Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = high temperature shape memory alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 32435 KB  
Article
Structure and Magnetic Properties of Vanadium-Doped Heusler Ni-Mn-In Alloys
by Dmitry Kuznetsov, Elena Kuznetsova, Alexey Mashirov, Alexander Kamantsev, Denis Danilov, Georgy Shandryuk, Sergey Taskaev, Irek Musabirov, Ruslan Gaifullin, Maxim Kolkov, Victor Koledov and Pnina Ari-Gur
Nanomaterials 2025, 15(19), 1466; https://doi.org/10.3390/nano15191466 - 24 Sep 2025
Viewed by 352
Abstract
The crystal structure, texture, martensitic transformation, and magnetic properties of magnetic shape-memory Heusler alloys of Ni51−xMn33.4In15.6Vx (x = 0; 0.1; 0.3; 0.5; 1) were investigated. Experimental studies of the magnetic properties and meta-magnetostructural transition (martensitic transition—MT) [...] Read more.
The crystal structure, texture, martensitic transformation, and magnetic properties of magnetic shape-memory Heusler alloys of Ni51−xMn33.4In15.6Vx (x = 0; 0.1; 0.3; 0.5; 1) were investigated. Experimental studies of the magnetic properties and meta-magnetostructural transition (martensitic transition—MT) confirm the main sensitivity of the martensitic transition temperature to vanadium doping and to an applied magnetic field. This makes this family of shape-memory alloys promising for use in numerous applications, such as magnetocaloric cooling and MEMS technology. Diffuse electron scattering was analyzed, and the structures of the austenite and martensite were determined, including the use of TEM in situ experiments during heating and cooling for an alloy with a 0.3 at.% concentration of V. In the austenitic state, the alloys are characterized by a high-temperature-ordered phase of the L21 type. The images show nanodomain structures in the form of tweed contrast and contrast from antiphase domains and antiphase boundaries. The alloy microstructure in the temperature range from the martensitic finish to 113 K consists of a six-layer modulated martensite, with 10 M and 14 M modulation observed in local zones. The morphology of the double structure of the modulated martensite structure inherits the morphology of the nanodomain structure in the parent phase. This suggests that it is possible to control the structure of the high-temperature austenite phase and the temperature of the martensitic transition by alloying and/or rapidly quenching from the high-temperature phase. In addition, attention is paid to maintaining fine interface structures. High-resolution transmission electron microscopy showed good coherence along the austenite–martensite boundary. Full article
Show Figures

Graphical abstract

18 pages, 4673 KB  
Article
Influence of Electrical Parameters in a Composite Wing Actuated by Shape Memory Alloys Wires: A Numerical–Experimental Study
by Miriam Battaglia, Valerio Acanfora and Aniello Riccio
J. Compos. Sci. 2025, 9(9), 460; https://doi.org/10.3390/jcs9090460 - 1 Sep 2025
Viewed by 841
Abstract
This study investigates the influence of electrical actuation parameters on the performance of a morphing composite aerodynamic profile actuated by Shape Memory Alloy (SMA) wires. A fully coupled electro-thermo-mechanical finite element model has been developed to simulate the transient response of NiTi SMA, [...] Read more.
This study investigates the influence of electrical actuation parameters on the performance of a morphing composite aerodynamic profile actuated by Shape Memory Alloy (SMA) wires. A fully coupled electro-thermo-mechanical finite element model has been developed to simulate the transient response of NiTi SMA, capturing the nonlinear interplay between temperature evolution, phase transformation, and mechanical deformation under Joule heating. The model incorporates phase-dependent material properties, heat effects, and geometric constraints, enabling accurate prediction of actuation dynamics. To validate the model, a morphing spoiler prototype has been fabricated using high-performance additive manufacturing with a carbon fibre-reinforced polymer. The SMA wires have been pretensioned and electrically actuated at different current levels (3 A and 6 A), and the resulting deformation has been recorded through video analysis with embedded timers. Experimental measurements confirmed the model’s ability to predict both actuation time and displacement, with maximum deflections of 33 mm and 40 mm corresponding to different current inputs. This integrated approach demonstrates an efficient and compact solution for active aerodynamic surfaces without the need for mechanical linkages, enabling future developments in adaptive structures for automotive and aerospace applications. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

