for haematopoietic stem cell transplantation [...] Read more.
Background: Haematological malignancies and their treatment regimens often lead to various complications that impair patients’ physical functioning. This study aimed to assess the level of physical activity and exercise capacity in patients with haematological malignancies who were qualified for haematopoietic stem cell transplantation (HSCT). Methods: A prospective, single-centre study was conducted on patients with haematological malignancies qualified for HSCT (study group, n = 103) and a cohort of healthy volunteers (reference group, n = 100). The assessment protocol included the International Physical Activity Questionnaire (IPAQ) and the 6-Minute Walk Test (6MWT). Results: The median age was 57 years in the study group and 56 years in the reference group. In the IPAQ assessment, at least 50% of the study group reported no engagement in moderate or intense physical activity. In the 6MWT, the study group demonstrated a significantly shorter walking distance compared to the reference group (p < 0.0001). Factors such as group membership (study vs. reference group), age, gender, and body mass index (BMI) were found to have a significant impact on 6MWT performance. No significant differences were observed in IPAQ or 6MWT results among subgroups within the study group when categorized by diagnosis. Conclusions: Patients with haematological malignancies who qualified for HSCT often show physical activity levels below recommended standards, which can negatively impact their ability to endure physical exertion. Insufficient activity prior to transplantation may contribute to reduced exercise capacity. Therefore, prehabilitation programmes aimed at improving physical activity and structured exercise should be an integral part of their care. Full article
(This article belongs to the Section Clinical Rehabilitation)
15 pages, 269 KB  
Review
Vaccination After Haematopoietic Stem Cell Transplant: A Review of the Literature and Proposed Vaccination Protocol
by André Silva-Pinto, Isabel Abreu, António Martins, Juliana Bastos, Joana Araújo and Ricardo Pinto
Vaccines 2024, 12(12), 1449; https://doi.org/10.3390/vaccines12121449 - 23 Dec 2024
Viewed by 2283
Abstract
Background/Objectives: Haematopoietic stem cell transplantation (HCT) induces profound immunosuppression, significantly increasing susceptibility to severe infections. This review examines vaccinations’ necessity, timing, and efficacy post-HCT to reduce infection-related morbidity and mortality. It aims to provide a structured protocol aligned with international and national recommendations. [...] Read more.
Background/Objectives: Haematopoietic stem cell transplantation (HCT) induces profound immunosuppression, significantly increasing susceptibility to severe infections. This review examines vaccinations’ necessity, timing, and efficacy post-HCT to reduce infection-related morbidity and mortality. It aims to provide a structured protocol aligned with international and national recommendations. Methods: A systematic review of current guidelines and studies was conducted to assess vaccination strategies in HCT recipients. The analysis included the timing of vaccine administration, factors influencing efficacy, and contraindications. Recommendations for pre- and post-transplant vaccination schedules were synthesised, specifically for graft-versus-host disease (GVHD), immunosuppressive therapy, and hypogammaglobulinemia. Results: Vaccination is essential as specific immunity is often lost after HCT. Inactivated vaccines are recommended to commence three months post-transplant, including influenza, COVID-19, and pneumococcal vaccines. Live attenuated vaccines remain contraindicated for at least two years post-transplant and in patients with ongoing GVHD or immunosuppressive therapy. Factors such as GVHD and immunosuppressive treatments significantly impact vaccine timing and efficacy. The review also underscores the importance of pre-transplant vaccinations and ensuring that patients’ close contacts are adequately immunised to reduce transmission risks. Conclusions: Implementing a structured vaccination protocol post-HCT is critical to improving patient outcomes. Timely and effective vaccination strategies can mitigate infection risks while addressing individual patient factors such as GVHD and immunosuppression. This review highlights the need for tailored vaccination approaches to optimize immune reconstitution in HCT recipients. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
13 pages, 613 KB  
Article
Urinary L-FABP Assay in the Detection of Acute Kidney Injury following Haematopoietic Stem Cell Transplantation
by Roshni Mitra, Eleni Tholouli, Azita Rajai, Ananya Saha, Sandip Mitra and Nicos Mitsides
J. Pers. Med. 2024, 14(10), 1046; https://doi.org/10.3390/jpm14101046 - 9 Oct 2024
Viewed by 1578
Abstract
Background: Acute Kidney Injury (AKI) is a condition that affects a significant proportion of acutely unwell patients and is associated with a high mortality rate. Patients undergoing haemopoietic stem cell transplantation (HSCT) are in an extremely high group for AKI. Identifying a [...] Read more.
Background: Acute Kidney Injury (AKI) is a condition that affects a significant proportion of acutely unwell patients and is associated with a high mortality rate. Patients undergoing haemopoietic stem cell transplantation (HSCT) are in an extremely high group for AKI. Identifying a biomarker or panel of markers that can reliably identify at-risk individuals undergoing HSCT can potentially impact management and outcomes. Early identification of AKI can reduce its severity and improve prognosis. We evaluated the urinary Liver type fatty acid binding protein (L-FABP), a tubular stress and injury biomarker both as an ELISA and a point of care (POC) assay for AKI detection in HSCT. Methods: 85 patients that had undergone autologous and allogenic HSCT (35 and 50, respectively) had urinary L-FABP (uL-FABP) measured by means of a quantitative ELISA and a semi-quantitative POC at baseline, day 0 and 7 post-transplantation. Serum creatinine (SCr) was also measured at the same time. Patients were followed up for 30 days for the occurrence of AKI and up to 18 months for mortality. The sensitivity and specificity of uL-FABP as an AKI biomarker were evaluated and compared to the performance of sCr using ROC curve analysis and logistic regression. Results: 39% of participants developed AKI within 1 month of their transplantation. The incidence of AKI was higher in the allogenic group than in the autologous HTSC group (57% vs. 26%, p = 0.008) with the median time to AKI being 25 [range 9-30] days. This group was younger (median age 59 vs. 63, p < 0.001) with a lower percentage of multiple myeloma as the primary diagnosis (6% vs. 88%, p < 0.001). The median time to AKI diagnosis was 25 [range 9–30] days. uL-FABP (mcg/gCr) at baseline, day of transplant and on the 7th day post-transplant were 1.61, 5.39 and 10.27, respectively, for the allogenic group and 0.58, 4.36 and 5.14 for the autologous group. Both SCr and uL-FABP levels rose from baseline to day 7 post-transplantation, while the AUC for predicting AKI for baseline, day 0 and day 7 post-transplant was 0.54, 0.59 and 0.62 for SCr and for 0.49, 0.43 and 0.49 uL-FABP, respectively. Univariate logistic regression showed the risk of AKI to be increased in patients with allogenic HSCT (p = 0.004, 95%CI [0.1; 0.65]) and in those with impaired renal function at baseline (p = 0.01, 95%CI [0.02, 0.54]). The risk of AKI was also significantly associated with SCr levels on day 7 post-transplant (p = 0.03, 95%CI [1; 1.03]). Multivariate logistic regression showed the type of HSCT to be the strongest predictor of AKI at all time points, while SCr levels at days 0 and 7 also correlated with increased risk in the model that included uL-FABP levels at the corresponding time points. The POC device for uL-FABP measurement correlated with ELISA (p < 0.001, Spearman ‘correlation’ = 0.54) Conclusions: The urinary biomarker uL-FABP did not demonstrate an independent predictive value in the detection of AKI at all stages. The most powerful risk predictor of AKI in this setting appears to be allograft recipients and baseline renal impairment, highlighting the importance of clinical risk stratification. Urinary L-FAPB as a POC biomarker was comparable to ELISA, which provides an opportunity for simple and rapid testing. However, the utility of LFABP in AKI is unclear and needs further exploration. Whether screening through rapid testing of uL-FABP can prevent or reduce AKI severity is unknown and merits further studies. Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

