Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = improved northern goshawk optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3027 KB  
Article
Time Series Prediction of Water Quality Based on NGO-CNN-GRU Model—A Case Study of Xijiang River, China
by Xiaofeng Ding, Yiling Chen, Haipeng Zeng and Yu Du
Water 2025, 17(16), 2413; https://doi.org/10.3390/w17162413 - 15 Aug 2025
Viewed by 727
Abstract
Water quality deterioration poses a critical threat to ecological security and sustainable development, particularly in rapidly urbanizing regions. To enable proactive environmental management, this study develops a novel hybrid deep learning model, the NGO-CNN-GRU, for high-precision time-series water quality prediction in the Xijiang [...] Read more.
Water quality deterioration poses a critical threat to ecological security and sustainable development, particularly in rapidly urbanizing regions. To enable proactive environmental management, this study develops a novel hybrid deep learning model, the NGO-CNN-GRU, for high-precision time-series water quality prediction in the Xijiang River Basin, China. The model integrates a Convolutional Neural Network (CNN) for spatial feature extraction and a Gated Recurrent Unit (GRU) for temporal dependency modeling, with hyperparameters optimized via the Northern Goshawk Optimization (NGO) algorithm. Using historical water quality (pH, DO, CODMn, NH3-N, TP, TN) and meteorological data (precipitation, temperature, humidity) from 11 monitoring stations, the model achieved exceptional performance: test set R2 > 0.986, MAE < 0.015, and RMSE < 0.018 for total nitrogen prediction (Xiaodong Station case study). Across all stations and indicators, it consistently outperformed baseline models (GRU, CNN-GRU), with average R2 improvements of 12.3% and RMSE reductions up to 90% for NH3-N predictions. Spatiotemporal analysis further revealed significant pollution gradients correlated with anthropogenic activities in the Pearl River Delta. This work provides a robust tool for real-time water quality early warning systems and supports evidence-based river basin management. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Figure 1