14 pages, 1520 KB  
Article
Thermomechanical Parameters Modelling of Spring Force Elements Made of Shape Memory Alloys
by Olga Łastowska, Vitaliy Polishchuk and Andrii Poznanskyi
Materials 2025, 18(13), 3055; https://doi.org/10.3390/ma18133055 - 27 Jun 2025
Viewed by 487
Abstract
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion [...] Read more.
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion of a scalar internal variable that represents the evolution of the phase transformation within a phenomenological macroscopic model. This approach enables the deformation–force–temperature behaviour of SMA-based spring elements under cyclic loading to be accurately described. A set of constitutive equations was derived to describe reversible and residual strains, along with transformation start and finish conditions. Model parameters were calibrated using experimental data from VSP-1 and TN-1K SMA springs that were subjected to thermal cycling. The validation results show a high correlation between the theoretical predictions and the experimental data, with deviation margins of less than 6.5%. The model was then applied to designing and analysing thermosensitive actuator mechanisms for temperature control systems. This yielded accurate deformation–force characteristics, demonstrating low inertia and high repeatability. This approach enables the efficient prediction and improvement of the performance of SMA-based spring elements in actuators, making it relevant for adaptive systems in marine and aerospace applications. Full article
Show Figures

Figure 1

20 pages, 5416 KB  
Article
Research on a Novel Shape-Memory Alloy Artificial Muscle with Active and Passive Heat Dissipation
by Qin Zhang, Liang Xu, Hao Chen, Zhou Li, Liwu Huang and Sicheng Yi
Actuators 2025, 14(5), 248; https://doi.org/10.3390/act14050248 - 15 May 2025
Cited by 1 | Viewed by 1300
Abstract
Due to their high energy density and favorable load-to-weight ratio, shape-memory alloy (SMA) materials are ideal actuation sources for soft robots. However, the relatively long cooling time of SMA wires in soft bodies limits their response speed. In this study, we designed and [...] Read more.
Due to their high energy density and favorable load-to-weight ratio, shape-memory alloy (SMA) materials are ideal actuation sources for soft robots. However, the relatively long cooling time of SMA wires in soft bodies limits their response speed. In this study, we designed and fabricated a novel SMA artificial muscle. When active heat absorption was enabled through thermoelectric modules and the evaporation/dehydration effects of hydrogels, the cooling rate of the SMA wires increased significantly. Simulation and experimental results demonstrate that with the proposed heat-dissipation scheme, the cooling speed of the SMA wires improved notably, with a temperature drop of 9.6 °C within 4 s. Additionally, the designed agar/polyacrylamide hydrogel, which has a porous skeleton structure, achieved a water-absorption expansion rate that was 600% of the previous value. When a PVC elastic substrate was used, the bending angle of the SMA artificial muscle reached 71°, with minimal bending attenuation after 45 consecutive cyclic tests. A soft gripper composed of the novel SMA artificial muscles was capable of manipulating objects of various shapes. Overall, the combination of active and passive heat-dissipation strategies enabled the SMA artificial muscle to achieve excellent durability, rapid heat dissipation, and strong versatility, demonstrating its significant potential for various applications. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

