Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = implants and injectable hydrogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

20 pages, 4832 KB  
Article
Biosynthetic Collagen-Analog Hydrogels Stimulate Endogenous Regrowth of Rabbit Corneas: A Pilot Study
by Iris Timmerman, Marie-Claude Robert, Claire Vergneau-Grosset, Tristan Juette, Javier Benito, Marta Garbin, Mostafa Zamani-Roudbaraki, Mona Moradi, Hamid Goodarzi, Christos Boutopoulos, Marie-Odile Benoit-Biancamano, May Griffith and Maria Vanore
Vet. Sci. 2025, 12(8), 785; https://doi.org/10.3390/vetsci12080785 - 21 Aug 2025
Viewed by 592
Abstract
Pro-regenerative corneal implants are being developed to improve corneal healing for companion animals in clinical practice. This pilot study evaluated early corneal tissue and nerve regeneration using biosynthetic collagen-analog hydrogels (CAH) in liquid and solid forms. Their efficacy was compared to each other [...] Read more.
Pro-regenerative corneal implants are being developed to improve corneal healing for companion animals in clinical practice. This pilot study evaluated early corneal tissue and nerve regeneration using biosynthetic collagen-analog hydrogels (CAH) in liquid and solid forms. Their efficacy was compared to each other and to allografts on nine white New Zealand rabbits, divided in three groups of three. Each rabbit cornea underwent keratectomy followed by grafting with either a control allograft cornea, liquid injectable, or solid CAH implant. Corneal healing was assessed over 16 weeks using clinical exams, esthesiometry, in vivo confocal microscopy, and optical coherence tomography. One rabbit per group was euthanized at 3, 10, and 16 weeks for histopathological analysis. Both liquid and solid implants enabled corneal re-epithelialization and regeneration of stromal tissue and corneal nerves. Esthesiometric values indicated faster nerve regeneration in rabbits grafted with biosynthetic implants compared to allografts (p < 0.005). By 16 weeks, regenerated neocorneas achieved transparency comparable to allografts. Solid and liquid CAH implants supported complete corneal tissue and nerve regeneration in the studied rabbits. These results suggest that with further research and development, the current gold standard for corneal transplantation could be replaced by high-performing, easily produced biosynthetic alternatives. Full article
(This article belongs to the Special Issue Vision in Focus: Advances in Veterinary Ophthalmology)
Show Figures

Figure 1

18 pages, 789 KB  
Review
Nanotechnology in Osteogenesis and Inflammation Management: Metal–Organic Frameworks, Metal Complexes, and Biomaterials for Bone Restoration
by Bogdan Huzum, Ionut Iulian Lungu, Ovidiu Alexa, Paul Dan Sirbu, Viorel Dan Cionca, Andreia Corciova, Andreea Lungu, Monica Hancianu, Ionela Lacramioara Serban and Oana Cioanca
Biomedicines 2025, 13(7), 1597; https://doi.org/10.3390/biomedicines13071597 - 30 Jun 2025
Viewed by 776
Abstract
A varied family of polyphenolic chemicals, flavonoids, are becoming more and more important in bone tissue engineering because of their osteogenic, anti-inflammatory, and antioxidant effects. Recent developments incorporating flavonoids into different biomaterial platforms to improve bone regeneration are emphasized in this study. Osteocalcin [...] Read more.
A varied family of polyphenolic chemicals, flavonoids, are becoming more and more important in bone tissue engineering because of their osteogenic, anti-inflammatory, and antioxidant effects. Recent developments incorporating flavonoids into different biomaterial platforms to improve bone regeneration are emphasized in this study. Osteocalcin (OCN) expression was 2.1-fold greater in scaffolds loaded with flavonoids—such as those made of polycaprolactone (PCL)—greatly increasing human mesenchymal stem cell (hMSC) proliferation and mineralization. Comparably, a threefold increase in calcium deposition indicates increased mineralization when hydroxyapatite (HA) was functionalized with flavonoids such as quercetin. These HA scaffolds with flavonoids also showed a 45% decrease in osteoclast activity, therefore promoting balanced bone remodeling. Concurrent with flavonoids like EGCG and quercetin, chitosan-based scaffolds encouraged osteogenic differentiation with increases in osteogenic markers like osteopontin (OPN) and alkaline phosphatase (ALP) expression by up to 82%. These scaffolds also showed 82% bone defect repair after six weeks in vivo, suggesting their promise in rapid bone regeneration. With an increase of up to 32% in the bone volume-to-total volume ratio (BV/TV) and 28% greater bone–implant contact (BIC), flavonoid coatings on titanium implants enhanced osteointegration in implantology. Displaying successful osteogenesis and immunomodulation, the addition of flavonoids into metal–organic frameworks (MOFs) and injectable hydrogels demonstrated a 72% increase in new bone formation in vivo. Though further research is required to confirm long-term clinical effectiveness, these findings show the great promise of flavonoid-functionalized biomaterials in bone regeneration. Full article
(This article belongs to the Special Issue Applications and Developments of Metal-Based Drugs)
Show Figures