25 pages, 1272 KB  
Article
Complex Environmental Geomagnetic Matching-Assisted Navigation Algorithm Based on Improved Extreme Learning Machine
by Jian Huang, Zhe Hu and Wenjun Yi
Sensors 2025, 25(14), 4310; https://doi.org/10.3390/s25144310 - 10 Jul 2025
Viewed by 648
Abstract
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the [...] Read more.
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the Northern Goshawk Optimization (NGO) algorithm is used to optimize the initial weights and biases of the Extreme Learning Machine (ELM). To enhance the matching performance of the NGO-ELM algorithm, three improvements are proposed to the NGO algorithm. The effectiveness of these improvements is validated using the CEC2005 benchmark function suite. Additionally, the IGRF-13 model is utilized to generate a geomagnetic matching dataset, followed by comparative testing of five geomagnetic matching models: INGO-ELM, NGO-ELM, ELM, INGO-XGBoost, and INGO-BP. The simulation results show that after the airborne equipment acquires the geomagnetic data, it only takes 0.27 µs to obtain the latitude, longitude, and altitude of the aerial vehicle through the INGO-ELM model. After unit conversion, the average absolute errors are approximately 6.38 m, 6.43 m, and 0.0137 m, respectively, which significantly outperform the results of four other models. Furthermore, when noise is introduced into the test set inputs, the positioning error of the INGO-ELM model remains within the same order of magnitude as those before the noise was added, indicating that the model exhibits excellent robustness. It has been verified that the geomagnetic matching-assisted navigation algorithm proposed in this paper can achieve real-time, accurate, and stable positioning, even in the presence of observational errors from the magnetic sensor. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 1601 KB  
Article
Short-Term Wind Power Prediction Based on Improved SAO-Optimized LSTM
by Zuoquan Liu, Xinyu Liu and Haocheng Zhang
Processes 2025, 13(7), 2192; https://doi.org/10.3390/pr13072192 - 9 Jul 2025
Viewed by 397
Abstract
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the [...] Read more.
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the optimal parameters for VMD, decomposing the original wind power series into multiple frequency-based subsequences. Subsequently, ISAO is employed to fine-tune the hyperparameters of the LSTM, resulting in an ISAO-LSTM prediction model. The final forecast is obtained by reconstructing the subsequences through superposition. Experiments conducted on real data from a wind farm in Ningxia, China demonstrate that the proposed approach significantly outperforms traditional single and combined models, yielding predictions that closely align with actual measurements. This validates the method’s effectiveness for short-term wind power prediction and offers valuable data support for optimizing microgrid scheduling and capacity planning in wind-integrated energy systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2271 KB  
Article
A Sustainable Solution for High-Standard Farmland Construction—NGO–BP Model for Cost Indicator Prediction in Fertility Enhancement Projects
by Xuenan Li, Kun Han, Jiaze Li and Chunsheng Li
Sustainability 2025, 17(14), 6250; https://doi.org/10.3390/su17146250 - 8 Jul 2025
Cited by 1 | Viewed by 433
Abstract
High-standard farmland fertility enhancement projects can lead to the sustainable utilization of arable land resources. However, due to difficulties in project implementation and uncertainties in costs, resource allocation efficiency is constrained. To address these challenges, this study first analyzes the impact of geography [...] Read more.
High-standard farmland fertility enhancement projects can lead to the sustainable utilization of arable land resources. However, due to difficulties in project implementation and uncertainties in costs, resource allocation efficiency is constrained. To address these challenges, this study first analyzes the impact of geography and engineering characteristics on cost indicators and applies principal component analysis (PCA) to extract key influencing factors. A hybrid prediction model is then constructed by integrating the Northern Goshawk Optimization (NGO) algorithm with a Backpropagation Neural Network (BP). The NGO–BP model is compared with the RF, XGBoost, standard BP, and GA–BP models. Using data from China’s 2025 high-standard farmland fertility enhancement projects, empirical validation shows that the NGO–BP model achieves a maximum RMSE of only CNY 98.472 across soil conditioning, deep plowing, subsoiling, and fertilization projects—approximately 30.74% lower than those of other models. The maximum MAE is just CNY 88.487, a reduction of about 32.97%, and all R2 values exceed 0.914, representing an improvement of roughly 5.83%. These results demonstrate that the NGO–BP model offers superior predictive accuracy and generalization ability compared to other approaches. The findings provide a robust theoretical foundation and technical support for agricultural resource management, the construction of projects, and project investment planning. Full article
Show Figures

Figure 1

19 pages, 2866 KB  
Article
Optimization of Dismantling Line for Used Electric Vehicle Battery Packs
by Jia Mao, Shenggang Li, Ziang Zhao, Yanzhi Zhou, Jinyuan Cheng and Weiwen Li
Symmetry 2025, 17(6), 916; https://doi.org/10.3390/sym17060916 - 10 Jun 2025
Viewed by 566
Abstract
Recycling used battery packs for electric vehicles has important economic and ecological benefits. However, existing studies lack a systematic comparison of the different models. There is also a lack of exploration of symmetrical bilateral disassembly lines in comparison to other disassembly lines. Therefore, [...] Read more.
Recycling used battery packs for electric vehicles has important economic and ecological benefits. However, existing studies lack a systematic comparison of the different models. There is also a lack of exploration of symmetrical bilateral disassembly lines in comparison to other disassembly lines. Therefore, this paper takes the battery pack dismantling line of a company as the object of study. The disassembly line model is established by considering the number of workstations, disassembly time, disassembly costs, and disassembly risks. This study quantifies the risk of disassembly at each process into specific indicators for modeling. The solving algorithm adopts the improved Northern Goshawk Optimization Algorithm and the Non-dominated Sorting Genetic Algorithm. A simulation demonstration was conducted using plant simulation to compare the advantages and disadvantages of the unilateral disassembly and symmetric bilateral disassembly line programs. The results show that the optimized unilateral and symmetric bilateral disassembly line schemes increase the efficiency by 23.08% and 38.46%, respectively, compared to the original program. The symmetric bilateral disassembly line scheme is the most efficient among the programs. The optimized schemes significantly improve the overall operational efficiency of the disassembly line. Programs to promote increased efficiency in battery recycling will contribute to environmental sustainability. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