22 pages, 3239 KB  
Review
Mesenchymal Stem Cells in Myelodysplastic Syndromes and Leukaemia
by Ilayda Eroz, Prabneet Kaur Kakkar, Renal Antoinette Lazar and Jehan El-Jawhari
Biomedicines 2024, 12(8), 1677; https://doi.org/10.3390/biomedicines12081677 - 26 Jul 2024
Viewed by 2259
Abstract
Mesenchymal stem cells (MSCs) are one of the main residents in the bone marrow (BM) and have an essential role in the regulation of haematopoietic stem cell (HSC) differentiation and proliferation. Myelodysplastic syndromes (MDSs) are a group of myeloid disorders impacting haematopoietic stem [...] Read more.
Mesenchymal stem cells (MSCs) are one of the main residents in the bone marrow (BM) and have an essential role in the regulation of haematopoietic stem cell (HSC) differentiation and proliferation. Myelodysplastic syndromes (MDSs) are a group of myeloid disorders impacting haematopoietic stem and progenitor cells (HSCPs) that are characterised by BM failure, ineffective haematopoiesis, cytopenia, and a high risk of transformation through the expansion of MDS clones together with additional genetic defects. It has been indicated that MSCs play anti-tumorigenic roles such as in cell cycle arrest and pro-tumorigenic roles including the induction of metastasis in MDS and leukaemia. Growing evidence has shown that MSCs have impaired functions in MDS, such as decreased proliferation capacity, differentiation ability, haematopoiesis support, and immunomodulation function and increased inflammatory alterations within the BM through some intracellular pathways such as Notch and Wnt and extracellular modulators abnormally secreted by MSCs, including increased expression of inflammatory factors and decreased expression of haematopoietic factors, contributing to the development and progression of MDSs. Therefore, MSCs can be targeted for the treatment of MDSs and leukaemia. However, it remains unclear what drives MSCs to behave abnormally. In this review, dysregulations in MSCs and their contributions to myeloid haematological malignancies will be discussed. Full article
(This article belongs to the Special Issue Role of Bone Marrow Niche in Haematological Cancers)
Show Figures

