Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,822)

Search Parameters:
Keywords = high-CO2 conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1475 KB  
Article
High-Pressure Green Technologies for the Recovery and Functionalization of Bioactive Compounds from Petiveria alliacea
by Gabriel Alfonso Burgos-Briones, Cristina Cejudo-Bastante, Alex Alberto Dueñas-Rivadeneira, Casimiro Mantell-Serrano and Lourdes Casas-Cardoso
Appl. Sci. 2025, 15(18), 9875; https://doi.org/10.3390/app15189875 (registering DOI) - 9 Sep 2025
Abstract
The growing demand for sustainable technologies in the extraction and functionalization of bioactive compounds has driven the development of innovative, eco-efficient methodologies. This study assesses the feasibility of high-pressure green technologies—Enhanced Solvent Extraction (ESE) and Pressurized Liquid Extraction (PLE)—for extracting bioactive compounds from [...] Read more.
The growing demand for sustainable technologies in the extraction and functionalization of bioactive compounds has driven the development of innovative, eco-efficient methodologies. This study assesses the feasibility of high-pressure green technologies—Enhanced Solvent Extraction (ESE) and Pressurized Liquid Extraction (PLE)—for extracting bioactive compounds from the leaves of Petiveria alliacea, a medicinal plant with significant pharmacological potential. The extracts obtained under optimal PLE conditions (100 bar, 75 °C, ethanol/water: 50:50 v/v) exhibited the highest total phenolic content (76.27 mg GAE/g) and notable antioxidant capacity. The same extract was tested for its antimicrobial activity against Escherichia coli, showing a minimum inhibitory concentration (MIC) of 9.48 µg/mL. Furthermore, the extract was successfully impregnated into polylactic acid (PLA) filaments via supercritical CO2 processing, achieving a maximum antioxidant inhibition of 6.81% under mild conditions (100 bar, 35 °C). The combination of pressurized extraction and supercritical impregnation provides a scalable and environmentally friendly pathway for producing functional biomaterials. These findings highlight the potential of integrating green extraction and material functionalization within the context of the circular bioeconomy and industrial biotechnology. Full article
(This article belongs to the Special Issue Supercritical Fluid in Industrial Applications)
11 pages, 3833 KB  
Article
Preparation of Ag-Decorated TiO2 Composite Materials and Study on Photocatalytic Performance
by Hongfei Dou, Jie Wang, Yan Zhao, Junjie Liu and Yannan Li
Nanomaterials 2025, 15(18), 1383; https://doi.org/10.3390/nano15181383 (registering DOI) - 9 Sep 2025
Abstract
Aiming at the insufficient broad-spectrum absorption and high carrier complexation rate in the photocatalytic antimicrobial application of TiO2, Ag/TiO2 composite materials were prepared by co-precipitation method in this study. The material characterization showed that Ag was uniformly dispersed on the [...] Read more.
Aiming at the insufficient broad-spectrum absorption and high carrier complexation rate in the photocatalytic antimicrobial application of TiO2, Ag/TiO2 composite materials were prepared by co-precipitation method in this study. The material characterization showed that Ag was uniformly dispersed on the TiO2 surface in the form of nanoparticles, and the specific surface area of Ag/TiO2 composite materials was enhanced by 59.6% compared with that of pure TiO2, and the mesoporous structure was significantly optimized. Visible photocatalytic tests showed that the degradation rate of Ag/TiO2 composite materials for Rh B and M O was more than two times higher than that of pure TiO2. Under dark conditions, the material showed a minimum inhibitory concentration (MIC) of 62.5 μg/mL against Escherichia coli and Staphylococcus aureus, with an antimicrobial rate of 99.8% for 8 h, confirming its non-light-dependent antimicrobial activity. Mechanistic studies revealed that photogenerated electrons were efficiently captured by Ag nanoparticles, which inhibited e-h+ complexation; meanwhile, the photothermal effect (ΔT > 15 °C) promoted the sustained release of Ag+, which realized the triple synergistic antimicrobial activity by disrupting the bacterial membrane and interfering with metabolism. This study provides a new strategy for the development of efficient solar-powered water treatment materials. Full article
Show Figures