13 pages, 2728 KB  
Article
Machine Learning-Assisted Discovery of Empirical Rule for Martensite Transition Temperature of Shape Memory Alloys
by Hao-Xuan Liu, Hai-Le Yan, Nan Jia, Bo Yang, Zongbin Li, Xiang Zhao and Liang Zuo
Materials 2025, 18(10), 2226; https://doi.org/10.3390/ma18102226 - 12 May 2025
Viewed by 784
Abstract
Shape memory alloys (SMAs) derive their unique functional properties from martensitic transformations, with the martensitic transformation temperature (TM) serving as a key design parameter. However, existing empirical rules, such as the valence electron concentration (VEC) and lattice volume (V) criteria, [...] Read more.
Shape memory alloys (SMAs) derive their unique functional properties from martensitic transformations, with the martensitic transformation temperature (TM) serving as a key design parameter. However, existing empirical rules, such as the valence electron concentration (VEC) and lattice volume (V) criteria, are typically restricted to specific alloy families and lack general applicability. In this work, we used a data-driven methodology to find a generalizable empirical formula for TM in SMAs by combining high-throughput first-principles calculations, feature engineering, and symbol regression techniques. Key factors influencing TM were first identified and a predictive machine learning model was subsequently trained based on these features. Furthermore, an empirical formula of TM = 82(ρ¯·MP¯)700 was derived, where ρ¯ and MP¯ represent the weight-average value of density and melting point, respectively. The empirical formula exhibits strong generalizability across a wide range of SMAs, such as NiMn-based, NiTi-based, TiPt-based, and AuCd-based SMAs, etc., offering practical guidance for the compositional design and optimization of shape memory alloys. Full article
(This article belongs to the Special Issue Magnetic Shape Memory Alloys: Fundamentals and Applications)
Show Figures

Figure 1

19 pages, 11634 KB  
Article
Numerical Study to Evaluate the Flexural Performance of Concrete Beams Tensile Reinforced with Fe-Based Shape Memory Alloy Rebar According to Heating Temperature
by Ki-Nam Hong, Sang-Won Ji and Yeong-Mo Yeon
Materials 2025, 18(8), 1703; https://doi.org/10.3390/ma18081703 - 9 Apr 2025
Viewed by 634
Abstract
An Fe-based shape memory alloy (Fe-SMA) is an alloy that has a characteristic of being able to return to its original shape when heated, even after undergoing plastic deformation. Many researchers have conducted various studies to understand the effectiveness of using Fe-SMA in [...] Read more.
An Fe-based shape memory alloy (Fe-SMA) is an alloy that has a characteristic of being able to return to its original shape when heated, even after undergoing plastic deformation. Many researchers have conducted various studies to understand the effectiveness of using Fe-SMA in concrete structures. Most studies selected the heating temperature of Fe-SMA to be below 160 °C based on the logic that concrete hydrolyzes when its temperature exceeds 160 °C. However, because the recovery stress of Fe-SMA increases as the heating temperature increases, it is expected that greater prestress could be introduced when the heating temperature is high. In this study, to confirm this, a numerical study was conducted to evaluate the effect of Fe-SMA heating temperature on the flexural performance of concrete members through finite element (FE) analysis. The analysis results showed that the initial crack load of the specimen increased by about 89% to 173% as the heating temperature of Fe-SMA increased. In addition, the accuracy of the proposed FE model (FEM) was verified through experiments. As a result, it was confirmed that the proposed FE analysis can relatively accurately predict the failure mode and load–displacement relationship of the specimen. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 7657 KB  
Article
Microstructure, Thermal, and Mechanical Behavior of NiTi Shape Memory Alloy Obtained by Micro Wire and Arc Direct Energy Deposition
by Tadeu C. da Silva, Edwin Sallica-Leva, Emilio Rayón, Claudio T. Santos, João C. A. D. Filho, Neri Volpato, Dalton D. Lima, Paulo H. G. Dornelas, Sergio S. M. Tavares and Telmo G. Santos
J. Manuf. Mater. Process. 2025, 9(2), 57; https://doi.org/10.3390/jmmp9020057 - 13 Feb 2025
Cited by 2 | Viewed by 2145
Abstract
Additive manufacturing (AM) is revolutionizing the fabrication of metallic components, offering significant potential to compete with or complement traditional casting, forging, and machining processes, and enabling the production of complex functional components. Recent advancements in AM technology have facilitated the processing of shape [...] Read more.
Additive manufacturing (AM) is revolutionizing the fabrication of metallic components, offering significant potential to compete with or complement traditional casting, forging, and machining processes, and enabling the production of complex functional components. Recent advancements in AM technology have facilitated the processing of shape memory alloys (SMAs) with functional properties comparable to those of conventionally processed alloys. However, the AM of NiTi SMAs remains underexplored due to the extreme complexity of the process, high melting point, and reactivity with oxygen. This study investigates the impact of AM processing on the shape memory properties of NiTi alloys using the Micro Wire and Arc Directed Energy Deposition (μ-WA-DED) technique in short circuit mode with a pioneering 0.3 mm pre-alloyed wire, focusing on increasing precision and control in the deposition process. The macroscopic morphology, microstructure, phase composition, phase-transformation temperatures, and mechanical properties of each deposited layer were analyzed. Results indicated austenite (B2) as the predominant phase, with retained martensite (B19′) and a reversible martensitic transformation (B2 ⇌ B19′) in the second layer. Mechanical characterization revealed variations in hardness (H) and elastic modulus (E) due to microstructural heterogeneity and composition. The first layer exhibited H = 3.8 GPa and E = 70 GPa, associated with the B2-NiTi phase, while higher values were obtained in the second layer, i.e., E = 100 GPa and H = 7 GPa. This study establishes for the first time the feasibility of NiTi alloy deposition with a 0.3 mm wire, setting a new standard for future research and applications in AM using μ-WA-DED. Full article
Show Figures