Figure 1

14 pages, 2787 KB  
Article
Bone Marrow-Suppressive Treatment in Children Is Associated with Diminished IFN-γ Response from T Cells upon Polyclonal and Varicella Zoster Virus Peptide Stimulation
by Eva Tiselius, Emil Sundberg, Hanna Andersson, Anna Höbinger, Peter Jahnmatz, Arja Harila, Josefine Palle, Anna Nilsson and Shanie Saghafian-Hedengren
Int. J. Mol. Sci. 2024, 25(13), 6960; https://doi.org/10.3390/ijms25136960 - 26 Jun 2024
Cited by 1 | Viewed by 1955
Abstract
Severe haematological diseases and lymphoid malignancies require bone marrow (BM)-suppressive treatments. Knowledge regarding the impact of BM-suppressive treatments on children’s memory T cells is very limited. Memory T cells play a crucial role in defending against herpesviruses, which is particularly relevant in paediatric [...] Read more.
Severe haematological diseases and lymphoid malignancies require bone marrow (BM)-suppressive treatments. Knowledge regarding the impact of BM-suppressive treatments on children’s memory T cells is very limited. Memory T cells play a crucial role in defending against herpesviruses, which is particularly relevant in paediatric cancer care. We studied 53 children in total; 34 with cancer and 2 with severe haematological disorders, with some receiving BM-suppressive treatment with or without allogeneic–haematopoietic stem cell transplantation (allo-HSCT), alongside 17 healthy controls. We focused on peripheral blood proportions of memory T-cell subsets using flow cytometry and analysed cytokine-secreting T cells with a four-parameter FluoroSpot assay in response to T-cell mitogen and varicella zoster virus (VZV) peptides. Patients on BM-suppressive treatment showed increased clusters of differentiation (CD)4+ and CD8+ effector memory (TEM)/terminally differentiated effector (TEFF) T cells compared to the healthy controls. They also exhibited, amongst other things, when compared to the healthy controls, a reduced total number of cytokine-secreting cells, by means of interferon (IFN)-γ, interleukin (IL)-17A, IL-10, and IL-22, following mitogen activation. A diminished IFN-γ response among the children with BM-suppressive treatment was observed upon VZV-peptide stimulation, compared to the healthy children. Collectively, the findings herein indicate that the children who are undergoing or have finished BM-suppressive treatment display qualitative differences in their T-cell memory compartment, potentially increasing their susceptibility to severe viral infections and impacting their immunotherapy, which relies on the functional ability of autologous T cells. Full article
(This article belongs to the Special Issue Advanced Research on Immune Cells and Cytokines)
Show Figures