Graphical abstract

18 pages, 946 KB  
Article
Dual-Function Bare Copper Oxide (Photo)Catalysts for Selective Phenol Production via Benzene Hydroxylation and Low-Temperature Hydrogen Generation from Formic Acid
by Antonietta Mancuso, Matteo Diglio, Salvatore Impemba, Vincenzo Venditto, Vincenzo Vaiano, Antonio Buonerba and Olga Sacco
Catalysts 2025, 15(9), 866; https://doi.org/10.3390/catal15090866 (registering DOI) - 9 Sep 2025
Abstract
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper [...] Read more.
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper acetate precursors and calcined for either 10 min or 2 h. Their structural and surface properties were characterized by wide-angle X-ray diffraction (WAXD), Raman spectroscopy, and BET surface area analysis. FAD was conducted under mild thermal conditions and monitored via 1H NMR spectroscopy. At the same time, benzene hydroxylation was performed under UV irradiation and analyzed by gas chromatography (GC) and high-performance liquid chromatography (HPLC). All synthesized catalysts outperformed commercial CuO in the selective oxidation of benzene. The nitrate-derived sample calcined for 10 min (NCuO 10 min) achieved the best performance, with a phenol yield of ~10% and a selectivity of up to 19%, attributed to improved surface properties and the presence of Cu(I) domains, as indicated by Raman spectroscopy. For FAD, complete conversion of formic acid was achieved at low temperatures, with selective H2 and CO2 evolution and complete suppression of CO, even under short reaction times and low catalyst loadings. These results demonstrate the potential of nitrate-derived CuO catalysts as versatile, dual-function materials for sustainable applications in selective aromatic oxidation and low-temperature hydrogen generation, without the need for noble metals or harsh conditions. Full article
(This article belongs to the Special Issue 15th Anniversary of Catalysts—Recent Advances in Photocatalysis)
Show Figures

Figure 1

4270 KB  
Article
Numerical Simulation of CO2 Injection and Production in Shale Oil Reservoirs with Radial Borehole Fracturing
by Dongyan Zhou, Haihai Dong, Xiaohui Wang, Wen Zhang, Xiaotian Li, Yang Cao, Qun Wang and Jiacheng Dai
Processes 2025, 13(9), 2873; https://doi.org/10.3390/pr13092873 (registering DOI) - 8 Sep 2025
Abstract
Shale oil is a vital strategic resource in China. Developing shale oil using CO2 not only enhances oil recovery but also contributes to achieving Chinese “dual carbon” goals. Given the challenges of insufficient number of fractures, inadequate vertical stimulation volume, and poor [...] Read more.
Shale oil is a vital strategic resource in China. Developing shale oil using CO2 not only enhances oil recovery but also contributes to achieving Chinese “dual carbon” goals. Given the challenges of insufficient number of fractures, inadequate vertical stimulation volume, and poor reservoir mobility associated with horizontal well fracturing, this study proposes a method for CO2 flooding based on radial borehole fracturing in a single well to achieve long-term carbon sequestration. To this end, a multi-component numerical model is built to analyze the production capacity of radial borehole fracturing. This study analyzed the impacts of non-Darcy flow, diffusion, and adsorption mechanisms on CO2 migration and sequestration. It also compared the applicability of continuous CO2 flooding and CO2 huff-and-puff under different matrix permeabilities. The results indicate that (1) CO2 flooding using radial borehole fracturing can achieve long-term oil production and carbon sequestration. (2) Under low permeability conditions, the liquid non-Darcy effect retards the flow of oil and CO2, while diffusion and adsorption facilitate CO2 sequestration in the reservoir. The impact on carbon sequestration is ranked as follows: non-Darcy effect > adsorption > diffusion. (3) High-permeability reservoirs are more suitable for carbon sequestration and should utilize continuous CO2 flooding. For low-permeability reservoirs (<0.001 mD), huff-and-puff should be employed to mobilize the reservoir around fractures and achieve carbon sequestration. The findings of this study are expected to provide new methods and a theoretical basis for efficient and economical carbon sequestration in shale oil reservoirs. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

