Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (439)

Search Parameters:
Keywords = hybrid thin films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 33851 KB  
Article
Wheat Straw Lignin Nanoparticles as Active Filler in Thermoplastic Starch Films
by Florian Zikeli, Franco Dominici, Marco Rallini, Sebastian Serna-Loaiza, Walter Wukovits, Anton Friedl, Michael Harasek, Luigi Torre and Debora Puglia
Polymers 2025, 17(17), 2308; https://doi.org/10.3390/polym17172308 - 26 Aug 2025
Abstract
Starch and lignin are promising biopolymers for the production of biodegradable biocomposite materials. The possibility of processing starch into thermoplastic materials qualifies it as a starting material for the preparation of thermoplastic packaging films, and the combination with lignin can even out some [...] Read more.
Starch and lignin are promising biopolymers for the production of biodegradable biocomposite materials. The possibility of processing starch into thermoplastic materials qualifies it as a starting material for the preparation of thermoplastic packaging films, and the combination with lignin can even out some inherent weak points of starch, such as moisture and water sensitivity, and can add additional features like antioxidant activity. Lignins from herbaceous biomass carry building blocks that are not found in wood lignins and are known for their bioactivity, such as p-coumaric acid or ferulic acid. In this work, a protocol was developed to initially prepare hybrids of wheat starch granules and lignin nanoparticles, which were then plasticized using glycerol in an extrusion process to produce thin films. The lignin-containing thermoplastic starch films showed higher Young’s moduli and less elongation at break compared to neat thermoplastic starch films, while tensile strength remained at the level of the neat films. Thermal stability was slightly increased by lignin addition, and oxygen transmission rates were low for lignin contents as low as 1 wt%. The hydrophobicity of the lignin-containing films increased strongly, and they showed an elevated antioxidant activity over several hours, which was also maintained after 24 h. The preparation of hybrid wheat starch lignin particles was successfully tested for the extrusion of thermoplastic starch films with improved thermomechanical properties, decreased water sensitivity, and prolonged antioxidant activity. Full article
(This article belongs to the Special Issue Advanced Study on Lignin-Containing Composites)
9 pages, 1337 KB  
Communication
Photonic–Surface Plasmon Coupling Mode: Experimental Study with a Silver Thin-Film Coating on MPCC
by Pengfei Li, Zhanwu Xie, Haitao Yan and Shitong Zhong
Photonics 2025, 12(8), 811; https://doi.org/10.3390/photonics12080811 - 13 Aug 2025
Viewed by 249
Abstract
In this paper, a silver thin film coating on a monolayer polystyrene colloidal crystal (MPCC) hybrid structure was fabricated, and a photonic–surface plasmon coupling mode was established and experimentally researched. The silver thin film was sputtered onto the MPCC to form Ag-MPCC. The [...] Read more.
In this paper, a silver thin film coating on a monolayer polystyrene colloidal crystal (MPCC) hybrid structure was fabricated, and a photonic–surface plasmon coupling mode was established and experimentally researched. The silver thin film was sputtered onto the MPCC to form Ag-MPCC. The silver film effectively excites surface plasmon polariton (SPP) modes upon the incidence of light, and the MPCC has an intrinsic mode. These two modes couple and result in the extraordinary optical transmission (EOT) phenomenon in the transmission spectrum. Reflection suppression arising from this photon coupling effect was discovered in the reflection spectrum. We etched the single-layer colloidal particles to change the period of the colloidal crystal, thereby forming the MPCC metal hybrid structure with different lattices. We discussed and analyzed the results through experiments. The EOT can be controlled by the incident angle, lattice periodicity, and refractive index distribution of the Ag-MPCC, and the diffraction behavior is determined using the lattice structure and refractive index of the MPCC. The coupling effect of the two models leads to wavelength shifts and intensity variations in the spectral eigenvalues. Reflection suppression is achieved when the reflectivity at a specific wavelength is close to 0.1. Full article
Show Figures