34 pages, 10238 KB  
Article
An Improved Northern Goshawk Optimization Algorithm for Mural Image Segmentation
by Jianfeng Wang, Zuowen Bao and Hao Dong
Biomimetics 2025, 10(6), 373; https://doi.org/10.3390/biomimetics10060373 - 5 Jun 2025
Cited by 2 | Viewed by 643
Abstract
In the process of mural protection and restoration, using optimization algorithms for image segmentation is a common method for restoring mural details. However, existing optimization-based image segmentation methods often lack image segmentation quality. To alleviate the aforementioned issues, this paper proposes a mural [...] Read more.
In the process of mural protection and restoration, using optimization algorithms for image segmentation is a common method for restoring mural details. However, existing optimization-based image segmentation methods often lack image segmentation quality. To alleviate the aforementioned issues, this paper proposes a mural image segmentation algorithm based on OPBNGO by integrating the Northern Goshawk Optimization (NGO) algorithm with the off-center learning strategy, partitioned learning strategy, and Bernstein-weighted learning strategy. In OPBNGO, firstly, the off-center learning strategy is proposed, which effectively improves the global search ability of the algorithm by utilizing biased center individuals. Secondly, the partitioned learning strategy is introduced, which achieves a better balance between the exploration and development phases by applying diverse learning methods to the population. Finally, the Bernstein-weighted learning strategy is proposed, which effectively improves the algorithm’s development performance. Subsequently, the OPBNGO algorithm is applied to solve the image segmentation problem for eight mural images. Experimental results show that it achieves a winning rate of over 96.87% in terms of fitness function value, achieves a winning rate of over 93.75% in terms of FSIM, SSIM, and PSNR metrics, and can be considered a promising mural image segmentation algorithm. Full article
Show Figures

Figure 1

29 pages, 4281 KB  
Article
A BiLSTM-Based Hybrid Ensemble Approach for Forecasting Suspended Sediment Concentrations: Application to the Upper Yellow River
by Jinsheng Fan, Renzhi Li, Mingmeng Zhao and Xishan Pan
Land 2025, 14(6), 1199; https://doi.org/10.3390/land14061199 - 3 Jun 2025
Cited by 1 | Viewed by 932
Abstract
Accurately predicting suspended sediment concentrations (SSC) is vital for effective reservoir planning, water resource optimization, and ecological restoration. This study proposes a hybrid ensemble model—VMD-MGGP-NGO-BiLSTM-NGO—which integrates Variational Mode Decomposition (VMD) for signal decomposition, Multi-Gene Genetic Programming (MGGP) for feature filtering, and a double-optimized [...] Read more.
Accurately predicting suspended sediment concentrations (SSC) is vital for effective reservoir planning, water resource optimization, and ecological restoration. This study proposes a hybrid ensemble model—VMD-MGGP-NGO-BiLSTM-NGO—which integrates Variational Mode Decomposition (VMD) for signal decomposition, Multi-Gene Genetic Programming (MGGP) for feature filtering, and a double-optimized NGO-BiLSTM-NGO (Northern Goshawk Optimization) structure for enhanced predictive learning. The model was trained and validated using daily discharge and SSC data from the Tangnaihai Hydrological Station on the upper Yellow River. The main findings are as follows: (1) The proposed model achieved an NSC improvement of 19.93% over the Extreme Gradient Boosting (XGBoost) and 15.26% over the Convolutional Neural Network—Long Short-Term Memory network (CNN-LSTM). (2) Compared to GWO- and PSO-based BiLSTM ensembles, the NGO-optimized VMD-MGGP-NGO- BiLSTM-NGO model achieved superior accuracy and robustness, with an average testing-phase NSC of 0.964, outperforming the Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) counterparts. (3) On testing data, the model attained an NSC of 0.9708, indicating strong generalization across time. Overall, the VMD-MGGP-NGO-BiLSTM-NGO model demonstrates outstanding predictive capacity and structural synergy, serving as a reliable reference for future research on SSC forecasting and environmental modeling. Full article
(This article belongs to the Special Issue Artificial Intelligence for Soil Erosion Prediction and Modeling)
Show Figures