Figure 1

23 pages, 4248 KB  
Article
Development of Dual-Crosslinking N-Isopropylacrylamide-Based Injectable Hydrogel for Transcatheter Embolization in Swine Model
by Amrita Pal, Gabriel Zdrale, Michelle Loui, Jeff Blanzy, William Bichard, Thomas J. On, Yuan Xu, Oscar Alcantar-Garibay, Mark C. Preul and Brent L. Vernon
Gels 2025, 11(3), 156; https://doi.org/10.3390/gels11030156 - 21 Feb 2025
Viewed by 856
Abstract
For decades, endovascular embolization (EE) has been a common technique for the treatment of several vascular abnormalities where the affected vessel is occluded using biocompatible embolic agents. In this work, we developed a NIPAAm-based temperature responsive, dual-crosslinking biocompatible and non-toxic injectable hydrogel system [...] Read more.
For decades, endovascular embolization (EE) has been a common technique for the treatment of several vascular abnormalities where the affected vessel is occluded using biocompatible embolic agents. In this work, we developed a NIPAAm-based temperature responsive, dual-crosslinking biocompatible and non-toxic injectable hydrogel system as a liquid embolic agent for EE. The swelling and mechanical properties of the hydrogel were tuned and optimized for its in vivo application. The in vivo study was carried out with nine swine models, including three animals for exploratory study and six animals for acute confirmatory study for the occlusion of surgically created aneurysm and rete mirabile. The polymer hydrogel was delivered into the vascular malformation sites using a catheter guided by angiography. After the injection, the liquid embolic agent was transformed into a solid implant in situ via cross-linking through chemical and thermal processes. During the exploratory study, it was observed that one of the three aneurysms and all the RMs were occluded. During the acute confirmatory study, all the aneurysms and the RMs of six animals were successfully occluded. Overall, our study presents the construction and characterization of a novel injectable hydrogel system capable of successfully occluding vascular malformation in large animals. In the future, after further modification and validation, this material may be used as a liquid embolic agent in clinical studies. Full article
(This article belongs to the Special Issue Synthesis and Application of Polymer Hydrogels)
Show Figures

