Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = hydrogen stress cracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3885 KB  
Article
Experimental and Machine Learning-Based Assessment of Fatigue Crack Growth in API X60 Steel Under Hydrogen–Natural Gas Blending Conditions
by Nayem Ahmed, Ramadan Ahmed, Samin Rhythm, Andres Felipe Baena Velasquez and Catalin Teodoriu
Metals 2025, 15(10), 1125; https://doi.org/10.3390/met15101125 - 10 Oct 2025
Abstract
Hydrogen-assisted fatigue cracking presents a critical challenge to the structural integrity of legacy carbon steel natural gas pipelines being repurposed for hydrogen transport, posing a major barrier to the deployment of hydrogen infrastructure. This study systematically evaluates the fatigue crack growth (FCG) behavior [...] Read more.
Hydrogen-assisted fatigue cracking presents a critical challenge to the structural integrity of legacy carbon steel natural gas pipelines being repurposed for hydrogen transport, posing a major barrier to the deployment of hydrogen infrastructure. This study systematically evaluates the fatigue crack growth (FCG) behavior of API 5L X60 pipeline steel under varying hydrogen–natural gas (H2–NG) blending conditions to assess its suitability for long-term hydrogen service. Experiments are conducted using a custom-designed autoclave to replicate field-relevant environmental conditions. Gas mixtures range from 0% to 100% hydrogen by volume, with tests performed at a constant pressure of 6.9 MPa and a temperature of 25 °C. A fixed loading frequency of 8.8 Hz and load ratio (R) of 0.60 ± 0.1 are applied to simulate operational fatigue loading. The test matrix is designed to capture FCG behavior across a broad range of stress intensity factor values (ΔK), spanning from near-threshold to moderate levels consistent with real-world pipeline pressure fluctuations. The results demonstrate a clear correlation between increasing hydrogen concentration and elevated FCG rates. Notably, at 100% hydrogen, API X60 specimens exhibit crack propagation rates up to two orders of magnitude higher than those in 0% hydrogen (natural gas) conditions, particularly within the Paris regime. In the lower threshold region (ΔK ≈ 10 MPa·√m), the FCG rate (da/dN) increased nonlinearly with hydrogen concentration, indicating early crack activation and reduced crack initiation resistance. In the upper Paris regime (ΔK ≈ 20 MPa·√m), da/dNs remained significantly elevated but exhibited signs of saturation, suggesting a potential limiting effect of hydrogen concentration on crack propagation kinetics. Fatigue life declined substantially with hydrogen addition, decreasing by ~33% at 50% H2 and more than 55% in pure hydrogen. To complement the experimental investigation and enable predictive capability, a modular machine learning (ML) framework was developed and validated. The framework integrates sequential models for predicting hydrogen-induced reduction of area (RA), fracture toughness (FT), and FCG rate (da/dN), using CatBoost regression algorithms. This approach allows upstream degradation effects to be propagated through nested model layers, enhancing predictive accuracy. The ML models accurately captured nonlinear trends in fatigue behavior across varying hydrogen concentrations and environmental conditions, offering a transferable tool for integrity assessment of hydrogen-compatible pipeline steels. These findings confirm that even low-to-moderate hydrogen blends significantly reduce fatigue resistance, underscoring the importance of data-driven approaches in guiding material selection and infrastructure retrofitting for future hydrogen energy systems. Full article
(This article belongs to the Special Issue Failure Analysis and Evaluation of Metallic Materials)
Show Figures

Figure 1

13 pages, 4167 KB  
Article
Time-Dependent Failure Mechanisms of Metals: The Role of Bifilms in Precipitation Cleavage
by John Campbell
Metals 2025, 15(10), 1084; https://doi.org/10.3390/met15101084 - 29 Sep 2025
Viewed by 194
Abstract
This account is an exploration of concepts exploring the widespread damage to liquid metals caused by poor current liquid metal handling and casting technology. The defects introduced in the liquid state are suggested to affect many properties of our engineering metals, especially tensile [...] Read more.
This account is an exploration of concepts exploring the widespread damage to liquid metals caused by poor current liquid metal handling and casting technology. The defects introduced in the liquid state are suggested to affect many properties of our engineering metals, especially tensile elongation and Charpy toughness, but also time-dependent degradation processes, which can result in failure by fracture, and which can be significantly aided by hydrogen, leading to hydrogen embrittlement (HE), and invasive corrosion, leading to stress corrosion cracking (SCC). The new phenomenon of ‘precipitation cleavage’ is introduced, explaining the sensitization of alloys by certain heat treatments. Direct visual evidence for precipitation cleavage is provided by the previously unexplained phenomenon of ‘fisheyes’ observed frequently on the fracture surfaces of steels, and more recently also in light alloys. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

