Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = industrial hemp (Cannabis sativa L.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4748 KB  
Article
Enhanced Bacterial Cellulose Production Using Hempseed Meal: Optimal Conditions and Properties
by Sawichaya Orpool, Suthaphat Kamthai, Thanyaporn Siriwoharn, Patompong Khaw-on, Aree Deenu and Srisuwan Naruenartwongsakul
BioTech 2025, 14(3), 66; https://doi.org/10.3390/biotech14030066 - 27 Aug 2025
Viewed by 105
Abstract
Hemp (Cannabis sativa L.) seed is progressively emerging as an innovative and sustainable source of plant oil. Defatted hempseed meal is rich in protein and carbohydrates, which bacteria can convert into cellulose using glucose and fructose. The optimal conditions for bacterial cellulose [...] Read more.
Hemp (Cannabis sativa L.) seed is progressively emerging as an innovative and sustainable source of plant oil. Defatted hempseed meal is rich in protein and carbohydrates, which bacteria can convert into cellulose using glucose and fructose. The optimal conditions for bacterial cellulose (BC) production from hempseed meal were evaluated by investigating total solid concentrations ranging from 8 to 16 °Brix using Komagataeibacter nataicola under controlled conditions. The changes in pH, bioactive compounds, organic acids, and carbon source concentrations were monitored during the fermentation process. The highest yield of BC, 12.41 g/L, was obtained at 10 °Brix after 14 days of fermentation. It was found that the production of BC was negatively impacted by a decrease in pH and an increase in organic acids. BC exhibited a ribbon-like 3D network structure and a crystallinity index of about 70%, with excellent water-holding capacity, low oil-holding capacity, high emulsifying activity, and high emulsion stability (11.21%, 2.71%, 34.33%, and 39.11%, respectively). This BC possesses exceptional mechanical properties, a high degree of crystallinity, and superior water-holding capacity, making it valuable in various industries such as food, pharmaceuticals, and biotechnology. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

14 pages, 1031 KB  
Article
Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances
by Mohammad Moinul Islam, Kadambot H. M. Siddique and Zakaria M. Solaiman
Sustainability 2025, 17(13), 5844; https://doi.org/10.3390/su17135844 - 25 Jun 2025
Viewed by 678
Abstract
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an [...] Read more.
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an antinutritional compound limiting nutrient bioavailability in hemp seeds and seed meal are rising. Hemp seeds contain an array of nutrients, but their bioavailability is mostly unknown. Here, we report nutrient and phytate concentrations and phytate contents in source seeds and multiplied seeds of seven industrial hemp varieties. We estimated the bioavailability of specific nutrients based on calculated molar ratios of phytate to minerals. Seed multiplication was carried out in a phytotron using a compost-based growth medium. Five macronutrients (P, K, Mg, S, Ca), four micronutrients (Fe, Mn, Zn, Cu) and Cr were measured in seeds using ICP-OES. Seed phytate was determined using a UV-visible spectrophotometer rapid colourimetric assay. The results revealed significant differences between seven industrial hemp varieties for most macro- and micronutrient concentrations (not Fe), phytate concentration and content and phytate-to-mineral molar ratios in both source and multiplied seeds. Multiplied hemp seeds had higher K, Mn and Zn and, lower Cr and phytate concentrations and lower phytate content than source seeds. Considering nutrient bioavailability, Ca and Fe are non-bioavailable, and Zn is bioavailable in hemp seeds. Ferimon has increased Zn bioavailability in source and multiplied seeds, indicating the variety’s potential for seed production in Western Australia. Full article
Show Figures