Figure 1

15 pages, 796 KB  
Article
Electroassisted Incorporation of Ferrocene Within Sol–Gel Silica Films to Enhance Electron Transfer—Part II: Boosting Protein Sensing with Polyelectrolyte-Modified Silica
by Rayane-Ichrak Loughlani, Alonso Gamero-Quijano and Francisco Montilla
Molecules 2025, 30(15), 3246; https://doi.org/10.3390/molecules30153246 - 2 Aug 2025
Viewed by 356
Abstract
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either [...] Read more.
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either negatively charged poly(4-styrene sulfonic acid) or positively charged poly(diallyl dimethylammonium chloride). These hybrid films were deposited onto ITO electrodes and evaluated via cyclic voltammetry in aqueous ferrocenium solutions. The polyelectrolyte charge played a key role in the electroassisted incorporation of ferrocene: silica-PSS films promoted accumulation, while silica-PDADMAC films hindered it due to electrostatic repulsion. In situ UV-vis spectroscopy confirmed that only a fraction of the embedded ferrocene was electroactive. Nevertheless, this fraction enabled effective mediated detection of cytochrome c in solution. These findings highlight the crucial role of ionic interactions and hybrid composition in electron transfer to redox proteins, providing valuable insights for the development of advanced bioelectronic sensors. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

13 pages, 3623 KB  
Article
Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure
by Ha-Jung Kim, Jae-Hyuk Choi, Seong-Eui Lee, So-Won Kim and Hee-Chul Lee
Materials 2025, 18(15), 3547; https://doi.org/10.3390/ma18153547 - 29 Jul 2025
Viewed by 413
Abstract
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN [...] Read more.
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN electrode structure, incorporating W electrodes as insertion layers, were fabricated. Rapid thermal annealing (RTA) was subsequently employed to control the crystalline phase of the films. The electrical and structural properties of the capacitors were analyzed based on the RTA temperature, and the presence, thickness, and position of the W insertion electrode layer. Consequently, the capacitor with 5 nm-thick W electrode layers inserted on both the top and bottom sides and annealed at 700 °C exhibited the highest remnant polarization (2Pr = 61.0 μC/cm2). Moreover, the symmetric hybrid electrode capacitors annealed at 500–600 °C also exhibited high 2Pr values of approximately 50.4 μC/cm2, with a leakage current density of approximately 4 × 10−5 A/cm2 under an electric field of 2.5 MV/cm. The findings of this study are expected to contribute to the development of electrode structures for improved performance of HZO-based ferroelectric memory devices. Full article
Show Figures

Figure 1

13 pages, 3688 KB  
Article
Layer-by-Layer Engineered Zinc–Tin Oxide/Single-Walled Carbon Nanotube (ZTO/SWNT) Hybrid Films for Thin-Film Transistor Applications
by Yong-Jae Kim, Young-Jik Lee, Yeon-Hee Kim, Byung Seong Bae and Woon-Seop Choi
Micromachines 2025, 16(7), 825; https://doi.org/10.3390/mi16070825 - 20 Jul 2025
Viewed by 703
Abstract
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with [...] Read more.
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with considerable potential, but its relatively low carrier mobility and inherent limitations in thin-film quality demand further performance enhancements. This paper proposes a new approach to overcome these challenges by incorporating single-walled carbon nanotubes (SWNTs) as conductive fillers into the ZTO matrix and using a layer-by-layer multiple coating process to construct nanocomposite thin films. As a result, ZTO/SWNTs (0.07 wt.%) thin-film transistors (TFTs) fabricated with three coating cycles exhibited a high saturation mobility of 18.72 cm2/V·s, a threshold voltage of 0.84 V, and a subthreshold swing of 0.51 V/dec. These values represent an approximately four-fold improvement in mobility compared to ZTO TFT, showing that the multiple-coating-based nanocomposite strategy can effectively overcome the fundamental limitations. This study confirms the feasibility of achieving high-performance oxide semiconductor transistors without indium, providing a sustainable pathway for next-generation flexible electronics and display technologies. Full article
Show Figures

Figure 1

14 pages, 2149 KB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Viewed by 400
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

45 pages, 1648 KB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 1229
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

18 pages, 6277 KB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Viewed by 441
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