5922 KB  
Article
Remaining Oil Distribution Characteristics in Sandy Conglomerate Reservoirs During CO2-WAG Flooding: Insights from Nuclear Magnetic Resonance (NMR) Technology
by Yue Wang, Tao Chang, Junliang Zhou, Junda Wu and Shuyang Liu
Processes 2025, 13(9), 2872; https://doi.org/10.3390/pr13092872 (registering DOI) - 8 Sep 2025
Abstract
Oil and gas reservoirs dominated by coarse clastic rocks, particularly conglomerates (including gravel sandstones), are commonly termed conglomerate reservoirs in both the domestic and international literature. Sandy conglomerate reservoirs generally have high thickness and high productivity per unit area, but because of their [...] Read more.
Oil and gas reservoirs dominated by coarse clastic rocks, particularly conglomerates (including gravel sandstones), are commonly termed conglomerate reservoirs in both the domestic and international literature. Sandy conglomerate reservoirs generally have high thickness and high productivity per unit area, but because of their characteristics such as rapid lithology change, strong heterogeneity, low porosity, and low permeability, it is difficult to develop conventional waterflooding. There is an urgent need for an efficient development scheme for the giant sandy conglomerate reservoir. In this study, nuclear magnetic resonance (NMR) technology was employed to investigate the stratified injection-production strategy for large-scale sandy conglomerate reservoirs. Three representative cores from different strata were selected to perform CO2 flooding and CO2-water alternating gas (WAG) flooding experiments, respectively. The aim was to explore how different development methods affect the recovery efficiency of various core types and the distribution of remaining oil under miscible and immiscible pressure conditions. The results show that immiscible CO2 flooding mainly displaces crude oil in large pores, and oil in micropores and mesopores is difficult to displace. After gas channeling, there is still a large area of residual oil “aggregate” in the core, and the recovery rate is low. Compared with medium-coarse sandstone, the strong heterogeneity of sandy conglomerates leads to early gas breakthrough and low recovery efficiency during gas flooding. Compared with CO2 flooding, CO2-WAG flooding can balance the micro-oil displacement effect between micropores and macropores, significantly improve the oil production in micropores and mesopores. Thus, CO2-WAG flooding has a certain micropore “profile control” effect, which can delay the gas channeling and improve the core recovery efficiency of reservoirs, especially for the highly heterogeneous sandstone. Miscible CO2 flooding can effectively extract the oil in the mesopores and micropores that immiscible CO2 flooding is difficult to displace. The gas breakthrough is slower and the recovery is much higher in miscible CO2-WAG flooding than that of immiscible one. Therefore, ensuring that the formation pressure is higher than the minimum miscible pressure to achieve miscible flooding is the key to reservoir stimulation. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoir Development and CO2 Storage)
Show Figures