Figure 1

26 pages, 8584 KB  
Article
Congestion Relief and Economic Optimization of Integrated Power Stations with Charging and Swapping Functions
by Zhaoyi Wang, Xiaohong Zhang, Qingyuan Yan, Xiaokang Zhang and Yanxue Li
World Electr. Veh. J. 2025, 16(4), 230; https://doi.org/10.3390/wevj16040230 - 14 Apr 2025
Viewed by 532
Abstract
To effectively address the challenges of imbalanced equipment utilization, frequent congestion, and poor economic benefits faced by charging and swapping stations (ICSSs), this paper innovatively proposes a comprehensive scheduling strategy that combines user behavior regulation and battery management. In terms of user regulation, [...] Read more.
To effectively address the challenges of imbalanced equipment utilization, frequent congestion, and poor economic benefits faced by charging and swapping stations (ICSSs), this paper innovatively proposes a comprehensive scheduling strategy that combines user behavior regulation and battery management. In terms of user regulation, an intention-reshaping model for changing user cognition is proposed to equalize the use of charging and swapping (CAS) equipment, easing ICSS congestion. Moreover, an off-station scheduling model for electric vehicles (EVs) is developed to enhance overall ICSS revenue. Within the battery management terms, the suggested inventory battery threshold adjustment method and charging strategy by charging time segmentation are employed to ensure consistent inventory battery supply and cost-effective battery charging. Finally, a two-stage scheduling strategy of in-station and off-station scheduling is suggested for the ICSS, and an improved northern goshawk optimization algorithm (INGO) is used to solve it. The results showed that this strategy reduced the overall congestion of ICSSs by 34% and increased the average annual net revenue by 64%. The goal of alleviating congestion and improving the economic efficiency of ICSSs has been achieved. Full article
Show Figures

Figure 1

23 pages, 18453 KB  
Article
Efficient Short-Term Wind Power Prediction Using a Novel Hybrid Machine Learning Model: LOFVT-OVMD-INGO-LSSVR
by Zhouning Wei and Duo Zhao
Energies 2025, 18(7), 1849; https://doi.org/10.3390/en18071849 - 6 Apr 2025
Cited by 1 | Viewed by 638
Abstract
Accurate wind power forecasting (WPF) is crucial to enhance availability and reap the benefits of integration into power grids. The time lag of wind power generation lags the time of wind speed changes, especially in ultra-short-term forecasting. The prediction model is sensitive to [...] Read more.
Accurate wind power forecasting (WPF) is crucial to enhance availability and reap the benefits of integration into power grids. The time lag of wind power generation lags the time of wind speed changes, especially in ultra-short-term forecasting. The prediction model is sensitive to outliers and sudden changes in input historical meteorological data, which may significantly affect the robustness of the WPF model. To address this issue, this paper proposes a novel hybrid machine learning model for highly accurate forecasting of wind power generation in ultra-short-term forecasting. The raw wind power data were filtered and classified with the local outlier factor (LOF) and the voting tree (VT) model to obtain a subset of inputs with the best relevance. The time-varying properties of the fluctuating sub-signals of the wind power sequences were analyzed with the optimized variational mode decomposition (OVMD) algorithm. The Northern Goshawk optimization (NGO) algorithm was improved by incorporating a logical chaotic initialization strategy and chaotic adaptive inertia weights. The improved NGO algorithm was used to optimize the least squares support vector regression (LSSVR) prediction model to improve the computational speed and prediction results. The proposed model was compared with traditional machine learning models, deep learning models, and other hybrid models. The experimental results show that the proposed model has an average R2 of 0.9998. The average MSE, average MAE, and average MAPE are as low as 0.0244, 0.1073, and 0.3587, which displayed the best results in ultra-short-term WPF. Full article
Show Figures