Figure 1

16 pages, 2710 KB  
Article
Selecting Optimal Hemp (Cannabis sativa L.) Varieties for Long Fibre Production in Western Europe
by Hanne Pappaert, Sophie Waegebaert, Katrien Vandepitte, Joos Latré, Svea Thienpondt, Sofie Vermeire, Alexandra De Raeve, Leen De Gelder and Veronique Troch
Agronomy 2025, 15(7), 1521; https://doi.org/10.3390/agronomy15071521 - 23 Jun 2025
Viewed by 655
Abstract
Industrial hemp (Cannabis sativa L.) is gaining renewed interest as a sustainable source of natural fibres, particularly in regions like Belgium, where well-established flax processing infrastructure exists. However, region-specific data on varietal performance for long fibre production remain limited, hindering large scale [...] Read more.
Industrial hemp (Cannabis sativa L.) is gaining renewed interest as a sustainable source of natural fibres, particularly in regions like Belgium, where well-established flax processing infrastructure exists. However, region-specific data on varietal performance for long fibre production remain limited, hindering large scale adoption by both farmers and processors. This study aimed to assess the agronomic performance of early- and late-flowering hemp varieties under temperate maritime conditions through a three-year field trial at two sites in Flanders (Belgium). The evaluation focused on key parameters including emergence rate, plant morphology, long fibre yield and quality. Results showed that successful crop establishment is critical, as poor emergence influenced stem diameter (increasing with decreasing emergence) and leads to reduced long fibre yields by up to 50% between tested sites. Significant yield differences between trial years were present at both sites, with the biomass yield ranging from 10.7 to 14.5 and from 7.8 to 9.6 t ha−1 for Bottelare and Beitem, respectively. Under favourable conditions, long fibre yields reached up to 2.4 t ha−1 for late-flowering and 2.1 t ha−1 for early- and mid-late-flowering varieties. In Western Europe, early to mid-late flowering varieties are generally favoured. Among these, the mid-late flowering variety Bialobrzeskie demonstrated strong yield potential. Overall, fibre quality across varieties was comparable to that of flax. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

17 pages, 1675 KB  
Article
Assisted Extraction of Hemp Oil and Its Application to Design Functional Gluten-Free Bakery Foods
by Noemi Baldino, Mario F. O. Paleologo, Mariateresa Chiodo, Olga Mileti, Francesca R. Lupi and Domenico Gabriele
Molecules 2025, 30(12), 2665; https://doi.org/10.3390/molecules30122665 - 19 Jun 2025
Viewed by 679
Abstract
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and [...] Read more.
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and long extraction time can influence the yield and the purity of the extracts, affecting the quality of the final product. This study focused on optimizing CBD oil extraction from hemp inflorescences and its incorporation into a gluten-free bakery product for functionalization. Dynamic maceration (DME), assisted by ultrasound and microwave irradiation, was used. Our study explored the impact of varying sonication times (three distinct durations) and microwave powers (three levels, applied for two different irradiation times) on the resulting extracts. HPLC analysis was performed on these extracts. Subsequently, we used hemp flour and hemp oil to bake gluten-free cupcakes, which were fortified with the extracted CBD oil. Rheological characterization was used to investigate the cupcake properties, along with stereoscopic, color and puncture analysis performed on the baked samples. The most effective extraction parameters identified were 30 s of microwave irradiation at 700 W, yielding 45.2 ± 2.0 g of CBD extract, and 15 min of sonication, which resulted in 53.2 ± 2.5 g. Subsequent rheological characterization indicated that the product exhibited mechanical properties and a temperature profile comparable to a benchmark, evidenced by a height of 4.1 ± 0.2 cm and a hardness of 1.9 ± 0.2 N. These promising values demonstrate that hemp oil and hemp flour are viable ingredients for traditional cakes and desserts, notably contributing increased nutritional value through the CBD-enriched hemp oil and the beneficial profile of hemp flour. Full article
Show Figures