Figure 1

20 pages, 11679 KB  
Article
Establishment of Multiplex Digital PCR Assay for Detection of Four Porcine Enteric Coronaviruses
by Xiao Han, Kexin Chen, Hui Qiu, Pengli Kong, Xiaoliang Li, Linglin Fu, Huan Li, Jinru Zhou, Xiaofeng Zhang and Jiangbing Shuai
Int. J. Mol. Sci. 2025, 26(17), 8731; https://doi.org/10.3390/ijms26178731 (registering DOI) - 8 Sep 2025
Abstract
Porcine enteric coronaviruses (CoVs), including swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine transmissible gastroenteritis virus (TGEV), are major pathogens causing porcine viral diarrhea syndrome (VDS), which brings significant economic losses to the swine industry; [...] Read more.
Porcine enteric coronaviruses (CoVs), including swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine transmissible gastroenteritis virus (TGEV), are major pathogens causing porcine viral diarrhea syndrome (VDS), which brings significant economic losses to the swine industry; distinguishing between these clinically similar viruses has become a serious challenge. We developed a highly specific and interference-resistant porcine CoV multiplex digital PCR (dPCR) assay. The assay exhibited robust anti-interference capabilities, as the concentrations of the four viruses did not affect their accurate quantification. The coefficients of variation (CV%) of intra-batch and inter-batch repeatability for all target viruses were less than 11%. The limit of quantification (LoQ) of this dPCR assay reached 7.5 copies/reaction for each target, and it was one order of magnitude more sensitive than qPCR. The limits of detection (LoD) for SADS-CoV, PEDV, PDCoV, and TGEV were 2.72, 3.00, 3.56, and 3.19 copies/reaction, respectively. A total of 408 known samples were used for validation tests, and the results were highly consistent with the known conditions, showing a compliance rate of 97–100%. The diagnostic specificity (Dsp) of the method was 99–100%. In conclusion, the developed multiplex dPCR assay is highly suitable for early detection and quarantine in four porcine CoVs. The results indicate that this dPCR method is characterized by high specificity, anti-interference capabilities, repeatability, and high sensitivity. It also demonstrates a high compliance rate and diagnostic specificity in sample detection. This multiplex dPCR will contribute to the control of porcine enteric CoV-caused VDS and provide clues for subsequent research. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 5757 KB  
Article
Machine Learning-Assisted Comparative Analysis of Fracture Propagation Mechanisms in CO2 and Hydraulic Fracturing of Acid-Treated Tight Sandstone
by Jie Huang, Zhenlong Song, Weile Geng and Qinming Liang
Appl. Sci. 2025, 15(17), 9822; https://doi.org/10.3390/app15179822 (registering DOI) - 8 Sep 2025
Abstract
Carbon dioxide (CO2) fracturing and acid treatment are currently considered promising approaches to overcome the challenge of excessively high initiation pressure during conventional hydraulic fracturing in tight sandstone gas reservoirs. However, the mechanisms of these methods weaken the reservoir rock’s mechanical [...] Read more.
Carbon dioxide (CO2) fracturing and acid treatment are currently considered promising approaches to overcome the challenge of excessively high initiation pressure during conventional hydraulic fracturing in tight sandstone gas reservoirs. However, the mechanisms of these methods weaken the reservoir rock’s mechanical properties, remain unclear. Using a machine learning approach, we elucidate the differences in initiation mechanisms between CO2 fracturing and hydraulic fracturing under acid-treated conditions, thereby providing a mechanistic explanation for the lower initiation pressure observed in CO2 fracturing compared to conventional hydraulic fracturing. The tensile fractures, shear fractures, and acid-modified fractures have been identified by a specially trained AI model, which achieved exceptional accuracy (95.4%). Acoustic emission source locations show that CO2 fracturing mainly causes shear fracture along acid-weakened planes, which promotes the propagation of composite tensile-shear fractures in untreated reservoir areas. Due to the significantly lower diffusivity of water compared to CO2, hydraulic fracturing predominantly induces non-acidic mixed-mode (tensile-shear) fractures. This fundamental difference in fracture patterns accounts for the higher initiation pressure observed in hydraulic fracturing compared to CO2 fracturing. These findings offer crucial insights into pressurized fluid-driven fracturing mechanisms and propose an optimized technical pathway for enhancing hydrocarbon recovery in low-permeability sandstone formations. Full article
Show Figures