Figure 1

19 pages, 7178 KB  
Article
Carbon Emission Prediction of Freeway Construction Phase Based on Back Propagation Neural Network Optimization
by Lin Wang, Jiyuan Zhu, Haoran Zhu, Wencong Xu, Zihao Zhao and Xingli Jia
Energies 2025, 18(7), 1732; https://doi.org/10.3390/en18071732 - 31 Mar 2025
Viewed by 548
Abstract
As a large-scale transportation infrastructure project, the construction of a freeway will consume a large amount of high-energy and high-density raw material products and emit a large amount of carbon dioxide. Selecting route options with lower carbon emissions during the preliminary design phase [...] Read more.
As a large-scale transportation infrastructure project, the construction of a freeway will consume a large amount of high-energy and high-density raw material products and emit a large amount of carbon dioxide. Selecting route options with lower carbon emissions during the preliminary design phase of a project is one effective way to mitigate carbon emission pressure. This study collected 124 highway construction cases and calculated the carbon emissions generated during the construction of each case. By utilizing the grey relational analysis method, we assessed the degree of association between various indicators and carbon emissions, identifying the primary indicators influencing carbon emissions. Furthermore, we integrated multiple strategies to improve the northern goshawk optimization algorithm and optimize the BP neural network, thereby establishing a carbon emission prediction model for the highway construction phase. Using this model, we predicted the carbon emission data per kilometer of two different highway route options, which were 2.2959 t and 4.3009 t, respectively, and recommended the route option with lower carbon emissions. This model addresses the challenge faced by highway construction units in quantifying carbon emissions for different route options during the preliminary design phase, providing a basis for adjusting and comparing route options from a low-carbon perspective. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

26 pages, 10136 KB  
Article
3D Deployment Optimization of Wireless Sensor Networks for Heterogeneous Functional Nodes
by Zean Lu, Chengqun Wang, Peng Wang and Weiqiang Xu
Sensors 2025, 25(5), 1366; https://doi.org/10.3390/s25051366 - 23 Feb 2025
Cited by 3 | Viewed by 749
Abstract
The optimization of wireless sensor network (WSN) deployment is a current research hotspot, particularly significant in industrial applications. While some existing optimization methods focus more on balancing network coverage, connectivity, and deployment costs, aligning them with practical needs compared to single-performance optimization schemes, [...] Read more.
The optimization of wireless sensor network (WSN) deployment is a current research hotspot, particularly significant in industrial applications. While some existing optimization methods focus more on balancing network coverage, connectivity, and deployment costs, aligning them with practical needs compared to single-performance optimization schemes, they still tend to be overly idealized. In practical applications, networks often face monitoring requirements for different data types, and some single-function sensors can be integrated into multifunctional sensors capable of monitoring multiple types of data. When encountering diverse data detection needs in a target area, this integration can be further considered to reduce deployment costs. Therefore, this paper designs a new multi-objective optimization problem aimed at optimizing heterogeneous-function wireless sensor networks, balancing coverage, connectivity, and cost, while introducing an additional cost dimension to meet the monitoring needs of different functional sensors in specific areas. This problem is a typical non-convex, multimodal, NP-hard problem. To address this, an improved Secretary Bird Optimization Algorithm (ISBOA) is proposed, incorporating Gaussian Cuckoo Mutation and a smooth exploitation mechanism. The algorithm is compared with the original SBOA, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Northern Goshawk Optimization (NGO). Simulation results demonstrate that ISBOA exhibits a faster convergence speed and higher accuracy in both the 23 benchmark functions and the newly designed multi-objective optimization problem, significantly overcoming the shortcomings of the compared algorithms. Finally, for large-scale optimization problems, a minimum spanning tree domain reduction strategy is proposed, which significantly improves solving efficiency with a moderate sacrifice in accuracy. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