21 pages, 7752 KB  
Article
Evaluation of Stress Corrosion Cracking Susceptibility of 2195-T8 Al-Li Alloy in Propellant Environment Using Slow Strain Rate Testing
by Yilin Zhao, Gan Tian, Dejun Liu, Biyun Ren, Wei Zhang and Yafeng Zhu
Aerospace 2025, 12(9), 830; https://doi.org/10.3390/aerospace12090830 - 16 Sep 2025
Viewed by 251
Abstract
The stress corrosion cracking (SCC) susceptibility of 2195-T8 Al-Li alloy in N2O4 medium was evaluated using slow strain rate testing (SSRT). The electrochemical corrosion behavior and morphological evolution of the alloy under different conditions were further examined through potentiodynamic polarization [...] Read more.
The stress corrosion cracking (SCC) susceptibility of 2195-T8 Al-Li alloy in N2O4 medium was evaluated using slow strain rate testing (SSRT). The electrochemical corrosion behavior and morphological evolution of the alloy under different conditions were further examined through potentiodynamic polarization measurements. The results indicate that with the increase in electrochemical corrosion rate, the corrosion morphology of the alloy extends from localized pitting and intergranular corrosion to severe exfoliation corrosion. In the N2O4 medium, the alloy exhibits significant susceptibility to SCC at tensile rates of ε ≥ 5 × 10−6 s−1. However, when strained at ε = 10−6 s−1, a sudden increase in ISCC is observed accompanied by a transition to brittle intergranular fracture mediated by anodic dissolution. At the same stretch rate (ε = 10−6 s−1), the susceptibility to SCC of the alloy in N2O4 medium increased with higher water content ω(H2O). This trend is attributed to enhanced generation of HNO3 and HNO2, as well as increased diffusion of hydrogen—produced by the cathodic reaction—to the crack tip. The synergistic interaction between anodic dissolution and hydrogen embrittlement ultimately promotes the initiation and propagation of SCC in the alloy. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 2627 KB  
Article
Investigation of Mechano-Electrochemical Effects on Hydrogen Distribution at Corrosion Defects
by Zhixiang Dai, Jiamin Tang, Sijia Zheng, Feng Wang, Qin Bie, Pengcheng Kang, Xinyi Wang, Shiwen Guo and Lin Chen
Hydrogen 2025, 6(3), 69; https://doi.org/10.3390/hydrogen6030069 - 12 Sep 2025
Viewed by 361
Abstract
This study employed tensile test, hydrogen permeation measurements, and potentiodynamic polarization testing to investigate the mechanical properties, hydrogen diffusion coefficients, and electrochemical behavior of X80 steel. A multifield coupled finite element (FE) model was developed that incorporated the mechano-electrochemical (M-E) effect to analyze [...] Read more.
This study employed tensile test, hydrogen permeation measurements, and potentiodynamic polarization testing to investigate the mechanical properties, hydrogen diffusion coefficients, and electrochemical behavior of X80 steel. A multifield coupled finite element (FE) model was developed that incorporated the mechano-electrochemical (M-E) effect to analyze the stress–strain distribution, anodic equilibrium potential, cathodic exchange current density, and hydrogen distribution characteristics at pipeline corrosion defects under varying tensile strains. The results indicated that tensile strain significantly modulated the anodic equilibrium potential and cathodic exchange current density, leading to localized hydrogen accumulation at corrosion defects. The stress concentration and plastic deformation at the defect site intensified as the tensile strain increased, further promoting hydrogen enrichment. The study concluded that the M-E effect exacerbated hydrogen enrichment at the defect sites, increasing the risk of hydrogen-induced cracking. The simulation results showed that the hydrogen distribution state aligned with the stress–hydrogen diffusion coupling model when considering the M-E effect. However, the M-E effect slightly increased the hydrogen concentration at the defect. These findings provide critical insights for enhancing the safety and durability of hydrogen transmission pipelines. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