Figure 1

25 pages, 2189 KB  
Review
Advancements in Surface Modification of NiTi Alloys for Orthopedic Implants: Focus on Low-Temperature Glow Discharge Plasma Oxidation Techniques
by Justyna Witkowska, Jerzy Sobiecki and Tadeusz Wierzchoń
Int. J. Mol. Sci. 2025, 26(3), 1132; https://doi.org/10.3390/ijms26031132 - 28 Jan 2025
Cited by 6 | Viewed by 1972
Abstract
Nickel–titanium (NiTi) shape memory alloys are promising materials for orthopedic implants due to their unique mechanical properties, including superelasticity and shape memory effect. However, the high nickel content in NiTi alloys raises concerns about biocompatibility and potential cytotoxic effects. This review focuses on [...] Read more.
Nickel–titanium (NiTi) shape memory alloys are promising materials for orthopedic implants due to their unique mechanical properties, including superelasticity and shape memory effect. However, the high nickel content in NiTi alloys raises concerns about biocompatibility and potential cytotoxic effects. This review focuses on the recent advancements in surface modification techniques aimed at enhancing the properties of NiTi alloys for biomedical applications, with particular emphasis on low-temperature glow discharge plasma oxidation methods. The review explores various surface engineering strategies, including oxidation, nitriding, ion implantation, laser treatments, and the deposition of protective coatings. Among these, low-temperature plasma oxidation stands out for its ability to produce uniform, nanocrystalline layers of titanium dioxide (TiO2), titanium nitride (TiN), and nitrogen-doped TiO2 layers, significantly enhancing corrosion resistance, reducing nickel ion release, and promoting osseointegration. Plasma-assisted oxynitriding processes enable the creation of multifunctional coatings with improved mechanical and biological properties. The applications of modified NiTi alloys in orthopedic implants, including spinal fixation devices, joint prostheses, and fracture fixation systems, are also discussed. Despite these promising advancements, challenges remain in achieving large-scale reproducibility, controlling process parameters, and reducing production costs. Future research directions include integrating bioactive and antibacterial coatings, enhancing surface structuring for controlled biological responses, and expanding clinical validation. Addressing these challenges can unlock the full potential of surface-modified NiTi alloys in advanced orthopedic applications for safer, longer-lasting, and more effective medical implants. Full article
(This article belongs to the Special Issue Biomaterials for Dental and Orthopedic Applications)
Show Figures