Graphical abstract

19 pages, 1486 KB  
Article
Fatty Acid Composition and Bioactive Profiles in the Aerial Parts of Cannabis sativa
by Weronika Jacuńska, Wioletta Biel, Grzegorz Tokarczyk, Patrycja Biernacka, Grzegorz Bienkiewicz and Katarzyna Janda-Milczarek
Molecules 2025, 30(9), 1947; https://doi.org/10.3390/molecules30091947 - 27 Apr 2025
Viewed by 1074
Abstract
The interest in Cannabis sativa L. has been on the rise recently, driven by its potential applications in various sectors, including the food industry, the medical sector, and other key areas. This crop possesses a diverse profile of essential fatty acids and a [...] Read more.
The interest in Cannabis sativa L. has been on the rise recently, driven by its potential applications in various sectors, including the food industry, the medical sector, and other key areas. This crop possesses a diverse profile of essential fatty acids and a range of bioactive compounds, which exhibit properties that are highly significant for functional food ingredients and nutraceutical purposes. The objective of this study was to investigate the characteristic lipid and bioactive profiles of different plant parts (e.g., inflorescences and leaves) to ascertain their possible uses in nutritional and therapeutic fields. The fat content of the plant material was determined by the Soxhlet method, and gas chromatography was employed for the assessment of the fatty acids and selected bioactive compounds profile. In addition, some lipid quality indices were calculated with the purpose of providing a more in-depth discussion of these aspects beyond the traditional n-6/n-3 ratio. A distinct lipid composition was evident among the various plant parts. Compared to inflorescence samples, leaves typically contain higher proportions of SFAs, MUFAs, PUFAs, and n-3 fatty acids, along with a more favorable n-6/n-3 ratio, which may significantly impact nutritional value. Phytol-rich leaves can suggest its potential application as a functional feed or even a nutraceutical. Furthermore, the occurrence of hexacosane and related antimicrobial and antifungal compounds serves to enhance the practical utility of the leaves. Notably, hemp leaves are not merely a by-product, but rather offer significant practical applications. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

20 pages, 4561 KB  
Article
Unmodified Hemp Biowaste as a Sustainable Biosorbent for Congo Red and Remazol Brilliant Blue R
by Ljiljana Suručić, Deana Andrić, Ivana Jevtić, Milan Momčilović, Relja Suručić and Jelena Penjišević
Coatings 2025, 15(5), 519; https://doi.org/10.3390/coatings15050519 - 26 Apr 2025
Viewed by 1210
Abstract
Industrial hemp (Cannabis sativa L.) was investigated as a sustainable biosorbent for removing Congo Red (CR) and Remazol Brilliant Blue R (RBBR) from wastewater. The unmodified hemp biosorbent exhibited moderate but practically relevant sorption capacities (4.47 mg/g for CR; 2.44 mg/g for [...] Read more.
Industrial hemp (Cannabis sativa L.) was investigated as a sustainable biosorbent for removing Congo Red (CR) and Remazol Brilliant Blue R (RBBR) from wastewater. The unmodified hemp biosorbent exhibited moderate but practically relevant sorption capacities (4.47 mg/g for CR; 2.44 mg/g for RBBR), outperforming several agricultural waste materials. Kinetic studies revealed rapid uptake, with CR following pseudo-first-order kinetics (t1/2 < 15 min) and RBBR fitting the Elovich model, indicating heterogeneous surface interactions. Equilibrium data showed CR adsorption was best described by the Temkin isotherm (R2 = 0.983), while RBBR followed the Langmuir model (R2 = 0.998), reflecting their distinct binding mechanisms. Thermodynamic analysis confirmed spontaneous (ΔG° < 0), exothermic (ΔH° ≈ −2 kJ/mol), and entropy-driven processes for both dyes. Molecular docking elucidated the structural basis for performance differences: CR’s stronger binding (−7.5 kcal/mol) involved weak noncovalent interaction arising from partial overlap between the π-electron cloud of an aromatic ring and σ-bonds C-C or C-H (π-σ stacking) and hydrogen bonds with cellulose, whereas RBBR’s weaker affinity (−5.4 kcal/mol) relied on weak intermolecular interaction between a hydrogen atom (from a C-H bond) and the π-electron system of an aromatic ring (C-H∙∙∙π interactions). This work establishes industrial hemp as an eco-friendly alternative for dye removal, combining renewable sourcing with multi-mechanism adsorption capabilities suitable for small-scale water treatment applications. Full article
Show Figures