Figure 1

22 pages, 10187 KB  
Article
Box–Behnken-Assisted Optimization of High-Performance Liquid Chromatography Method for Enhanced Sugar Determination in Wild Sunflower Nectar
by Nada Grahovac, Milica Aleksić, Lato Pezo, Ana Đurović, Zorica Stojanović, Jelena Jocković and Sandra Cvejić
Separations 2025, 12(9), 244; https://doi.org/10.3390/separations12090244 - 7 Sep 2025
Viewed by 81
Abstract
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols [...] Read more.
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols (e.g., mannitol and inositol) occur in lower concentrations and vary with biotic and abiotic factors. This study developed a robust high-performance liquid chromatography method with refractive index detection (HPLC-RID) for the simultaneous quantification of eight sugars (D-ribose, xylose, arabinose, fructose, mannose, glucose, sucrose, and maltose) and two sugar alcohols (mannitol, meso-inositol) in wild sunflower nectar. A Box–Behnken design (BBD), coupled with response surface methodology (RSM), was used to systematically optimize column temperature (20–23 °C), acetonitrile concentration (80–85%), and flow rate (0.7–1 mL/min), while achieving baseline separation of critical sugar pairs, including the previously co-eluting glucose/mannitol and glucose/mannose. Satisfactory resolution (Rs > 1 for all analytes) was achieved under optimized separation conditions comprising a column temperature of 20 °C, 82.5% acetonitrile, and a flow rate of 0.766 mL/min. The RSM efficiently evaluated factor interactions to maximize chromatographic performance, resulting in an optimized protocol that provides a cost-effective and environmentally friendly alternative to conventional sugar analysis methods. Method validation confirmed satisfactory linearity across relevant concentration ranges (50–500 mg/L for most sugars; 50–5500 mg/L for fructose and glucose), with correlation coefficients (R) between 0.985 and 0.999. The limits of detection (LOD) and quantification (LOQ) for the analyzed sugars and sugar alcohols ranged from 4.04 to 19.46 mg/L and from 13.46 to 194.61 mg/L, respectively. Glucose exhibited the highest sensitivity showing LOD of 4.04 and LOQ of 13.46 mg/L, whereas mannose was identified as the least sensitive analyte, with LOD of 19.46 mg/L and LOQ of 194.61 mg/L. The described method represents a reliable tool for sugar and sugar alcohol analysis in sunflower nectar and can be extended to other plant and food matrices with suitable sample preparation. Full article
(This article belongs to the Special Issue Innovative Sustainable Methods for Food Component Extraction)
Show Figures

Graphical abstract

14 pages, 6680 KB  
Article
In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries
by Fei Zhou, Jinwei Tan, Feixiang Wang and Meiling Sun
Batteries 2025, 11(9), 334; https://doi.org/10.3390/batteries11090334 - 6 Sep 2025
Viewed by 374
Abstract
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial [...] Read more.
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial compatibility, and low processing costs; however, their practical deployment is hindered by poor oxidative stability especially under high-voltage conditions. In this study, we report the rational design of a bilayer electrolyte architecture featuring an in situ solidified LiClO4-doped succinonitrile (LiClO4–SN) plastic–crystal interlayer between a Li1.2Mn0.6Ni0.2O2 (LMNO) cathode and a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based PISSE. This PISSE/SN–LiClO4 configuration exhibits a wide electrochemical stability window up to 4.7 V vs. Li+/Li and delivers a high ionic conductivity of 5.68 × 10−4 S cm−1 at 25 °C. The solidified LiClO4-SN layer serves as an effective physical barrier, shielding the PVDF-HFP matrix from direct interfacial contact with LMNO and thereby suppressing its oxidative decomposition at elevated potentials. As a result, the bilayer polymer-based cells with the LMNO cathode demonstrate an initial discharge capacity of ∼206 mAh g−1 at 0.05 C and exhibit good cycling stability with 85.7% capacity retention after 100 cycles at 0.5 C under a high cut-off voltage of 4.6 V. This work not only provides a promising strategy to enhance the compatibility of PVDF-HFP-based electrolytes with high-voltage cathodes through the facile in situ solidification of plastic interlayers but also promotes the application of LMNO cathode material in high-energy ASSLBs. Full article
Show Figures

Graphical abstract

30 pages, 19792 KB  
Article
The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation
by Arkadii Bikbashev, Tomáš Stryšovský, Martina Kajabová, Zuzana Kovářová, Arati Prakash Tibe, Karolína Simkovičová, Robert Prucek, Aleš Panáček, Josef Kašlík, Patrizia Frontera, Kouřil Roman, Arian Grainca, Carlo Pirola, Libor Brabec, Zdeněk Bastl, Štefan Vajda and Libor Kvítek
Nanomaterials 2025, 15(17), 1379; https://doi.org/10.3390/nano15171379 - 6 Sep 2025
Viewed by 282
Abstract
Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds [...] Read more.
Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds in the form of microparticles (MPs), and particularly nanoparticles (NPs), improve the catalytic activity of Ni-based catalysts due to their high specific surface area. Solvothermal synthesis, which has so far been neglected for the synthesis of Ni-based methanation catalysts, was used in this study to synthesize nickel and nickel oxide MPs and NPs with a narrow size distribution. Solvothermal synthesis allows for the control of both the chemical composition of the resulting Ni catalysts and their physical structure by simply changing the reaction conditions (solvent, temperature, or concentration of reactants). Only non-toxic substances were used for synthesis in this study, meaning that the whole synthesis process can be described as environmentally friendly. Solvothermally prepared Ni compounds were subsequently transformed into nickel oxide by means of high-temperature decomposition, and all of the prepared Ni-based compounds were tested as catalysts for CO2 methanation. The best catalysts prepared in this study exhibited a CO2 conversion rate of nearly 95% and a selectivity for methane close to 100%, which represent thermodynamic limits for this reaction at the used temperature. These results are commonly achieved with much more complex catalytic composites containing precious metals, while here we worked with pure nickel and its oxides, in the form of micro- or nanoparticles, only. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