Figure 1

14 pages, 21828 KB  
Article
A Study of the Effects of Mechanical Alloying Fraction, Solution Treatment Temperature and Pre-Straining Degree on the Structure and Properties of a Powder Metallurgy-Produced FeMnSiCrNi Shape Memory Alloy
by Elena Matcovschi, Bogdan Pricop, Nicoleta-Monica Lohan, Mihai Popa, Gheorghe Bădărău, Nicanor Cimpoeșu, Burak Ozkal and Leandru-Gheorghe Bujoreanu
Crystals 2025, 15(2), 105; https://doi.org/10.3390/cryst15020105 - 21 Jan 2025
Cited by 1 | Viewed by 877
Abstract
A shape memory alloy with the chemical composition Fe-14Mn-6Si-9Cr-5Ni (mass %) was produced by powder metallurgy (PM) from as-blended powders mixed with mechanically alloyed (MA’ed) powder volumes in amounts of 0, 10 and 20. After powder blending, pressing and sintering, the specimens were [...] Read more.
A shape memory alloy with the chemical composition Fe-14Mn-6Si-9Cr-5Ni (mass %) was produced by powder metallurgy (PM) from as-blended powders mixed with mechanically alloyed (MA’ed) powder volumes in amounts of 0, 10 and 20. After powder blending, pressing and sintering, the specimens were hot-rolled, spark erosion cut with different configurations and solution-treated between 700 and 1100 °C. After metallographic preparation, structural analyses were performed by X-ray diffraction and microscopic observation performed by optical and scanning electron microscopy (SEM). The analyses revealed the presence of thermal- and stress-induced martensites caused by solution treatment and pre-straining. Due to the relatively low Mn amount, significant quantities of α′ body center cubic martensite were formed during post-solution treatment water cooling. Solution-treated lamellar specimens underwent a training thermomechanical treatment comprising repeated cycles of room temperature bending, heating and sputtered water cooling. By cinematographic analysis, the occurrence of the shape memory effect (SME) was revealed, in spite of the large amount of α′ bcc martensite. Tensile specimens were subjected to room temperature failure tests and pre-straining (up to 4% permanent strain, after loading–unloading). After tensile pre-straining, a diminution of α′ martensite amount was noticed on XRD patterns, which was associated with the formation of internal sub-bands in the substructure of martensite and were observed by high-resolution SEM. These results prove that SME can be obtained in trained PM_MA’ed Fe-14Mn-6Si-9Cr-5Ni specimens in spite of the large amount of thermally induced α′ bcc martensite, the stress-induced formation of which is impeded by the presence of internal sub-bands. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

16 pages, 14456 KB  
Article
Microstructure and Thermal Cyclic Behavior of FeNiCoAlTaB High-Entropy Alloy
by Li-Wei Tseng, Wei-Cheng Chen, Yi-Ting Hsu and Chih-Hsuan Chen
Materials 2025, 18(2), 387; https://doi.org/10.3390/ma18020387 - 16 Jan 2025
Viewed by 738
Abstract
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an Fe41.265Ni28.2Co17Al11Ta2.5B0.04 (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of [...] Read more.
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an Fe41.265Ni28.2Co17Al11Ta2.5B0.04 (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.45 and 2.82, respectively. This indicates that both samples were formed without any strong texture. The grain morphology results show that the grain size increased from 356.8 to 504.6 μm when the annealing time was increased from 0.5 to 1 h. The large grain size improved the recoverable strain due to a reduction in the grain constraint. As a result, annealing was carried out at 1300 °C/1 h for the remainder of the study. The hardness decreased at 24 h, then increased again at 48 h; this phenomenon was related to the austenite finish temperature. Thermo-magnetic analysis revealed that the austenite finish temperature increased when the samples were aged at 600 °C for between 12 and 24 h. When the aging time was prolonged to 48 h, the austenite finish temperature value decreased. X-ray diffraction (XRD) demonstrated that the peak of the precipitates emerged and intensified when the aging time was increased from 12 to 24 h at 600 °C. From the three-point bending shape memory test, the samples aged at 600 °C for 12 and 24 h had maximum recoverable strains of 2% and 3.6%, respectively. The stress–temperature slopes of the austenite finish temperature were 10.3 MPa/°C for 12 h and 6 MPa/°C for 24 h, respectively. Higher slope values correspond to lower recoverable strains. Full article
(This article belongs to the Special Issue Future Trends in High-Entropy Alloys (2nd Edition))
Show Figures