27 pages, 3700 KB  
Article
Enhancing Urban Electric Vehicle (EV) Fleet Management Efficiency in Smart Cities: A Predictive Hybrid Deep Learning Framework
by Mohammad Aldossary
Smart Cities 2024, 7(6), 3678-3704; https://doi.org/10.3390/smartcities7060142 - 2 Dec 2024
Cited by 13 | Viewed by 3890
Abstract
Rapid technology advances have made managing charging loads and optimizing routes for electric vehicle (EV) fleets, especially in cities, increasingly important. IoT sensors in EV charging stations and cars enhance prediction and optimization algorithms with real-time data on charging behaviors, traffic, vehicle locations, [...] Read more.
Rapid technology advances have made managing charging loads and optimizing routes for electric vehicle (EV) fleets, especially in cities, increasingly important. IoT sensors in EV charging stations and cars enhance prediction and optimization algorithms with real-time data on charging behaviors, traffic, vehicle locations, and environmental factors. These IoT data enable the GNN-ViGNet hybrid deep learning model to anticipate electric vehicle charging needs. Data from 400,000 IoT sensors at charging stations and vehicles in Texas were analyzed to identify EV charging patterns. These IoT sensors capture crucial parameters, including charging habits, traffic conditions, and other environmental elements. Frequency-Aware Dynamic Range Scaling and advanced preparation methods, such as Categorical Encoding, were employed to improve data quality. The GNN-ViGNet model achieved 98.9% accuracy. The Forecast Accuracy Rate (FAR) and Charging Load Variation Index (CLVI) were introduced alongside Root-Mean-Square Error (RMSE) and Mean Square Error (MSE) to assess the model’s predictive power further. This study presents a prediction model and a hybrid Coati–Northern Goshawk Optimization (Coati–NGO) route optimization method. Routes can be real-time adjusted using IoT data, including traffic, vehicle locations, and battery life. The suggested Coati–NGO approach combines the exploratory capabilities of Coati Optimization (COA) with the benefits of Northern Goshawk Optimization (NGO). It was more efficient than Particle Swarm Optimization (919 km) and the Firefly Algorithm (914 km), reducing the journey distance to 511 km. The hybrid strategy converged more quickly and reached optimal results in 100 rounds. This comprehensive EV fleet management solution enhances charging infrastructure efficiency, reduces operational costs, and improves fleet performance using real-time IoT data, offering a scalable and practical solution for urban EV transportation. Full article
Show Figures

Figure 1

20 pages, 17284 KB  
Article
Fault-Line Selection Method in Active Distribution Networks Based on Improved Multivariate Variational Mode Decomposition and Lightweight YOLOv10 Network
by Sizu Hou and Wenyao Wang
Energies 2024, 17(19), 4958; https://doi.org/10.3390/en17194958 - 3 Oct 2024
Cited by 4 | Viewed by 1666
Abstract
In active distribution networks (ADNs), the extensive deployment of distributed generations (DGs) heightens system nonlinearity and non-stationarity, which can weaken fault characteristics and reduce fault detection accuracy. To improve fault detection accuracy in distribution networks, a method combining improved multivariate variational mode decomposition [...] Read more.
In active distribution networks (ADNs), the extensive deployment of distributed generations (DGs) heightens system nonlinearity and non-stationarity, which can weaken fault characteristics and reduce fault detection accuracy. To improve fault detection accuracy in distribution networks, a method combining improved multivariate variational mode decomposition (IMVMD) and YOLOv10 network for active distribution network fault detection is proposed. Firstly, an MVMD method optimized by the northern goshawk optimization (NGO) algorithm named IMVMD is introduced to adaptively decompose zero-sequence currents at both ends of line sources and loads into intrinsic mode functions (IMFs). Secondly, considering the spatio-temporal correlation between line sources and loads, a dynamic time warping (DTW) algorithm is utilized to determine the optimal alignment path time series for corresponding IMFs at both ends. Then, the Markov transition field (MTF) transforms the 1D time series into 2D spatio-temporal images, and the MTF images of all lines are concatenated to obtain a comprehensive spatio-temporal feature map of the distribution network. Finally, using the spatio-temporal feature map as input, the lightweight YOLOv10 network autonomously extracts fault features to achieve precise fault-line selection. Experimental results demonstrate the robustness of the proposed method, achieving a fault detection accuracy of 99.88%, which can ensure accurate fault-line selection under complex scenarios involving simultaneous phase-to-ground faults at two points. Full article
Show Figures