22 pages, 3333 KB  
Article
A Regulatory Network of Arabinogalactan Proteins, Glycosylation, and Nucleotide Sugars for Optimizing Mara des Bois Strawberries Postharvest Storage Quality
by María Isabel Escribano, Irene Romero, María Teresa Sanchez-Ballesta and Carmen Merodio
Plants 2025, 14(17), 2796; https://doi.org/10.3390/plants14172796 - 6 Sep 2025
Viewed by 146
Abstract
Arabinogalactan proteins (AGPs) and extensins influence cell wall assembly and regulate plant cell mechanical properties through interactions with extracellular matrix polymers. These proteins may play a key role in the biochemical events underlying postharvest treatments aimed at controlling fruit texture and turgor loss [...] Read more.
Arabinogalactan proteins (AGPs) and extensins influence cell wall assembly and regulate plant cell mechanical properties through interactions with extracellular matrix polymers. These proteins may play a key role in the biochemical events underlying postharvest treatments aimed at controlling fruit texture and turgor loss associated with senescence-related disorders. We studied the temporal and spatial accumulation patterns of extensin and AGP isoforms constitutively expressed along with the profiling of nucleotide sugars UDP-galactose, UDP-arabinose, UDP-glucuronic acid, and UDP-rhamnose in Mara des Bois strawberries under different storage conditions. We also assessed the expression timing of AGP-encoding genes (FvAFP4, FvAGP5) and genes involved in key steps of post-translational glycosylation (FvP4H1, FvGAT20, FvGAT7). Whereas extensins are down-regulated, AGPs are transcriptionally regulated by cold and cold-high CO2 and post-translationally modulated after transfer to 20 °C. Based on their subcellular localization, molecular properties, isoform-specific glycosylation, UDP-sugar availability, and timing-regulated expression, AGPs are likely involved in cell wall assembly and modulation of mechanical properties. Consequently, they may influence fruit texture and enhanced softening resistance, potentially counteracting senescence-associated disorders through CO2-responsive signaling mechanisms. Conversely, the decrease in both UDP-galactose levels and AGPs gene expression in non-cold-stored senescent strawberries at 20 °C further supports their relevance in AGPs biosynthesis regulation and underscores their potential as markers for improving postharvest storage strategies. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