Graphical abstract

18 pages, 9457 KB  
Article
Novel Injectable Collagen/Glycerol/Pullulan Gel Promotes Osteogenic Differentiation of Mesenchymal Stem Cells and the Repair of Rat Cranial Defects
by Xin Wang, Satoshi Komasa, Yoshiro Tahara, Shihoko Inui, Michiaki Matsumoto and Kenji Maekawa
Gels 2024, 10(12), 775; https://doi.org/10.3390/gels10120775 - 28 Nov 2024
Viewed by 1710
Abstract
Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making [...] Read more.
Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making it an ideal scaffold and drug delivery system for tissue engineering. The clinical applications of this material are restricted due to its low mechanical strength. In this investigation, a collagen-based gel (atelocollagen/glycerol/pullulan [Col/Gly/Pul] gel) that is moldable and injectable with high adhesive qualities was created by employing a straightforward technique that involved the introduction of Gly and Pul. This study aimed to characterize the internal morphology and chemical composition of the Col/Gly/Pul gel, as well as to verify its osteogenic properties through in vivo and in vitro experiments. When compared to a standard pure Col hydrogel, this material is more adaptable to the complexity of the local environment of bone defects and the apposition of irregularly shaped flaws due to its greater mechanical strength, injectability, and moldability. Overall, the Col/Gly/Pul gel is an implant that shows great potential for the treatment of complex bone defects and the enhancement of bone regeneration. Full article
(This article belongs to the Special Issue Development of Nanogels/Microgels for Regenerative Medicine)
Show Figures

Graphical abstract

20 pages, 9905 KB  
Review
Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels
by Minho Nam, Jong Won Lee and Gi Doo Cha
Gels 2024, 10(10), 640; https://doi.org/10.3390/gels10100640 - 7 Oct 2024
Cited by 10 | Viewed by 4656
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels [...] Read more.
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration. Full article
(This article belongs to the Special Issue Advances in Hydrogels and Hydrogel-Based Composites)
Show Figures

Graphical abstract

47 pages, 6131 KB  
Review
Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites
by San Kim, Yumin Shin, Jaewon Han, Hye Jin Kim and Sung-Hyuk Sunwoo
Gels 2024, 10(10), 614; https://doi.org/10.3390/gels10100614 - 25 Sep 2024
Cited by 8 | Viewed by 4357
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, [...] Read more.
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field. Full article
(This article belongs to the Special Issue Advances in Hydrogels and Hydrogel-Based Composites)
Show Figures

Figure 1

17 pages, 5565 KB  
Article
Papain Injection Creates a Nucleotomy-like Cavity for Testing Gels in Intervertebral Discs
by Jan Ulrich Jansen, Graciosa Quelhas Teixeira, Andrea Vernengo, Sybille Grad, Cornelia Neidlinger-Wilke and Hans-Joachim Wilke
Gels 2024, 10(9), 571; https://doi.org/10.3390/gels10090571 - 2 Sep 2024
Viewed by 5017
Abstract
Biomaterials, such as hydrogels, have an increasingly important role in the development of regenerative approaches for the intervertebral disc. Since animal models usually resist biomaterial injection due to high intradiscal pressure, preclinical testing of the biomechanical performance of biomaterials after implantation remains difficult. [...] Read more.
Biomaterials, such as hydrogels, have an increasingly important role in the development of regenerative approaches for the intervertebral disc. Since animal models usually resist biomaterial injection due to high intradiscal pressure, preclinical testing of the biomechanical performance of biomaterials after implantation remains difficult. Papain reduces the intradiscal pressure, creates cavities within the disc, and allows for biomaterial injections. But papain digestion needs time, and cadaver experiments that are limited to 24 h for measuring range of motion (ROM) cannot not be combined with papain digestion just yet. In this study, we successfully demonstrate a new organ culture approach, facilitating papain digestion to create cavities in the disc and the testing of ROM, neutral zone (NZ), and disc height. Papain treatment increased the ROM by up to 109.5%, extended NZ by up to 210.9%, and decreased disc height by 1.96 ± 0.74 mm. A median volume of 0.73 mL hydrogel could be injected after papain treatment, and histology revealed a strong loss of proteoglycans in the remaining nucleus tissue. Papain has the same biomechanical effects as known from nucleotomies or herniations and thus creates a disc model to study such pathologies in vitro. This new model can now be used to test the performance of biomaterials. Full article
Show Figures