17 pages, 3186 KB  
Article
Investigation of the Effects of Gas Metal Arc Welding and Friction Stir Welding Hybrid Process on AA6082-T6 and AA5083-H111 Aluminum Alloys
by Mariane Chludzinski, Leire Garcia-Sesma, Oier Zubiri, Nieves Rodriguez and Egoitz Aldanondo
Metals 2025, 15(9), 1005; https://doi.org/10.3390/met15091005 - 9 Sep 2025
Viewed by 719
Abstract
Friction stir welding (FSW) has emerged as a solid-state joining technique offering notable advantages over traditional welding methods. Gas metal arc welding (GMAW), a fusion-based process, remains widely used due to its high efficiency, productivity, weld quality, and ease of automation. To combine [...] Read more.
Friction stir welding (FSW) has emerged as a solid-state joining technique offering notable advantages over traditional welding methods. Gas metal arc welding (GMAW), a fusion-based process, remains widely used due to its high efficiency, productivity, weld quality, and ease of automation. To combine the benefits of both techniques, a hybrid welding approach integrating GMAW and FSW has been developed. This study investigates the impact of this hybrid technique on the joint quality and properties of AA5083-H111 and AA6082-T6 aluminum alloys. Butt joints were produced on 6 mm thick plates, with variations in friction process parameters. Characterization included macro- and microstructural analyses, mechanical testing (hardness and tensile strength), and corrosion resistance evaluation through stress corrosion cracking tests. Results showed that FSW significantly refined and homogenized the microstructure in both alloys. AA5083-H111 welds achieved a joint efficiency of 99%, while AA6082-T6 reached 66.7%, differences attributed to their distinct strengthening mechanisms and the thermal–mechanical effects of FSW. To assess hydrogen-related behavior, slow strain rate tensile (SSRT) tests were conducted in both inert and hydrogen-rich environments. Hydrogen content was measured in arc, friction, and overlap zones, revealing variations depending on the alloy and microstructure. Despite these differences, both alloys exhibited negligible hydrogen embrittlement. In conclusion, the GMAW–FSW hybrid process successfully produced sound joints with good mechanical and corrosion resistance performance in both aluminum alloys. The findings demonstrate the potential of hybrid welding as a viable method for enhancing weld quality and performance in applications involving dissimilar aluminum alloys. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

23 pages, 6652 KB  
Article
Fitness-for-Service Assessment of Hoop-Wrapped Vessel with Metal Liner in High-Pressure Hydrogen Environment
by Zehong Chen, Hu Hui, Song Huang, Zhangziyang Du, Guangke Xue and Fanao Meng
Energies 2025, 18(17), 4463; https://doi.org/10.3390/en18174463 - 22 Aug 2025
Viewed by 639
Abstract
Hoop-wrapped vessels with metal liners (Type II vessels) are susceptible to the risks of brittle fracture and fatigue failure in high-pressure hydrogen environments. However, there is limited research concerning fitness-for-service (FFS) assessments of Type II vessels. An FFS assessment was conducted on a [...] Read more.
Hoop-wrapped vessels with metal liners (Type II vessels) are susceptible to the risks of brittle fracture and fatigue failure in high-pressure hydrogen environments. However, there is limited research concerning fitness-for-service (FFS) assessments of Type II vessels. An FFS assessment was conducted on a specific Type II vessel designed for high-pressure hydrogen storage. The mechanical properties of the liner material 4130X were obtained through in situ mechanical testing in a hydrogen environment. Based on the measured data, the stress distribution within the Type II vessel under different working conditions was determined using a finite element analysis by ANSYS Workbench 2019 R2 software. A leak-before-burst (LBB) analysis and a brittle fracture assessment of the Type II vessel were performed using the failure assessment diagram (FAD) methodology. The results indicate that the measured fracture toughness of 4130X under high-pressure hydrogen is 46 MPa·m0.5, which is significantly lower than the 178 MPa·m0.5 required for LBB failure for the studied vessel. However, the vessel remains in a safe state when the crack depth is under 3.03 mm. Furthermore, the remaining fatigue life of a Type II vessel containing a crack was calculated. The relationship between the non-destructive testing (NDT) capability requirement and the inspection interval for this type of vessel was explored, providing references for establishing inspection schedules for Type II vessels. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