Figure 1

13 pages, 2585 KB  
Article
Effect of Hormonal Treatments on Cannabinoid Content Levels in Female Hemp (Cannabis sativa L.) Inflorescences
by Juyoung Kim, Dong-Gun Kim, Tae Hyun Ha, Woon Ji Kim, Jaihyunk Ryu, Jin-Baek Kim and Sang Hoon Kim
Int. J. Mol. Sci. 2025, 26(7), 3445; https://doi.org/10.3390/ijms26073445 - 7 Apr 2025
Viewed by 1095
Abstract
The diverse hormonal treatments applied to hemp (Cannabis sativa L.) carry significant implications for cultivation, and yield optimization across a range of applications, including fiber, seed, oil production, and the enhancement of medicinal compounds. However, there is no evidence concerning the long-term [...] Read more.
The diverse hormonal treatments applied to hemp (Cannabis sativa L.) carry significant implications for cultivation, and yield optimization across a range of applications, including fiber, seed, oil production, and the enhancement of medicinal compounds. However, there is no evidence concerning the long-term consequences of hormonal treatment. To determine the connection between the effects of hormonal treatment and cannabinoid accumulation, hemp plants were treated with γ-aminobutyric acid (GABA), abscisic acid (ABA), and salicylic acid (SA) to investigate their effects on gene expression and cannabinoid content levels in female inflorescences at 3 days and 4 weeks after treatment. The treatments influenced the transcript levels of five key cannabinoid biosynthesis genes, with 1.0 mM GABA significantly increasing OAC, THCAS, and CBCAS transcripts within 48 to 72 h. Additionally, 1.0 mM GABA led to a significant increase in tetrahydrocannabinol content by day three and significant increases in total cannabidiol and cannabinoid by week four. In addition, both ABA and SA induced transient, dose-dependent increases or decreases in gene expressions, but cannabinoid accumulation at 4 weeks showed no significant changes compared to the control. These results provide valuable insights for hormonal application in cultivation and the development of traits that enhance cannabinoid production in cannabis cultivation, which could significantly contribute to optimizing industrial applications. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 529 KB  
Article
Use of Biochar and Industrial Hemp for Remediation of Heavy-Metal-Contaminated Soil: Root Uptake and Translocations for Cd, Pb, and Zn
by Sophie Sward, Kristofor R. Brye, David M. Miller and Dietrich V. Thurston
Soil Syst. 2025, 9(2), 29; https://doi.org/10.3390/soilsystems9020029 - 28 Mar 2025
Cited by 1 | Viewed by 1133
Abstract
Phytoremediation has been reported as a more energy-efficient, and therefore cost-effective, method of environmental restoration compared to traditional remediation methods for heavy-metal-contaminated soils. Biochar has been shown to have variable effects on remediation potential in heavy-metal-contaminated soils. The objective of this study was [...] Read more.
Phytoremediation has been reported as a more energy-efficient, and therefore cost-effective, method of environmental restoration compared to traditional remediation methods for heavy-metal-contaminated soils. Biochar has been shown to have variable effects on remediation potential in heavy-metal-contaminated soils. The objective of this study was to evaluate the effects of soil contamination level (i.e., low, medium, and high), industrial hemp (Cannabis sativa L.) cultivar (i.e., ‘Carmagnola’ and ‘Jinma’), biochar rate (i.e., 0, 2, 5, and 10% by volume), and their interactions on root tissue Cd, Pb, and Zn concentrations and uptakes; whole-plant Cd, Pb, and Zn uptakes; and translocation factors after 90 days of hemp growth in contaminated soil from the Tar Creek Superfund Site near Picher, Oklahoma. Hemp removal of Cd, Pb, and Zn differed between soil contamination levels (p < 0.01), but was unaffected (p > 0.05) by the hemp cultivar or biochar rate, except for total Zn uptake. Total Zn uptake was affected (p = 0.02) by the biochar rate in the medium- and high-contaminated soils, where total plant Zn uptake in the high-contaminated soil was numerically the largest with 10% biochar (0.28 mg cm−2) and in the medium-contaminated soil was numerically the largest with 2% biochar (0.07 mg cm−2), but was unaffected (p > 0.05) by the biochar rate in the low-contaminated soil. The translocation factor for Zn uptake in the low and medium soils was >1, indicating industrial hemp as a potential Zn hyper-accumulator up to a threshold soil contamination level. Results demonstrate that biochar amendment has the potential to enhance hemp’s remediation capability of heavy-metal-contaminated soils. Full article
(This article belongs to the Special Issue Soil Bioremediation)
Show Figures