20 pages, 2096 KB  
Article
Study of Total Ammoniacal Nitrogen Recovery Using Polymeric Thin-Film Composite Membranes for Continuous Operation of a Hybrid Membrane System
by Shirin Shahgodari, Joan Llorens and Jordi Labanda
Polymers 2025, 17(12), 1696; https://doi.org/10.3390/polym17121696 - 18 Jun 2025
Viewed by 378
Abstract
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for [...] Read more.
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for reuse. The results showed that TAN rejection was significantly influenced by membrane type, feed pH, and the ammonium salt used. This study represents the first attempt to simulate real manure wastewater conditions typically found in pig manure. TAN rejection for (NH4)2SO4 and NH4HCO3 reached up to 95% at pH values below 7, with the SW30 membrane showing the highest performance (99.5%), attributed to effective size exclusion and electrostatic repulsion of SO42− and HCO3 ions. In contrast, lower rejection was observed for NH4Cl, particularly with the MPF-34 membrane, due to its higher molecular weight cut-off (MWCO), which diminishes both exclusion mechanisms. TAN rejection decreased markedly with increasing pH across the BW30, NF90, and MPF-34 membranes as the proportion of uncharged NH3 increased. The lowest rejection rates (<15%) were recorded at pH 11.5 for both NF membranes. These results reveal a notable shift in separation behavior, where NH3 permeation under alkaline conditions becomes dominant over the commonly reported NH4+ retention at low pH. This novel insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. TAN recovery was evaluated using a hybrid membrane system, where NF membranes operated at high pH promoted NH3 permeation, and the SW30 membrane at pH 6.5 enabled TAN rejection as (NH4)2SO4. This hybrid system insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. Based on NH3 permeation and membrane characteristics, the NF90 membrane was operated at pH 9.5, achieving a TAN recovery of 48.3%, with a TAN concentration of 11.7 g/L, corresponding to 0.9% nitrogen. In contrast, the MPF-34 membrane was operated at pH 11.5. The NF90–SW30 system also achieved a TAN recovery of 48.3%, yielding 11.7 g/L of TAN with a nitrogen content of 1.22%. These nitrogen concentrations indicate that both retentate streams are suitable for use as liquid fertilizers in the form of (NH4)2SO4. A preliminary economic assessment estimated the chemical consumption cost at 0.586 EUR/kg and 0.729 EUR/kg of (NH4)2SO4 produced for the NF90–SW30 and MPF-34–SW30 systems, respectively. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

11 pages, 5145 KB  
Article
Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition
by Jiahui Liu, Yuliang Ye and Zunxian Yang
Materials 2025, 18(12), 2879; https://doi.org/10.3390/ma18122879 - 18 Jun 2025
Viewed by 408
Abstract
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized [...] Read more.
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized by depositing zinc oxide (ZnO) onto island-like CsPbBr3 film via atomic layer deposition (ALD) at 70 °C. Due to the capability of ALD to grow high-quality films over small surface areas, dense and thin ZnO film filled the gaps between the island-shaped CsPbBr3 grains, thereby enabling reduced light-absorption losses and efficient charge transport between the CsPbBr3 light absorber and the ZnO electron-transport layer. This ZnO/island-like CsPbBr3 hybrid synaptic transistor could operate at a drain-source voltage of 1.0 V and a gate-source voltage of 0 V triggered by green light (500 nm) pulses with low light intensities of 0.035 mW/cm2. The device exhibited a quiescent current of ~0.5 nA. Notably, after patterning, it achieved a significantly reduced off-state current of 10−11 A and decreased the quiescent current to 0.02 nA. In addition, this transistor was able to mimic fundamental synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), short-term to long-term plasticity (STP to LTP) transitions, and learning-experience behaviors. This straightforward strategy demonstrates the possibility of utilizing neuromorphic synaptic device applications under low voltage and weak light conditions. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