Figure 1

26 pages, 10666 KB  
Article
Processability and Material Behavior of NiTi Shape Memory Alloys Using Wire Laser-Directed Energy Deposition (WL-DED)
by Hediyeh Dabbaghi, Nasrin Taheri Andani, Mohammad Pourshams, Mahyar Sojoodi, Behrang Poorganji and Mohammad Elahinia
J. Manuf. Mater. Process. 2025, 9(1), 15; https://doi.org/10.3390/jmmp9010015 - 6 Jan 2025
Cited by 4 | Viewed by 2379
Abstract
Utilizing additive manufacturing (AM) techniques with shape memory alloys (SMAs) like NiTi shows great promise for fabricating highly flexible and functionally superior 3D metallic structures. Compared to methods relying on powder feedstocks, wire-based additive manufacturing processes provide a viable alternative, addressing challenges such [...] Read more.
Utilizing additive manufacturing (AM) techniques with shape memory alloys (SMAs) like NiTi shows great promise for fabricating highly flexible and functionally superior 3D metallic structures. Compared to methods relying on powder feedstocks, wire-based additive manufacturing processes provide a viable alternative, addressing challenges such as chemical composition instability, material availability, higher feedstock costs, and limitations on part size while simplifying process development. This study presented a novel approach by thoroughly assessing the printability of Ni-rich Ni55.94Ti (Wt. %) SMA using the wire laser-directed energy deposition (WL-DED) technique, addressing the existing knowledge gap regarding the laser wire-feed metal additive manufacturing of NiTi alloys. For the first time, the impact of processing parameters—specifically laser power (400–1000 W) and transverse speed (300–900 mm/min)—on single-track fabrication using NiTi wires in the WL-DED process was examined. An optimal range of process parameters was determined to achieve high-quality prints with minimal defects, such as wire dripping, stubbing, and overfilling. Building upon these findings, we printed five distinct cubes, demonstrating the feasibility of producing nearly porosity-free specimens. Notably, this study investigated the effect of energy density on the printed part density, impurity pick-up, transformation temperature, and hardness of the manufactured NiTi cubes. The results from the cube study demonstrated that varying energy densities (46.66–70 J/mm3) significantly affected the quality of the deposits. Lower to intermediate energy densities achieved high relative densities (>99%) and favorable phase transformation temperatures. In contrast, higher energy densities led to instability in melt pool shape, increased porosity, and discrepancies in phase transformation temperatures. These findings highlighted the critical role of precise parameter control in achieving functional NiTi parts and offer valuable insights for advancing AM techniques in fabricating larger high-quality NiTi components. Additionally, our research highlighted important considerations for civil engineering applications, particularly in the development of seismic dampers for energy dissipation in structures, offering a promising solution for enhancing structural performance and energy management in critical infrastructure. Full article
Show Figures