Figure 1

27 pages, 11163 KB  
Article
Impact of Industrial Hemp (Cannabis sativa L.) Extracts on Seed Germination and Seedling Growth: Evaluating Allelopathic Activity Across Various Extraction Methods
by Mirjana Kojić, Nataša Samardžić, Milena Popov, Aleksandra Gavarić, Senka Vidović, Nemanja Teslić, Tijana Zeremski, Anamarija Koren and Bojan Konstantinović
Agronomy 2025, 15(3), 684; https://doi.org/10.3390/agronomy15030684 - 12 Mar 2025
Viewed by 1233
Abstract
The noticeable reduction in plant species abundance near industrial hemp (Cannabis sativa L.) highlights the need to investigate its potential allelopathic effects on selected cultivars’ seed germination and seedling growth. Industrial hemp of the “Helena” variety was used to obtain aqueous extracts [...] Read more.
The noticeable reduction in plant species abundance near industrial hemp (Cannabis sativa L.) highlights the need to investigate its potential allelopathic effects on selected cultivars’ seed germination and seedling growth. Industrial hemp of the “Helena” variety was used to obtain aqueous extracts by conventional (macerate, hydrolate, and post-distillation residue) and green methods (ultrasonic and microwave extracts) in order to treat thirteen most commonly cultivated plant species, including lettuce, kohlrabi, onion, tomato, carrot, pepper, savoy cabbage, rocket, alfalfa, white mustard, pea, sunflower, and parsley. This is the first time that the allelopathic effects of seven different hemp extracts were tested simultaneously on thirteen different species. The extracts were applied at 10, 25, 50, and 100% concentrations. The seed germination percentage and root/shoot length results for all tested plants, except peas, clearly demonstrated an inhibitory effect of higher concentrations of hemp extracts. This effect was observed regardless of variations in chemical composition (CBD, THC, and total polyphenols), suggesting that different extracts have varying impacts on different species. The weakest inhibitory effect on the germination and seedling length for the majority of the tested plant species was noted for PDR, while the strongest inhibitory effect in terms of seedling length was observed in the case of MAE700. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