24 pages, 4047 KB  
Review
Fatigue Behaviour of Metallic Materials Under Hydrogen Environment: Historical Perspectives, Recent Developments, and Future Prospects
by Shiyuan Yang, Debiao Meng, Peng Nie, Abílio M. P. De Jesus and Yan Sun
Appl. Sci. 2025, 15(14), 7818; https://doi.org/10.3390/app15147818 - 11 Jul 2025
Viewed by 765
Abstract
Hydrogen has gradually become one of the indispensable sources of energy for mankind. Since the discovery of hydrogen embrittlement (hydrogen-induced degradation of material properties) more than 100 years ago, fatigue properties in hydrogen environments have been studied. Fatigue crack growth of materials in [...] Read more.
Hydrogen has gradually become one of the indispensable sources of energy for mankind. Since the discovery of hydrogen embrittlement (hydrogen-induced degradation of material properties) more than 100 years ago, fatigue properties in hydrogen environments have been studied. Fatigue crack growth of materials in a hydrogen environment is a complex process involving the interaction of multiple factors. Hydrogen binds to atoms within the material, leading to diffusion and aggregation of hydrogen atoms, which causes an increase in internal stresses. These stresses may concentrate at the crack tip, accelerating the rate of crack expansion and leading to fatigue fracture of the material. The work of current researchers has summarised a number of fatigue models to help understand this phenomenon. This paper firstly summarises the existing hydrogen embrittlement mechanisms as well as hydrogen embrittlement experiments. It then focuses on the mechanism of fatigue crack propagation in hydrogen environments and related literature. It also analyses and summarises a cluster diagram of the literature generated using CiteSpace. The fatigue life prediction methods for materials in hydrogen environment are then summarised in this paper. It aims to provide some guidance for the selection and design of materials in developing fields such as fatigue materials in hydrogen environment. Finally, challenges in the current research on the fatigue properties of materials under hydrogen embrittlement conditions are pointed out and discussed to guide future research efforts. Full article
(This article belongs to the Special Issue Data-Enhanced Engineering Structural Integrity Assessment and Design)
Show Figures

Figure 1

11 pages, 1703 KB  
Article
Influence of Electrolytic Hydrogen Charging and Effusion Aging on the Rotating Bending Fatigue Resistance of SAE 52100 Steel
by Johannes Wild, Stefan Wagner, Astrid Pundt and Stefan Guth
Corros. Mater. Degrad. 2025, 6(3), 30; https://doi.org/10.3390/cmd6030030 - 9 Jul 2025
Viewed by 566
Abstract
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel [...] Read more.
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel SAE 52100 (100Cr6) quenched and tempered at 180 °C and 400 °C were electrochemically charged with hydrogen. Charged and non-charged specimens then underwent rotating bending fatigue testing, either immediately after charging or after aging at room temperature up to 72 h. The hydrogen-charged specimens annealed at 180 °C showed a sizeable drop in fatigue limit and fatigue lifetime compared to the non-charged specimens with cracks mainly originating from near-surface non-metallic inclusions. In comparison, the specimens annealed at 400 °C exhibited a moderate drop in fatigue limit and lifetime due to hydrogen charging with cracks originating mostly from the surface. Aging had only insignificant effects on the fatigue lifetime. Notably, annealing of charged samples for 2 h at 180 °C restored their lifetime to that of non-charged specimens. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