20 pages, 2925 KB  
Article
Development of High-Performance Biocomposites from Kenaf, Bagasse, Hemp, and Softwood: Effects of Fiber pH Modification and Adhesive Selection on Structural Properties Correlated with FTIR Analysis
by Z. Osman, Y. Senhaji, Mohammed Elamin, Yann Rogaume, Antonio Pizzi, Fatima Charrier-El Bouhtoury and Bertrand Charrier
Fibers 2025, 13(9), 121; https://doi.org/10.3390/fib13090121 - 5 Sep 2025
Viewed by 228
Abstract
This study aims to develop high-performance biocomposites for structural applications using kenaf, bagasse, hemp, and softwood fibers bonded with phenol-formaldehyde (PF) and phenol-urea-formaldehyde (PUF) adhesives, commonly used in particleboard manufacturing. A simple, low-cost fiber treatment was applied by adjusting the fiber pH to [...] Read more.
This study aims to develop high-performance biocomposites for structural applications using kenaf, bagasse, hemp, and softwood fibers bonded with phenol-formaldehyde (PF) and phenol-urea-formaldehyde (PUF) adhesives, commonly used in particleboard manufacturing. A simple, low-cost fiber treatment was applied by adjusting the fiber pH to 11 and 13 using a 33% NaOH solution, following standard protocols to enhance fiber–adhesive interaction. The effects of alkaline treatment on the chemical structure of bagasse, kenaf, and hemp fibers were investigated using Fourier Transform Infrared Spectroscopy (FTIR) and correlated with composite mechanical performance. PF and PUF were applied at 13% (w/w), while polymeric diphenylmethane diisocyanate (pMDI) at 5% (w/w) served as a control for untreated fibers. The fabricated panels were evaluated for mechanical properties; modulus of elasticity (MOE), modulus of rupture (MOR), and internal bond strength (IB), and physical properties such as thickness swelling (TS) and water absorption (WA) after 24 h of immersion. FTIR analysis revealed that treatment at pH 11 increased the intensity of O–H, C–O–C, and C–O bands and led to the disappearance of the C=O band (~1700 cm−1) in all fibers. Bagasse treated at pH 11 showed the most significant spectral changes and the highest IB values with both PF and PUF adhesives, followed by kenaf at pH 13, exceeding EN 312:6 (2010) standards for heavy-duty load-bearing panels in dry conditions. The highest MOE and MOR values were achieved with kenaf at pH 11, meeting EN 312:4 (2010) requirements, followed by bagasse, while softwood and hemp performed less favorably. In terms of thickness swelling, bagasse consistently outperformed all other fibers across pH levels and adhesives, followed by Kenaf and Hemp, surpassing even pMDI-based composites. These results suggest that high-pH treatment enhances the reactivity of PF and PUF adhesives by increasing the nucleophilic character of phenolic rings during polymerization. The performance differences among fibers are also attributed to variations in the aspect ratio and intrinsic structural properties influencing fiber–adhesive interactions under alkaline conditions. Overall, kenaf and bagasse fibers emerge as promising, sustainable alternatives to industrial softwood particles for structural particleboard production. PF and PUF adhesives offer cost-effective and less toxic options compared to pMDI, supporting their use in eco-friendly panel manufacturing. FTIR spectroscopy proved to be a powerful method for identifying structural changes caused by alkaline treatment and provided valuable insights into the resulting mechanical and physical performance of the biocomposites. Full article
Show Figures

Figure 1

21 pages, 7452 KB  
Article
Efficient Cataluminescence Sensor for Detecting Methanol Based on NiCo2O4//MIL-Ti125 Polyhedral Composite Nano-Materials
by Hongyan Wang, Ziyu Shao, Mao Cai, Guoji Shi and Bai Sun
Chemosensors 2025, 13(9), 339; https://doi.org/10.3390/chemosensors13090339 - 5 Sep 2025
Viewed by 115
Abstract
Since methanol has a significant health hazard due to its inherent toxicity, it is urgent to develop a method capable of rapid, sensitive, and continuous monitoring of methanol. The present study successfully synthesized a NiCo2O4/MIL-Ti125 composite material and [...] Read more.
Since methanol has a significant health hazard due to its inherent toxicity, it is urgent to develop a method capable of rapid, sensitive, and continuous monitoring of methanol. The present study successfully synthesized a NiCo2O4/MIL-Ti125 composite material and conducted a comprehensive analysis of its effectiveness for the detection of methanol employing cataluminescence (CTL) technology. The findings demonstrated that the composite material displays marked CTL in response to methanol, showcasing notable sensitivity, selectivity, and stability. The composite’s heterogeneous structure significantly improves the adsorption and reaction efficiency of methanol and further reduces the sensor’s working temperature. Under the optimal conditions of 215 °C and a flow rate of 300 mL/min, the CTL signal intensity is governed by the equation Y = 10.388X − 4.473 (R2 = 0.982), with a detection limit as low as 0.431 ppm. The NiCo2O4/MIL-Ti125 sensor exhibits high selectivity towards methanol. In addition, a relative standard deviation (RSD) of 4.95% demonstrates its excellent stability. Utilizing X-ray photoelectron spectroscopy (XPS), the study investigated the impact of elemental valence changes on the CTL process. We believe that the NiCo2O4/MIL-Ti125 composite material, as a high-performance low-temperature CTL methanol sensor, is promising for applications. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