21 pages, 2109 KB  
Article
Maximizing Cannabinoid and Polyphenol Extraction from Industrial Hemp (Cannabis sativa L. cv. Helena) Areal Parts: A Comparative Study of Ultrasound-Assisted and Conventional Methods at Two Harvest Stages
by Zorica Lazarević, Anamarija Koren, Tijana Zeremski, Aleksandra Mišan, Nataša Nastić, Nadežda Stojanov and Senka Vidović
Plants 2025, 14(5), 816; https://doi.org/10.3390/plants14050816 - 5 Mar 2025
Viewed by 1532
Abstract
In this work, two extraction techniques, conventional and ultrasound-assisted extraction (UAE) techniques, were employed for the extraction of natural bioactive compounds (NBCs) from the areal parts of industrial hemp (Cannabis sativa L. cv. Helena) at two harvesting stages: (i) the beginning of [...] Read more.
In this work, two extraction techniques, conventional and ultrasound-assisted extraction (UAE) techniques, were employed for the extraction of natural bioactive compounds (NBCs) from the areal parts of industrial hemp (Cannabis sativa L. cv. Helena) at two harvesting stages: (i) the beginning of flowering and (ii) the full flowering of the hemp plants. In the conventional extraction, the effect of different extraction solvents on the extraction yield and the content of NBCs was examined. The extraction temperature, extraction time, and ultrasonic power were chosen for the process parameters in UAE. The highest value of the investigated responses in UAE-obtained extracts was higher compared to extract obtained with conventional extraction techniques when the same solvent was used (50% ethanol): extraction yield (17.54 compared to 15.28%), content of total phenols and total flavonoids (1.7795 compared to 1.0476 mg GAE/mL and 0.6749 compared to 0.3564 mg CE/mL, respectively) and cannabidiol (0.8752 compared to 0.4310 mg/mL). Comparing the plant material in different developmental stages, it can be concluded that hemp aerial parts at the beginning of the flowering stage represent a good source of the phenolic compound with sinapic acid and apigenin being dominant, while hemp aerial parts in the full flowering stage represent a good source of cannabinoids. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 2333 KB  
Article
From Waste to Resource: Mineral and Biochemical Characterization of Hemp By-Products in the Fiber and Seed Supply Chain
by Ylenia Pieracci, Laura Pistelli, Benedetta D’Ambrosio, Roberta Paris, Guido Flamini and Laura Bassolino
Agronomy 2025, 15(3), 564; https://doi.org/10.3390/agronomy15030564 - 25 Feb 2025
Viewed by 820
Abstract
Industrial hemp (Cannabis sativa L.) is a versatile and sustainable multipurpose plant for agroecology services and a zero-waste circular economy. While the focus has traditionally been on primary products like fiber and seeds, nowadays there is an increasing awareness of the potential [...] Read more.
Industrial hemp (Cannabis sativa L.) is a versatile and sustainable multipurpose plant for agroecology services and a zero-waste circular economy. While the focus has traditionally been on primary products like fiber and seeds, nowadays there is an increasing awareness of the potential value of the by-products generated during hemp cultivation and processing. This article explores various methods of valorizing industrial hemp wastes, focusing on their mineral and biochemical composition, highlighting the benefits of utilizing what was once considered a mere by-product. The apical and the basal leaves of 12 industrial hemp varieties, six monoecious, and six dioecious, representing the main by-product of fiber supply chain, were assessed for their mineral (N, K, Na, Ca; Mg, Cu, Mn, Fe, and Zn), chlorophyll, carotenoids, and total soluble phenols contents, as well as for their antioxidant activity. The same parameters were also evaluated in the inflorescences; the main waste was derived from both hemp fiber and seed harvesting, which were collected at three stages of flower development for four selected genotypes, together with the yield and chemical composition of their essential oils. Differences in the evaluated parameters among genotypes and tissues were highlighted, showing the potential for diversifying the utilization of industrial hemp wastes. The possible uses of these residual biomasses are discussed based on their composition. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