19 pages, 3182 KB  
Article
A Sintering–Resting Strategy of Microwave Heating for Lithium Hydride Ceramic Based on Numerical Analysis of Thermal Effects
by Wenyan Zhang, Huayan Chen, Maobing Shuai, Xiangguo Zeng and Bin Huang
Materials 2025, 18(12), 2832; https://doi.org/10.3390/ma18122832 - 16 Jun 2025
Viewed by 501
Abstract
Lithium hydride (LiH) is one promising material for nuclear reactor shielding due to its high hydrogen content, but its poor mechanical strength and thermal conductivity pose challenges for fabricating large, crack-free ceramic components via conventional sintering. This study explores microwave sintering as a [...] Read more.
Lithium hydride (LiH) is one promising material for nuclear reactor shielding due to its high hydrogen content, but its poor mechanical strength and thermal conductivity pose challenges for fabricating large, crack-free ceramic components via conventional sintering. This study explores microwave sintering as a potential solution to enhance heating uniformity and reduce thermal stress during densification of bulk LiH ceramics. Using implicit function and level set methods, we numerically simulated the microwave field distribution and thermal response in both stationary and rotating samples. The results show that rotational heating improves temperature uniformity by up to 12.9% for specific samples, although uniform temperature control remains difficult through rotation alone. To mitigate stress accumulation from thermal gradients, we propose a cyclic sintering–resting strategy, which leverages LiH’s tensile strength–temperature envelope to guide safe and efficient processing. This strategy successfully reduced total sintering time from several days to 1.63 h without inducing cracks. Our findings offer practical insights into optimizing microwave sintering parameters for large-scale LiH ceramic production and contribute to enabling its application in advanced nuclear shielding systems. Full article
Show Figures

Figure 1

15 pages, 3481 KB  
Article
Forensic Investigation of Stainless Steel 316 Hydrogen-Membrane and Ammonia-Cracking Reactors Through Mechanical Testing
by Alexander Ilyushechkin, Veronica Gray, Riley Ingle, Lachlan Carter and Liezl Schoeman
Corros. Mater. Degrad. 2025, 6(2), 17; https://doi.org/10.3390/cmd6020017 - 13 May 2025
Viewed by 912
Abstract
Knowledge of alloy behavior under industry-relevant conditions is critical to hydrogen production and processing, yet it is currently limited. To understand more about the impact of hydrogen damage on stainless steel 316 under realistic in-service conditions, we conducted a forensic investigation of two [...] Read more.
Knowledge of alloy behavior under industry-relevant conditions is critical to hydrogen production and processing, yet it is currently limited. To understand more about the impact of hydrogen damage on stainless steel 316 under realistic in-service conditions, we conducted a forensic investigation of two reactors exposed to various hydrogen-processing conditions. We examined samples of reactor walls exposed to hydrogen-containing atmospheres for >100 and ~1000 h at elevated temperatures during hydrogen separation and ammonia cracking. The samples were characterized by tensile testing, stretch–bend testing, and three-point bending. A loss in ductility and strength was observed for the reactor wall material compared with both untreated materials and materials annealed in neutral atmospheres at the same temperatures used during reactor operation. The three-point bend testing, which was conducted on inner and outer pipe-surface material extracted via electrical discharge machining, showed larger changes in the flexural modulus of exposed reactors but increases in the elastic limit. Microstructural observations revealed that hydrogen may play a role in stress relaxation, possibly promoting normalization at lower-than-expected temperatures. We also observed that materials exposed to ammonia undertake more damage from nitriding than from hydrogen. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