Figure 1

19 pages, 15518 KB  
Article
Powder Metallurgy Processing to Enhance Superelasticity and Shape Memory in Polycrystalline Cu–Al–Ni Alloys: Reference Material for Additive Manufacturing
by Mikel Pérez-Cerrato, Jose F. Gómez-Cortés, Ernesto Urionabarrenetxea, Isabel Ruiz-Larrea, Fernando Carreño, Ízaro Ayesta, María L. Nó, Nerea Burgos and Jose M. San Juan
Materials 2024, 17(24), 6165; https://doi.org/10.3390/ma17246165 - 17 Dec 2024
Cited by 1 | Viewed by 5591
Abstract
Shape memory alloys (SMAs) are functional materials with a wide range of applications, from the aerospace sector to the biomedical field. Nowadays, there is a worldwide interest in developing SMAs through powder metallurgy like additive manufacturing (AM), which allows innovative building processes. However, [...] Read more.
Shape memory alloys (SMAs) are functional materials with a wide range of applications, from the aerospace sector to the biomedical field. Nowadays, there is a worldwide interest in developing SMAs through powder metallurgy like additive manufacturing (AM), which allows innovative building processes. However, producing SMAs using AM techniques is particularly challenging because of the microstructure required to obtain optimal functional properties. This aspect is critical in the case of Cu–Al–based SMAs, due to their high elastic anisotropy, making them brittle in polycrystalline form. In this work, we approached the processing of a Cu–Al–Ni SMA following a specific powder metallurgy route: gas atomization of a pre-alloyed melt; compaction of the atomized powders through hot isostatic pressing; and a final hot rolling plus thermal treatments. Then, the microstructure of the material was characterized by electron microscopy showing a specific [001] texture in the rolling direction that improved the functional behavior. The successive processing steps produce an increase of about 40 °C in the martensitic transformation temperatures, which can be well controlled and reproduced through the developed methodology. The thermomechanical functional properties of superelasticity and shape memory were evaluated on the final SMA. Outstanding, fully recoverable superelastic behavior of 4.5% in tension, as well as a ±5% full shape memory recovery in bending, were reported for many cycles. These experiments demonstrate the enhanced mechanical and functional properties obtained in polycrystalline Cu–Al–Ni SMAs by powder metallurgy. The present results pave the road for producing this kind of SMA with the new AM technologies, which always produce polycrystalline components and can improve their processes taking the powder metallurgy SMA, here produced, as reference material. Full article
(This article belongs to the Special Issue Advances in Materials Processing (3rd Edition))
Show Figures

Figure 1

19 pages, 6647 KB  
Article
The Design and Application of an Advanced System for the Diagnosis and Treatment of Flatfoot Based on Infrared Thermography and a Smart-Memory-Alloy-Reinforced Insole
by Ali F. Abdulkareem, Auns Q. Al-Neami, Tariq J. Mohammed and Hayder R. Al-Omairi
Prosthesis 2024, 6(6), 1491-1509; https://doi.org/10.3390/prosthesis6060108 - 9 Dec 2024
Cited by 1 | Viewed by 1599
Abstract
Background: Flatfoot deformity is a common condition in children and teenagers that may increase the risk of knee, hip, and back pain. Most of the insoles suggested to treat flatfoot symptoms are not designed to adapt to foot temperature during walking, and they [...] Read more.
Background: Flatfoot deformity is a common condition in children and teenagers that may increase the risk of knee, hip, and back pain. Most of the insoles suggested to treat flatfoot symptoms are not designed to adapt to foot temperature during walking, and they are either too soft to provide support or hard enough to be uncomfortable. Purpose: This study aims to develop an advanced solution to diagnose and treat flexible flatfoot (FFT) using infrared thermography measurements and a hybrid insole reinforced by nitinol (NiTiCu) smart-memory-alloy wires (SMAWs), this super-elastic alloy can return back to its pre-deformed shape when heated, which helps to reduce the local high-temperature points caused by the uneven pressure of FFT. This approach achieves a more uniform thermal distribution across the foot, which makes the hybrid insole more comfortable. Methods: The study involved 16 subjects, divided into two groups of eight flat-footed and eight normal. The procedure includes two parts, namely, designing a prototype insole with SMAW properties based on thermography measurement by using SolidWorks, and evaluating this design using Ansys. Second, a hybrid insole reinforced with SMAWs is customized for flatfoot subjects. The thermography measurement differences between the medial and lateral sides of the metatarsophalangeal line are compared for the normal and flatfoot groups before and after wearing the suggested design. Results: The results show that our approach safely diagnosed FFT and significantly improved the thermal distribution in FFT subjects by more than 80% after wearing the suggested design. A paired t-test reported significant (p-value > 0.001) thermal decreases in the high-temperature points after using the SMAW insole, which was closely approximated to the normal subjects. Conclusions: the SMAW-reinforced insole is comfortable and suitable for treating FFT deformity, and infrared thermography is an effective tool to evaluate FFT deformity. Full article
(This article belongs to the Special Issue Recent Advances in Foot Prosthesis and Orthosis)
Show Figures