Figure 1

23 pages, 14688 KB  
Article
Research on Signal Noise Reduction and Leakage Localization in Urban Water Supply Pipelines Based on Northern Goshawk Optimization
by Xin Chen, Zhu Jiang, Jiale Li, Zhendong Zhao and Yunyun Cao
Sensors 2024, 24(18), 6091; https://doi.org/10.3390/s24186091 - 20 Sep 2024
Cited by 2 | Viewed by 1026
Abstract
In order to enhance the accuracy and adaptability of urban water supply pipeline leak localization, based on the Northern Goshawk Optimization, a novel joint denoising method is proposed in this paper to reduce noise in negative pressure wave signals caused by leaks. Firstly, [...] Read more.
In order to enhance the accuracy and adaptability of urban water supply pipeline leak localization, based on the Northern Goshawk Optimization, a novel joint denoising method is proposed in this paper to reduce noise in negative pressure wave signals caused by leaks. Firstly, the Northern Goshawk Optimization optimizes the decomposition levels and penalty factors of Variational Mode Decomposition, and obtains their optimal combination. Subsequently, the optimized parameters are used to decompose the pressure signals into modal components, and the effective components and noise components are distinguished according to the correlation coefficients. Then, an optimized wavelet thresholding method is applied to the selected effective components for secondary denoising. Finally, the signal components that have been denoised twice are reconstructed with the effective signal components, and the denoised negative pressure wave signals are obtained. Simulation experiments demonstrate that compared to wavelet transforms and Empirical Mode Decomposition, our method achieves the highest signal-to-noise ratio improvement of 12.23 dB and normalized cross correlation of 0.991. It effectively preserves useful leak information in the signal while suppressing noise, laying a solid foundation for improving leak localization accuracy. After several leak simulation tests on the leakage simulation test platform, the test results verify the effectiveness of the proposed method. The minimum relative error of the leakage localization is 0.29%, and an average relative error is 1.64%, achieving accurate leakage localization. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

45 pages, 12945 KB  
Article
A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems
by Haijun Liu, Jian Xiao, Yuan Yao, Shiyi Zhu, Yi Chen, Rui Zhou, Yan Ma, Maofa Wang and Kunpeng Zhang
Biomimetics 2024, 9(9), 561; https://doi.org/10.3390/biomimetics9090561 - 16 Sep 2024
Cited by 3 | Viewed by 2216
Abstract
Northern Goshawk Optimization (NGO) is an efficient optimization algorithm, but it has the drawbacks of easily falling into local optima and slow convergence. Aiming at these drawbacks, an improved NGO algorithm named the Multi-Strategy Improved Northern Goshawk Optimization (MSINGO) algorithm was proposed by [...] Read more.
Northern Goshawk Optimization (NGO) is an efficient optimization algorithm, but it has the drawbacks of easily falling into local optima and slow convergence. Aiming at these drawbacks, an improved NGO algorithm named the Multi-Strategy Improved Northern Goshawk Optimization (MSINGO) algorithm was proposed by adding the cubic mapping strategy, a novel weighted stochastic difference mutation strategy, and weighted sine and cosine optimization strategy to the original NGO. To verify the performance of MSINGO, a set of comparative experiments were performed with five highly cited and six recently proposed metaheuristic algorithms on the CEC2017 test functions. Comparative experimental results show that in the vast majority of cases, MSINGO’s exploitation ability, exploration ability, local optimal avoidance ability, and scalability are superior to those of competitive algorithms. Finally, six real world engineering problems demonstrated the merits and potential of MSINGO. Full article
Show Figures

Figure 1

Back to TopTop