Figure 1

19 pages, 9265 KB  
Article
Injectable Biodegradable Chitosan–PEG/PEG–Dialdehyde Hydrogel for Stem Cell Delivery and Cartilage Regeneration
by Xiaojie Lin, Ruofan Liu, Jacob Beitzel, Yang Zhou, Chloe Lagadon and Miqin Zhang
Gels 2024, 10(8), 508; https://doi.org/10.3390/gels10080508 - 1 Aug 2024
Cited by 7 | Viewed by 2559
Abstract
Stem cell-based therapy holds promise for cartilage regeneration in treating knee osteoarthritis (KOA). Injectable hydrogels have been developed to mimic the extracellular matrix (ECM) and facilitate stem cell growth, proliferation, and differentiation. However, these hydrogels face limitations such as poor mechanical strength, inadequate [...] Read more.
Stem cell-based therapy holds promise for cartilage regeneration in treating knee osteoarthritis (KOA). Injectable hydrogels have been developed to mimic the extracellular matrix (ECM) and facilitate stem cell growth, proliferation, and differentiation. However, these hydrogels face limitations such as poor mechanical strength, inadequate biocompatibility, and suboptimal biodegradability, collectively hindering their effectiveness in cartilage regeneration. This study introduces an injectable, biodegradable, and self-healing hydrogel composed of chitosan–PEG and PEG–dialdehyde for stem cell delivery. This hydrogel can form in situ by blending two polymer solutions through injection at physiological temperature, encapsulating human adipose-derived stem cells (hADSCs) during the gelation process. Featuring a 3D porous structure with large pore size, optimal mechanical properties, biodegradability, easy injectability, and rapid self-healing capability, the hydrogel supports the growth, proliferation, and differentiation of hADSCs. Notably, encapsulated hADSCs form 3D spheroids during proliferation, with their sizes increasing over time alongside hydrogel degradation while maintaining high viability for at least 10 days. Additionally, hADSCs encapsulated in this hydrogel exhibit upregulated expression of chondrogenic differentiation genes and proteins compared to those cultured on 2D surfaces. These characteristics make the chitosan–PEG/PEG–dialdehyde hydrogel–stem cell construct suitable for direct implantation through minimally invasive injection, enhancing stem cell-based therapy for KOA and other cell-based treatments. Full article
Show Figures

Graphical abstract

29 pages, 5960 KB  
Review
Summary of the Therapeutic Options for Patients with Dry and Neovascular AMD
by Dorota Śpiewak, Łukasz Drzyzga, Mariola Dorecka and Dorota Wyględowska-Promieńska
J. Clin. Med. 2024, 13(14), 4227; https://doi.org/10.3390/jcm13144227 - 19 Jul 2024
Cited by 14 | Viewed by 5701
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness worldwide and a severe medical and social problem. The steadily increasing number of patients is related to the aging of the population. So far, many factors affecting the development of AMD have [...] Read more.
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness worldwide and a severe medical and social problem. The steadily increasing number of patients is related to the aging of the population. So far, many factors affecting the development of AMD have been identified, which can be divided into non-modifiable, including genetic factors, age, and sex, and modifiable or environmental factors, such as smoking, poor diet, and hypertension. Early stages of age-related macular degeneration are characterized by fundus drusen and abnormalities in the retinal pigment epithelium. In late stages, geographic atrophy and choroidal neovascularization (CNV) are observed. The treatment of AMD, especially its advanced forms, is very challenging. Intensive research has made it possible to treat advanced stages of the dry form of AMD with pegcetacoplan and avacincaptad pegol, new drugs approved for use in the US. Pegcetacoplan targets the C3 and avacincaptad pegol targets the C5, the pivotal proteins of the complement cascade. The drugs are administered by intravitreal injection. The gold standard for neovascular AMD (nAMD) consists of intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) drugs such as bevacizumab, ranibizumab, aflibercept, brolucizumab, and faricimab. Treatment can be administered according to the fixed, pro-re-nata, and treat-and-extend regimens. The latter seems to have the best effect on improving visual acuity (VA) and the maximum therapeutic benefit. The search continues for the best ways to deliver intravitreal drugs. Current methods include sustained-release implants and hydrogel platforms for drug release, while the most promising future pathways for treating dry and nAMD are stem cell and gene therapy. Full article
Show Figures