18 pages, 10496 KB  
Article
The Potential Impact of Flower Characteristics and Pollen Viability of Four Industrial Hemp (Cannabis sativa L.) Grain Varieties on Cross-Pollination
by Beatrice N. Dingha and Louis E. N. Jackai
Agronomy 2025, 15(3), 515; https://doi.org/10.3390/agronomy15030515 - 20 Feb 2025
Cited by 1 | Viewed by 1682
Abstract
Industrial hemp (Cannabis sativa L.) is primarily a dioecious plant, and monoecious varieties have been developed for high yield. Production practices vary for each variety, prompting the need for the present study to describe the floral characteristics and evaluate pollen quantity and [...] Read more.
Industrial hemp (Cannabis sativa L.) is primarily a dioecious plant, and monoecious varieties have been developed for high yield. Production practices vary for each variety, prompting the need for the present study to describe the floral characteristics and evaluate pollen quantity and viability of monoecious and dioecious hemp varieties. All four hemp varieties, Henola, CFX-2, Canda, and Joey, have five lanceolate anthers, basifixed to a threadlike filament. Anther length was significantly different among varieties, but not anther width. The longest length (0.38 ± 0.046 cm) was recorded in Henola, and the shortest (0.34 ± 0.043 cm) in CFX-2. Anther width ranged from 0.088 ± 0.0024 to 0.095 ± 0.0021 cm. Pollen grains were triporate and spheroidal in shape and size and differed significantly, with the largest in Joey (27.83 ± 0.78 μm) and Henola (27.489 ± 0.99 μm), and smallest in Canda (22.04 ± 0.56 μm). The number of pollen grains per flower differed significantly among varieties, ranging from 29,183 in Henola to 104,548 in Joey. Even though Henola recorded the lowest pollen number, it had the highest percentage (69.3%) of viable pollen after 24 h of storage 4 °C and Canda had the lowest (54%). Three weeks after storage at the same temperature, pollen viability decreased for all the hemp varieties and ranged from 52% to 58%. There was a moderate, positive and significant relationship (r = 0.496) between anther length and the number of pollen grains in Joey. The relationship in Henola was moderate and non-significant (r = 0.356), and it was weak and non-significant in Canda (r = 0.188) and in CFX-2 (r = 0.037). The findings from this study provide information for growers and researchers on hemp breeding and cultivation practices that may contribute to the prevention of cross-pollination. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

24 pages, 4685 KB  
Article
Flowering Synchronization Using Artificial Light Control for Crossbreeding Hemp (Cannabis sativa L.) with Varied Flowering Times
by Gergő Somody and Zoltán Molnár
Plants 2025, 14(4), 594; https://doi.org/10.3390/plants14040594 - 15 Feb 2025
Viewed by 850
Abstract
Hemp (Cannabis sativa L.), one of the earliest domesticated crops, has diverse applications in textiles, construction, nutrition, and medicine. Breeding advancements, including speed breeding, accelerate genetic improvements in crops by optimizing environmental conditions for reduced generation times. This study employed greenhouse and [...] Read more.
Hemp (Cannabis sativa L.), one of the earliest domesticated crops, has diverse applications in textiles, construction, nutrition, and medicine. Breeding advancements, including speed breeding, accelerate genetic improvements in crops by optimizing environmental conditions for reduced generation times. This study employed greenhouse and field experiments to develop a proprietary yellow-stemmed hemp germplasm with a unique stem trait. Initial crossbreeding between the late Eletta Campana (medium green stems) and the early Chamaeleon (yellow stems) demonstrated the recessive monogenic inheritance of the yellow-stem trait and fast and safe stabilization even in the case of parent varieties with different flowering times. Controlled flowering in the case of photoperiod-sensitive genotypes, manual pollination, and successive backcrossing stabilized the yellow-stem trait over six cycles, with 100% trait consistency achieved by the fifth cycle within just 12 months in total. Open-field trials validated greenhouse results, showing strong correlations between visual stem color assessments and visible atmospherically resistant index (VARI) obtained through remote sensing imagery. Cannabinoid analyses indicated significant reductions in tetrahydrocannabinol (THC) content while maintaining optimal cannabidiol (CBD) levels. Accumulated growing degree days (GDDs) optimized flowering and maturity, ensuring consistency in phenological traits. This research highlights the utility of speed breeding and chemical analysis to accelerate trait stabilization and improve industrial hemp’s agronomic potential for fiber and CBD production while adhering to regulatory THC limits. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