14 pages, 8543 KB  
Article
Examination of Stress Corrosion Cracking of Rock Bolts in Simulated Underground Environments
by Saisai Wu, Xinting Cao, Yiran Zhu, Krzysztof Skrzypkowski and Krzysztof Zagórski
Materials 2025, 18(6), 1275; https://doi.org/10.3390/ma18061275 - 13 Mar 2025
Cited by 1 | Viewed by 915
Abstract
In recent years, significant increases in premature failures of rock bolts that are attributed to stress corrosion cracking (SCC) have been observed in underground reinforcement systems, which pose serious safety concerns for underground operations. A multitude of studies have focused on understanding the [...] Read more.
In recent years, significant increases in premature failures of rock bolts that are attributed to stress corrosion cracking (SCC) have been observed in underground reinforcement systems, which pose serious safety concerns for underground operations. A multitude of studies have focused on understanding the environmental factors, such as the composition of the corrosive medium, temperature, and humidity, in promoting the SCC of rock bolts, but the SCC failure mechanism associated with microstructural changes is still unclear due to the complexity of the underground environments. To understand its failure mechanism and develop effective mitigation strategies, this study evaluated different testing conditions, employing pin-loaded and bar-loaded coupon tests using representative specimens. The tests were conducted in an acidified sulfide solution. The failure characteristics and crack paths of the failed specimens were examined. It was observed that the steel with lower carbon content exhibited a reduced susceptibility to SCC. The subcritical cracks observed in the specimens were influenced by the microstructure of the material. SCC was observed not only on the original surface of rock bolts, which featured mill scale and decarburization, but also on freshly machined surfaces. Evidence for the occurrence of hydrogen-induced SCC was identified and discussed. The proposed testing methods and the obtained results contribute to a deeper understanding of SCC in rock bolts as well as promote the development of more durable materials for underground mining applications, ultimately enhancing the safety and reliability of rock bolt systems. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

16 pages, 5902 KB  
Article
Notch Sensitivity of Hydrogen-Charged 316L Stainless Steel: Experimental Insights into Mechanical Degradation and Fracture Mechanics
by Byeong-Kwan Hwang, Seung-Joo Cha, Hee-Tae Kim, Seung-Jun Lee, Jeong-Hyeon Kim and Jae-Myung Lee
Materials 2025, 18(6), 1274; https://doi.org/10.3390/ma18061274 - 13 Mar 2025
Cited by 1 | Viewed by 1039
Abstract
Hydrogen is a promising eco-friendly energy source, but its embrittlement effect on structural materials remains a significant challenge. This study investigates the notch sensitivity of 316L stainless steel under in situ electrochemical hydrogen charging, with a focus on mechanical degradation and fracture behavior. [...] Read more.
Hydrogen is a promising eco-friendly energy source, but its embrittlement effect on structural materials remains a significant challenge. This study investigates the notch sensitivity of 316L stainless steel under in situ electrochemical hydrogen charging, with a focus on mechanical degradation and fracture behavior. By examining the influence of notch geometry and hydrogen exposure, this research highlights the role of stress concentration in hydrogen embrittlement. The findings contribute to understanding hydrogen-induced material failure, offering insights for both industry practitioners in the energy sector and academic researchers. This study also underscores the need for further research on hydrogen-resistant materials and structural safety considerations in hydrogen applications. Full article
Show Figures

Figure 1

19 pages, 7830 KB  
Article
Surface Crack Occurrence and Resistance During Moisture Content Changes in MF-Resin-Impregnated Paper-Decorated Blockboard
by Yun Feng, Wei Qu, Guofang Wu, Yuzhang Wu, Jinrong He, Yinlan Shen, Jinzhen Cao and Limin Peng
Forests 2025, 16(3), 411; https://doi.org/10.3390/f16030411 - 24 Feb 2025
Cited by 1 | Viewed by 663
Abstract
In multi-layered wood materials, varying rates of dimensional changes can easily lead to cracking, which can have a negative impact on their structure and functionality. This study focuses on cracking issues of decorated blockboard caused by moisture content changes. First, surface cracks on [...] Read more.
In multi-layered wood materials, varying rates of dimensional changes can easily lead to cracking, which can have a negative impact on their structure and functionality. This study focuses on cracking issues of decorated blockboard caused by moisture content changes. First, surface cracks on the decorated blockboard were observed and classified using optical microscopy and scanning electron microscopy (SEM). Second, from modeling perspectives, the critical tensile strength of the surface of the decorated blockboard was predicted to be 16.93 MPa, providing guidance for crack-resistant modification. Subsequently, halloysite nanotubes (HNTs) were incorporated into MF-resin-impregnated paper, achieving a Grade 5 crack resistance for decorated blockboard. The interaction between HNTs and MF resin forms a multiscale stress–dispersion system, as confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), indicating hydrogen and covalent bonding between HNTs and the MF resin. With a 5% HNTs addition, the tensile strength and strain break of the MF-resin-impregnated paper reached 36.60 MPa and 1.12%, respectively, representing increases of 97.39% and 60.00%, respectively, effectively preventing surface cracking. This has significant implications for improving the durability and performance of decorated blockboard in practical applications. Full article
Show Figures