Figure 1

18 pages, 809 KB  
Review
The Integration of Advanced Drug Delivery Systems into Conventional Adjuvant Therapies for Peri-Implantitis Treatment
by Iria Seoane-Viaño, Mariola Seoane-Gigirey, Carlos Bendicho-Lavilla, Luz M. Gigirey, Francisco J. Otero-Espinar and Santiago Seoane-Trigo
Pharmaceutics 2024, 16(6), 769; https://doi.org/10.3390/pharmaceutics16060769 - 5 Jun 2024
Cited by 6 | Viewed by 3179
Abstract
Despite the high success rates of dental implants, peri-implantitis is currently the most common complication in dental implantology. Peri-implantitis has an inflammatory nature, it is associated with the accumulation of plaque in the peri-implant tissues, and its evolution can be progressive depending on [...] Read more.
Despite the high success rates of dental implants, peri-implantitis is currently the most common complication in dental implantology. Peri-implantitis has an inflammatory nature, it is associated with the accumulation of plaque in the peri-implant tissues, and its evolution can be progressive depending on various factors, comorbidities, and poor oral health. Prophylaxis and different treatment methods have been widely discussed in recent decades, and surgical and non-surgical techniques present both advantages and disadvantages. In this work, a literature review of different studies on the application of adjuvant treatments, such as local and systemic antibiotics and antiseptic treatments, was conducted. Positive outcomes have been found in the short (up to one year after treatment) and long term (up to ten years after treatment) with combined therapies. However, there is still a need to explore new therapies based on the use of advanced drug delivery systems for the effective treatment of peri-implantitis in the long term and without relapses. Hence, micro- and nanoparticles, implants, and injectable hydrogels, among others, should be considered in future peri-implantitis treatment with the aim of enhancing overall therapy outcomes. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Figure 1

15 pages, 7777 KB  
Article
Nanoarchitectonics and Biological Properties of Nanocomposite Thermosensitive Chitosan Hydrogels Obtained with the Use of Uridine 5′-Monophosphate Disodium Salt
by Katarzyna Pieklarz, Grzegorz Galita, Ireneusz Majsterek, Piotr Owczarz and Zofia Modrzejewska
Int. J. Mol. Sci. 2024, 25(11), 5989; https://doi.org/10.3390/ijms25115989 - 30 May 2024
Cited by 2 | Viewed by 1350
Abstract
Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method—by injection. In this [...] Read more.
Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method—by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide—uridine 5′-monophosphate disodium salt—as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol–gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues. Full article
(This article belongs to the Special Issue Chitin: Structure, Modifications and Applications)
Show Figures