Figure 1

9 pages, 7392 KB  
Case Report
Overlapping Case of Advanced Systemic Sclerosis and IgG4-Related Disease after Autologous Hematopoietic Stem Cell Transplantation
by Alisa Julija Dulko, Irena Butrimiene, Alma Cypiene, Valdas Peceliunas, Donatas Petroska, Ernesta Stankeviciene and Rita Rugiene
Medicina 2024, 60(3), 496; https://doi.org/10.3390/medicina60030496 - 18 Mar 2024
Cited by 2 | Viewed by 2174
Abstract
Both scleroderma and immunoglobulin G4-related disease (IgG4-RD) are systemic fibro-inflammatory diseases characterised by lymphoplasmacytic infiltrates. IgG4-RD and systemic sclerosis (SSc) may share common pathophysiological mechanisms, but no examples of co-occurrence of the diseases have been found. Autologous haematopoietic stem cell transplantation (AHSCT) is [...] Read more.
Both scleroderma and immunoglobulin G4-related disease (IgG4-RD) are systemic fibro-inflammatory diseases characterised by lymphoplasmacytic infiltrates. IgG4-RD and systemic sclerosis (SSc) may share common pathophysiological mechanisms, but no examples of co-occurrence of the diseases have been found. Autologous haematopoietic stem cell transplantation (AHSCT) is implemented in selected rapidly progressive SSc with a high risk of organ failure. However, existing guidelines are based on clinical trials that do not represent the entire patient population and exclude critically ill patients with no therapeutic alternatives. Examples of AHSCT in IgG4-RD are absent. We report the case of a 44-year-old female patient with overlapping progressive diffuse SSc and sinonasal IgG4-RD. After 11 years of ineffective SSc treatment, AHSCT was performed. The 63-month follow-up showed a regression of SSc symptoms. AHSCT was not intended as treatment in the case of IgG4RD, although the first symptoms of the disease developed before transplantation. The sinus lesions progressed after AHSCT and remained indolent only after surgical treatment (bilateral ethmoidectomy, sphenoidotomy, intranasal buccal antrostomy), which allowed histopathological confirmation of IgG4-RD. Full article
(This article belongs to the Special Issue Recent Advances in Autoimmune Rheumatic Diseases)
Show Figures

Figure 1

17 pages, 2828 KB  
Article
Post-Transplant Cyclophosphamide Combined with Brilliant Blue G Reduces Graft-versus-Host Disease without Compromising Graft-versus-Leukaemia Immunity in Humanised Mice
by Peter Cuthbertson, Amy Button, Chloe Sligar, Amal Elhage, Kara L. Vine, Debbie Watson and Ronald Sluyter
Int. J. Mol. Sci. 2024, 25(3), 1775; https://doi.org/10.3390/ijms25031775 - 1 Feb 2024
Cited by 4 | Viewed by 1984
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the [...] Read more.
Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0–10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse. Full article
Show Figures

Figure 1

Back to TopTop