Figure 1

21 pages, 8961 KB  
Article
Experimental Study on Hydrogen-Induced Crack Propagation of X80 Steel Under Alternating Pressure Fluctuations
by Ailing Wang, Baogang Wang, Ruijing Jiang, Ruyu Nie, Gan Cui, Jianguo Liu, Yi Zhang, Hao Zhang and Xiao Xing
Materials 2025, 18(5), 947; https://doi.org/10.3390/ma18050947 - 21 Feb 2025
Viewed by 821
Abstract
When hydrogen is transported in a pipeline, the fatigue loading in the pipeline will enhance hydrogen accumulation and diffusion, thus increasing the risk of hydrogen-induced fracture. In this study, specimens are subjected to cyclic loading within an autoclave, where hydrogen gas pressure is [...] Read more.
When hydrogen is transported in a pipeline, the fatigue loading in the pipeline will enhance hydrogen accumulation and diffusion, thus increasing the risk of hydrogen-induced fracture. In this study, specimens are subjected to cyclic loading within an autoclave, where hydrogen gas pressure is varied to examine its impact on fatigue crack growth. The influence of hydrogen pressure and stress variations on the fatigue crack growth rate is investigated. The findings show that as hydrogen pressure increases, the crack growth rate also rises, and at 3 MPa hydrogen pressure the rate is elevated by one order of magnitude compared to that in air, reaching 10−2 mm/cycle. In hydrogen, the fatigue crack propagation rate decreases with increasing loading frequency. When the frequency is 0.02 Hz, the crack propagation rate reaches a maximum of 10−2 mm/cycle, whereas at 0.5 Hz, the fatigue crack propagation rate is generally below 10−3 mm/cycle. With the maximum stress held constant during cyclic loading, the fatigue crack growth rate increases as the stress range widens, and when the stress ratio reaches 0.5, the crack propagation rate can increase to a maximum of 10−1 mm/cycle. Based on these experimental results, a predictive model is proposed to estimate the crack growth rate under different hydrogen pressures and loading conditions, and the average relative errors of predictive values and experimental data are limited below 10%. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 3455 KB  
Article
Chemical Equilibrium Fracture Mechanics—Hydrogen Embrittlement Application
by Andreas G. Varias
Corros. Mater. Degrad. 2025, 6(1), 5; https://doi.org/10.3390/cmd6010005 - 6 Feb 2025
Cited by 1 | Viewed by 1353
Abstract
Chemical Equilibrium Fracture Mechanics (CEFM) studies the effect of chemical reactions and phase transformations on crack-tip fields and material fracture toughness under chemical equilibrium. An important CEFM direction is hydrogen-induced embrittlement of alloys, due to several industrial applications, including those within the industrial [...] Read more.
Chemical Equilibrium Fracture Mechanics (CEFM) studies the effect of chemical reactions and phase transformations on crack-tip fields and material fracture toughness under chemical equilibrium. An important CEFM direction is hydrogen-induced embrittlement of alloys, due to several industrial applications, including those within the industrial value chain of hydrogen that is under development, which, according to European and international policies, are expected to contribute significantly to the replacement of fossil fuels by renewable energy sources. In the present study, the effect of hydrogen on the crack-tip fields of hydride- and non-hydride-forming alloys is examined. The crack-tip stress and hydrogen concentration distributions are derived under hydrogen chemical equilibrium, which is approached by considering the coupling of the operating physical mechanisms. In all cases, analytic relations are derived, thus facilitating integrity assessments, i.e., without the need to rely on complicated numerical methods, expected to lead to the development of respective tools in industrial applications. It is shown that, in the case of hydride precipitation, there are significant deviations from the K, HRR, and Prandtl fields, and, thus, the well-known approaches of Linear Elastic Fracture Mechanics (LEFM) and Elastic–Plastic Fracture Mechanics (EPFM) need to be accordingly modified/extended. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

Back to TopTop