Figure 1

14 pages, 4650 KB  
Article
Mechanocaloric Effects Characterization of Low-Crystalline Thermoplastic Polyurethanes Fiber
by Jiongjiong Zhang, Yilong Wu, You Lv, Guimei Zhu and Yuan Zhu
Polymers 2024, 16(23), 3360; https://doi.org/10.3390/polym16233360 - 29 Nov 2024
Cited by 1 | Viewed by 1052
Abstract
Mechanocaloric cooling/heat pumping with zero carbon emission and high efficiency shows great potential for replacing traditional refrigeration with vapor compression. Mechanocaloric prototypes that are developed using shape memory alloys (SMAs) face the problems of a large driving force and high cost. In this [...] Read more.
Mechanocaloric cooling/heat pumping with zero carbon emission and high efficiency shows great potential for replacing traditional refrigeration with vapor compression. Mechanocaloric prototypes that are developed using shape memory alloys (SMAs) face the problems of a large driving force and high cost. In this work, we report a low-crystalline thermoplastic polyetherurethane (TPU) elastomer fiber with a low actuation force and good mechanocaloric performance. We fabricate the TPU fiber and develop a multifunctional mechanical tester to measure both the elastocaloric and twistocaloric effects. In the experiments, the applied stress required to induce mechanocaloric effects of the TPU fiber is only 10~30 MPa, which is much lower than that of widely used NiTi elastocaloric SMAs (600~1200 MPa). The TPU fiber produces a maximum twistocaloric adiabatic temperature change of 10.2 K, which is 78.9% larger than its elastocaloric effect of 5.7 K. The wide-angle X-ray scattering (WAXS) results show that the strain-induced amorphous chain alignment and associated configurational entropy change are the main causes of the good mechanocaloric effects of the TPU fiber, rather than the strain-induced crystallization. This work demonstrates the potential of achieving low-force heat-efficient mechanocaloric cooling using thermoplastic elastomer fibers. Full article
(This article belongs to the Special Issue Thermal Properties Analysis of Polymers)
Show Figures

Graphical abstract

25 pages, 6663 KB  
Article
Optimization of Dynamic Characteristics of Rubber-Based SMA Composite Dampers Using Multi-Body Dynamics and Response Surface Methodology
by Yizhe Huang, Qiyuan Fan, Huizhen Zhang, Lefei Shao and Yuanyuan Shi
Appl. Sci. 2024, 14(21), 10063; https://doi.org/10.3390/app142110063 - 4 Nov 2024
Cited by 1 | Viewed by 2119
Abstract
The suspension system of a commercial vehicle cab plays a crucial role in enhancing ride comfort by mitigating vibrations. However, conventional rubber suspension systems have relatively fixed stiffness and damping properties, rendering them inflexible to load variations and resulting in suboptimal ride comfort [...] Read more.
The suspension system of a commercial vehicle cab plays a crucial role in enhancing ride comfort by mitigating vibrations. However, conventional rubber suspension systems have relatively fixed stiffness and damping properties, rendering them inflexible to load variations and resulting in suboptimal ride comfort under extreme road conditions. Shape memory alloys (SMAs) represent an innovative class of intelligent materials characterized by superelasticity, shape memory effects, and high damping properties. Recent advancements in materials science and engineering technology have focused on rubber-based SMA composite dampers due to their adjustable stiffness and damping through temperature or strain rate. This paper investigates how various structural parameters affect the stiffness and damping characteristics of sleeve-type rubber-based SMA composite vibration dampers. We developed a six-degree-of-freedom vibration differential equation and an Adams multi-body dynamics model for the rubber-based SMA suspension system in commercial vehicle cabins. We validated the model’s reliability through theoretical analysis and simulation comparisons. To achieve a 45% increase in stiffness and a 64.5% increase in damping, we optimized the suspension system’s z-axis stiffness and damping parameters under different operating conditions. This optimization aimed to minimize the z-axis vibration acceleration at the driver’s seat. We employed response surface methodology to design the composite shock absorber structure and then conducted a comparative analysis of the vibration reduction performance of the optimized front and rear suspension systems. This study provides significant theoretical foundations and practical guidelines for enhancing the performance of commercial vehicle cab suspension systems. Full article
Show Figures

Figure 1

Back to TopTop