20 pages, 1857 KB  
Article
Fractional Dynamics of Laser-Induced Heat Transfer in Metallic Thin Films: Analytical Approach
by M. A. I. Essawy, Reham A. Rezk and Ayman M. Mostafa
Fractal Fract. 2025, 9(6), 373; https://doi.org/10.3390/fractalfract9060373 - 10 Jun 2025
Viewed by 746
Abstract
This study introduces an innovative analytical solution to the time-fractional Cattaneo heat conduction equation, which models photothermal transport in metallic thin films subjected to short laser pulse irradiation. The model integrates the Caputo fractional derivative of order 0 < p ≤ 1, addressing [...] Read more.
This study introduces an innovative analytical solution to the time-fractional Cattaneo heat conduction equation, which models photothermal transport in metallic thin films subjected to short laser pulse irradiation. The model integrates the Caputo fractional derivative of order 0 < p ≤ 1, addressing non-Fourier heat conduction characterized by finite wave speed and memory effects. The equation is nondimensionalized through suitable scaling, incorporating essential elements such as a newly specified laser absorption coefficient and uniform initial and boundary conditions. A hybrid approach utilizing the finite Fourier cosine transform (FFCT) in spatial dimensions and the Laplace transform in temporal dimensions produces a closed-form solution, which is analytically inverted using the two-parameter Mittag–Leffler function. This function inherently emerges from fractional-order systems and generalizes traditional exponential relaxation, providing enhanced understanding of anomalous thermal dynamics. The resultant temperature distribution reflects the spatiotemporal progression of heat from a spatially Gaussian and temporally pulsed laser source. Parametric research indicates that elevating the fractional order and relaxation time amplifies temporal damping and diminishes thermal wave velocity. Dynamic profiles demonstrate the responsiveness of heat transfer to thermal and optical variables. The innovation resides in the meticulous analytical formulation utilizing a realistic laser source, the clear significance of the absorption parameter that enhances the temperature amplitude, the incorporation of the Mittag–Leffler function, and a comprehensive investigation of fractional photothermal effects in metallic nano-systems. This method offers a comprehensive framework for examining intricate thermal dynamics that exceed experimental capabilities, pertinent to ultrafast laser processing and nanoscale heat transfer. Full article
Show Figures

Figure 1

20 pages, 1490 KB  
Review
Liposome-Based Drug Delivery Systems: From Laboratory Research to Industrial Production—Instruments and Challenges
by Suman Basak and Tushar Kanti Das
ChemEngineering 2025, 9(3), 56; https://doi.org/10.3390/chemengineering9030056 - 27 May 2025
Cited by 4 | Viewed by 3556
Abstract
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid [...] Read more.
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid clearance. This review provides a comprehensive exploration of the evolution of liposomes from laboratory models to clinically approved therapeutics, highlighting their structural adaptability, functional tunability, and transformative impact on modern medicine. We discuss pivotal laboratory-scale preparation techniques, including thin-film hydration, ethanol injection, and reverse-phase evaporation, along with their inherent advantages and limitations. The challenges of transitioning to industrial-scale production are examined, with emphasis on achieving batch-to-batch consistency, scalability, regulatory compliance, and cost-effectiveness. Innovative strategies, such as the incorporation of microfluidic systems and advanced process optimization, are explored to address these hurdles. The clinical success of Food and Drug Administration (FDA)-approved liposomal formulations such as Doxil® and AmBisome® underscores their efficacy in treating conditions ranging from cancer to fungal infections. Furthermore, this review delves into emerging trends, including stimuli-responsive and hybrid liposomes, as well as their integration with nanotechnology for enhanced therapeutic precision. As liposomes continue to expand their role in gene therapy, theranostics, and personalized medicine, this review highlights their potential to redefine pharmaceutical applications. Despite existing challenges, ongoing advancements in formulation techniques and scalability underscore the bright future of liposome-based therapeutics in addressing unmet medical needs. Full article
Show Figures

Figure 1

11 pages, 2446 KB  
Article
Highly Stable, Flexible, Transparent Hybrid Strontium Titanate Conductive Thin Films with Embedded Cu Nanowires
by Ming Liu, Shihui Yu, Lijun Song, Jiesong Li and Jian Feng
Materials 2025, 18(10), 2398; https://doi.org/10.3390/ma18102398 - 21 May 2025
Viewed by 513
Abstract
To meet the stringent demands of next-generation flexible optoelectronic devices, a novel fabrication approach is employed that integrates the spray-coating of copper nanowires (Cu NWs) with the magnetron sputtering of SrTiO3 thin films, thereby yielding SrTiO3/Cu NWs/SrTiO3 hybrid thin [...] Read more.
To meet the stringent demands of next-generation flexible optoelectronic devices, a novel fabrication approach is employed that integrates the spray-coating of copper nanowires (Cu NWs) with the magnetron sputtering of SrTiO3 thin films, thereby yielding SrTiO3/Cu NWs/SrTiO3 hybrid thin films. The incorporation of the SrTiO3 layers results in improved optical performance, with the transmittance of the Cu NW network increasing from 83.5% to 84.2% and a concurrent reduction in sheet resistance from 16.9 Ω/sq to 14.5 Ω/sq. Moreover, after subjecting the hybrid thin films to 100 repeated tape-peeling tests and 2000 bending cycles with a bending radius of 5.0 mm, the resistance remains essentially unchanged, which underscores the films’ exceptional mechanical flexibility and robust adhesion. Additionally, the hybrid thin films are subjected to rigorous high-temperature, high-humidity, and oxidative conditions, where the resistance exhibits outstanding stability. These results substantiate the potential of the SrTiO3/Cu NWs/SrTiO3 hybrid thin films for integration into flexible and wearable electronic devices, delivering enhanced optoelectronic performance and long-term reliability under demanding conditions. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