32 pages, 6751 KB  
Article
Investigation of the Effectiveness of a Compact Heat Exchanger with Metal Foam in Supercritical Carbon Dioxide Cooling
by Roman Dyga
Energies 2025, 18(17), 4736; https://doi.org/10.3390/en18174736 - 5 Sep 2025
Viewed by 407
Abstract
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described [...] Read more.
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described work was to evaluate the potential for improving the performance of printed circuit heat exchangers by incorporating open-cell metal foam as the heat exchanger packing material. The evaluation was conducted based on the results of numerical simulation of supercritical carbon dioxide cooling flowing through printed circuit heat exchanger channels filled with 40 PPI copper foam with 90% porosity. A unit periodic region of the heat exchanger comprising two adjacent straight channels for cold and hot fluid was analyzed. The channels had a semicircular cross-section and a length of 200 mm. Studies were conducted for three different channel diameters—2, 3, and 4 mm. The range of mass flux variations for cold fluid (water) and hot fluid (sCO2) were 300–1500 kg/(m2·s) and 200–800 kg/(m2·s), respectively. It was found that in channels filled with metal foam, carbon dioxide cooling is characterized by a higher heat transfer coefficient than in channels without metal foam. In channels of the same diameter, heat flux was 33–63% higher in favor of the channel with metal foam. Thermal effectiveness of the heat exchanger with metal foam can be up to 20% higher than in the case of a heat exchanger without foam. Despite very high pressure drop through channels filled with metal foam, thermal–hydraulic performance can also be higher—even 4.7 in the case of a 2 mm channel. However, both these parameters depend on flow conditions and channel diameter, and under certain conditions may be lower than in a heat exchanger without metal foam. The results of the presented work indicate a new direction for the development of PCHE heat exchangers and confirm that the use of metal foams in the construction of PCHE heat exchangers can contribute to increasing the efficiency and effectiveness of the processes in which they are used. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

23 pages, 2435 KB  
Article
Explainable Deep Kernel Learning for Interpretable Automatic Modulation Classification
by Carlos Enrique Mosquera-Trujillo, Juan Camilo Lugo-Rojas, Diego Fabian Collazos-Huertas, Andrés Marino Álvarez-Meza and German Castellanos-Dominguez
Computers 2025, 14(9), 372; https://doi.org/10.3390/computers14090372 - 5 Sep 2025
Viewed by 229
Abstract
Modern wireless communication systems increasingly rely on Automatic Modulation Classification (AMC) to enhance reliability and adaptability, especially in the presence of severe signal degradation. However, despite significant progress driven by deep learning, many AMC models still struggle with high computational overhead, suboptimal performance [...] Read more.
Modern wireless communication systems increasingly rely on Automatic Modulation Classification (AMC) to enhance reliability and adaptability, especially in the presence of severe signal degradation. However, despite significant progress driven by deep learning, many AMC models still struggle with high computational overhead, suboptimal performance under low-signal-to-noise conditions, and limited interpretability, factors that hinder their deployment in real-time, resource-constrained environments. To address these challenges, we propose the Convolutional Random Fourier Features with Denoising Thresholding Network (CRFFDT-Net), a compact and interpretable deep kernel architecture that integrates Convolutional Random Fourier Features (CRFFSinCos), an automatic threshold-based denoising module, and a hybrid time-domain feature extractor composed of CNN and GRU layers. Our approach is validated on the RadioML 2016.10A benchmark dataset, encompassing eleven modulation types across a wide signal-to-noise ratio (SNR) spectrum. Experimental results demonstrate that CRFFDT-Net achieves an average classification accuracy that is statistically comparable to state-of-the-art models, while requiring significantly fewer parameters and offering lower inference latency. This highlights an exceptional accuracy–complexity trade-off. Moreover, interpretability analysis using GradCAM++ highlights the pivotal role of the Convolutional Random Fourier Features in the representation learning process, providing valuable insight into the model’s decision-making. These results underscore the promise of CRFFDT-Net as a lightweight and explainable solution for AMC in real-world, low-power communication systems. Full article
(This article belongs to the Special Issue AI in Complex Engineering Systems)
Show Figures

Figure 1

Back to TopTop