Figure 1

18 pages, 5383 KB  
Article
Bone Regenerative Effect of Injectable Hypoxia Preconditioned Serum-Fibrin (HPS-F) in an Ex Vivo Bone Defect Model
by Jun Jiang, Lynn Röper, Finja Fuchs, Marc Hanschen, Sandra Failer, Sarah Alageel, Xiaobin Cong, Ulf Dornseifer, Arndt F. Schilling, Hans-Günther Machens and Philipp Moog
Int. J. Mol. Sci. 2024, 25(10), 5315; https://doi.org/10.3390/ijms25105315 - 13 May 2024
Cited by 2 | Viewed by 1632
Abstract
Biofunctionalized hydrogels are widely used in tissue engineering for bone repair. This study examines the bone regenerative effect of the blood-derived growth factor preparation of Hypoxia Preconditioned Serum (HPS) and its fibrin-hydrogel formulation (HPS-F) on drilled defects in embryonic day 19 chick femurs. [...] Read more.
Biofunctionalized hydrogels are widely used in tissue engineering for bone repair. This study examines the bone regenerative effect of the blood-derived growth factor preparation of Hypoxia Preconditioned Serum (HPS) and its fibrin-hydrogel formulation (HPS-F) on drilled defects in embryonic day 19 chick femurs. Measurements of bone-related growth factors in HPS reveal significant elevations of Osteopontin, Osteoprotegerin, and soluble-RANKL compared with normal serum (NS) but no detection of BMP-2/7 or Osteocalcin. Growth factor releases from HPS-F are measurable for at least 7 days. Culturing drilled femurs organotypically on a liquid/gas interface with HPS media supplementation for 10 days demonstrates a 34.6% increase in bone volume and a 52.02% increase in bone mineral density (BMD) within the defect area, which are significantly higher than NS and a basal-media-control, as determined by microcomputed tomography. HPS-F-injected femur defects implanted on a chorioallantoic membrane (CAM) for 7 days exhibit an increase in bone mass of 123.5% and an increase in BMD of 215.2%, which are significantly higher than normal-serum-fibrin (NS-F) and no treatment. Histology reveals calcification, proteoglycan, and collagen fiber deposition in the defect area of HPS-F-treated femurs. Therefore, HPS-F may offer a promising and accessible therapeutic approach to accelerating bone regeneration by a single injection into the bone defect site. Full article
(This article belongs to the Special Issue Bone Tissue Engineering: Opportunities and Challenges)
Show Figures

Figure 1

19 pages, 10996 KB  
Review
Hydrogel-Based Therapy for Age-Related Macular Degeneration: Current Innovations, Impediments, and Future Perspectives
by Chengzhi Zhang, Jiale Wang, Hao Wu, Wenhui Fan, Siyu Li, Dong Wei, Zongming Song and Ye Tao
Gels 2024, 10(3), 158; https://doi.org/10.3390/gels10030158 - 21 Feb 2024
Cited by 3 | Viewed by 4023
Abstract
Age-related macular degeneration (AMD) is an ocular disease that leads to progressive photoreceptor death and visual impairment. Currently, the most common therapeutic strategy is to deliver anti-vascular endothelial growth factor (anti-VEGF) agents into the eyes of patients with wet AMD. However, this treatment [...] Read more.
Age-related macular degeneration (AMD) is an ocular disease that leads to progressive photoreceptor death and visual impairment. Currently, the most common therapeutic strategy is to deliver anti-vascular endothelial growth factor (anti-VEGF) agents into the eyes of patients with wet AMD. However, this treatment method requires repeated injections, which potentially results in surgical complications and unwanted side effects for patients. An effective therapeutic approach for dry AMD also remains elusive. Therefore, there is a surge of enthusiasm for the developing the biodegradable drug delivery systems with sustained release capability and develop a promising therapeutic strategy. Notably, the strides made in hydrogels which possess intricate three-dimensional polymer networks have profoundly facilitated the treatments of AMD. Researchers have established diverse hydrogel-based delivery systems with marvelous biocompatibility and efficacy. Advantageously, these hydrogel-based transplantation therapies provide promising opportunities for vision restoration. Herein, we provide an overview of the properties and potential of hydrogels for ocular delivery. We introduce recent advances in the utilization of hydrogels for the delivery of anti-VEGF and in cell implantation. Further refinements of these findings would lay the basis for developing more rational and curative therapies for AMD. Full article
(This article belongs to the Special Issue Gels Based for Drug Delivery System)
Show Figures

Figure 1

34 pages, 2716 KB  
Review
Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives
by Zhuxing Zhou, Jiajie Wang, Chaoqian Jiang, Kaiwang Xu, Tengjing Xu, Xinning Yu, Jinghua Fang, Yanyu Yang and Xuesong Dai
Gels 2024, 10(2), 114; https://doi.org/10.3390/gels10020114 - 1 Feb 2024
Cited by 5 | Viewed by 4668
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable [...] Read more.
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities. Full article
Show Figures

Figure 1

Back to TopTop