10 pages, 3648 KB  
Article
Compact Optical 90° Hybrid on a Thin-Film Lithium Niobate Platform Used for Integrated Coherent Transceivers
by Haolei Feng, Yuqiong Chen, Zheyuan Shen, Man Chen, Hanyu Wang, Jianguo Liu, Suo Wang and Zeping Zhao
Photonics 2025, 12(5), 459; https://doi.org/10.3390/photonics12050459 - 9 May 2025
Viewed by 620
Abstract
A 90° optical hybrid employing an MMI coupler was fabricated on a thin-film lithium niobate (TFLN) platform that can be used for integrated coherent transceivers. The fabricated 90° optical hybrid exhibited a CMRR greater than 20 dB, a phase error below ±7.5°, and [...] Read more.
A 90° optical hybrid employing an MMI coupler was fabricated on a thin-film lithium niobate (TFLN) platform that can be used for integrated coherent transceivers. The fabricated 90° optical hybrid exhibited a CMRR greater than 20 dB, a phase error below ±7.5°, and an excess loss less than 1.8 dB (including contributions from the 90° hybrid, a 1 × 2 MMI coupler, and an optical delay line, after subtracting the losses from the coupler and delay line, the 90° optical hybrid introduced less than 0.9 dB of loss) over the C-band with a compact footprint of 13.8 × 250 μm2, facilitating the future development of high-bandwidth optical coherent transceivers heterogeneously integrated on TFLN. Full article
(This article belongs to the Special Issue Microwave Photonics: Science and Applications)
Show Figures

Figure 1

18 pages, 8684 KB  
Article
Harnessing Nanoplasmonics: Design Optimization for Enhanced Optoelectronic Performance in Nanocrystalline Silicon Devices
by Mohsen Mahmoudysepehr and Siva Sivoththaman
Micromachines 2025, 16(5), 540; https://doi.org/10.3390/mi16050540 - 30 Apr 2025
Viewed by 473
Abstract
Nanoplasmonic structures have emerged as a promising approach to address light trapping limitations in thin-film optoelectronic devices. This study investigates the integration of metallic nanoparticle arrays onto nanocrystalline silicon (nc-Si:H) thin films to enhance optical absorption through plasmonic effects. Using finite-difference time-domain (FDTD) [...] Read more.
Nanoplasmonic structures have emerged as a promising approach to address light trapping limitations in thin-film optoelectronic devices. This study investigates the integration of metallic nanoparticle arrays onto nanocrystalline silicon (nc-Si:H) thin films to enhance optical absorption through plasmonic effects. Using finite-difference time-domain (FDTD) simulations, we systematically optimize key design parameters, including nanoparticle geometry, spacing, metal type (Ag and Al), dielectric spacer material, and absorber layer thickness. The results show that localized surface plasmon resonances (LSPRs) significantly amplify near-field intensities, improve forward scattering, and facilitate coupling into waveguide modes within the active layer. These effects lead to a measurable increase in integrated quantum efficiency, with absorption improvements reaching up to 30% compared to bare nc-Si:H films. The findings establish a reliable design framework for engineering nanoplasmonic architectures that can be applied to enhance performance in photovoltaic devices, photodetectors, and other optoelectronic systems. Full article
(This article belongs to the Special Issue Nanostructured Optoelectronic and Nanophotonic Devices)
Show Figures

Figure 1

Back to TopTop