15 pages, 2914 KB  
Article
Postharvest Drying and Curing Affect Cannabinoid Contents and Microbial Levels in Industrial Hemp (Cannabis sativa L.)
by Yousoon Baek, Heather Grab and Chang Chen
Plants 2025, 14(3), 414; https://doi.org/10.3390/plants14030414 - 31 Jan 2025
Cited by 1 | Viewed by 4376
Abstract
Postharvest operations affect the yield and quality of industrial hemp (Cannabis sativa L.). This study aimed to investigate the postharvest drying and curing effects on the key quality and safety indicators of cannabinoid-type hemp. Freshly harvested hemp inflorescence of Hempress and Wild [...] Read more.
Postharvest operations affect the yield and quality of industrial hemp (Cannabis sativa L.). This study aimed to investigate the postharvest drying and curing effects on the key quality and safety indicators of cannabinoid-type hemp. Freshly harvested hemp inflorescence of Hempress and Wild Bourbon cultivars were dried by three methods: (1) Hot air drying at 75 °C; (2) Ambient air drying at 25 °C; and (3) Freeze drying. The dried hemp was then cured in sealed glass jars or mylar bags in dark conditions at ambient temperatures. The drying time, overall cannabinoid contents, decarboxylation level, color metrics and total aerobic loads were experimentally determined. Hot air drying can reduce the hemp moisture from 77% to safe-storage level of 6% within 8 h, and achieved up to 2-log reduction in the total yeast and mold counts. The drying time required for ambient air drying and freeze drying were 1 week and 24 h, respectively. Curing led to a 3.3% to 13.6% increase in hemp moisture, while the influence of curing method was not significant. Both drying and curing did not significantly affect the total cannabinoid contents, but resulted in decarboxylation, and reduction in the greenness. The findings suggested that hot air drying followed by glass jar curing is preferred for higher drying efficiency, better preservation of the cannabinoids and microbial safety. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

20 pages, 1991 KB  
Article
Thermal Insulation of Agricultural Buildings Using Different Biomass Materials
by Kamila Ewelina Mazur, Witold Jan Wardal, Jan Barwicki and Mikhail Tseyko
Energies 2025, 18(3), 636; https://doi.org/10.3390/en18030636 - 30 Jan 2025
Cited by 1 | Viewed by 1868
Abstract
The main goal of the article is to present the effectiveness of biomass as a thermal insulator and estimate the global potential for using biomass, considering the perspective of sustainable development and improving energy efficiency in agricultural building construction. The article presents two [...] Read more.
The main goal of the article is to present the effectiveness of biomass as a thermal insulator and estimate the global potential for using biomass, considering the perspective of sustainable development and improving energy efficiency in agricultural building construction. The article presents two types of piggery construction: one using typical materials like concrete and the other using biomass-based materials. The evaluation is based on carbon footprint and embodied energy indicators. The model calculations developed in this article may be used in the future for life cycle assessment (LCA) analyses of specific construction solutions for rural livestock buildings. Two model variants for constructing a pigsty with different insulating materials were compared. The TB (Traditional Building) variant consisted of layers of (AAC) Autoclaved Aerated Concrete, glass wool, and brick. The second model variant, HB (Hempcrete Building), was made of concrete blocks with the addition of industrial hemp (Cannabis sativa L.) shives. Regarding footprint evaluation, bio-based materials often have a net-negative carbon footprint due to the sequestration effect. The results showed a significant difference in the carbon footprint of both TB and HB solutions—the carbon footprint of the HB variant was only 9.02% of that of the TB variant. The insulation properties of hempcrete were also compared to those of the most frequently used insulating materials in construction, such as glass wool and rock wool. The novelty of the study lies in analyzing the potential use of biomass for thermal insulation in livestock buildings, considering various raw materials, including their industrial properties and the ecological benefits resulting from their implementation. In addition, the authors focused on biomass thermal insulation from the perspective of sustainable development and improving energy efficiency in building construction. Our evaluation and selection of the best solutions are based on the indicators of embodied energy and carbon footprint. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop