Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = initiation of DNA replication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2218 KiB  
Review
Epigenetic Therapies in Melanoma—Targeting DNA Methylation and Histone Modification
by Adrian Bogdan Tigu, Andrei Ivancuta, Andrada Uhl, Alexandru Cristian Sabo, Madalina Nistor, Ximena-Maria Mureșan, Diana Cenariu, Tanase Timis, Doru Diculescu and Diana Gulei
Biomedicines 2025, 13(5), 1188; https://doi.org/10.3390/biomedicines13051188 - 13 May 2025
Viewed by 351
Abstract
Skin cancer prevalence has increased during the last decades, with the last years serving as a pivotal moment for comprehending its epidemiological patterns and its impact on public health. Melanoma is one of the most frequently occurring malignancies, arising from a complex interplay [...] Read more.
Skin cancer prevalence has increased during the last decades, with the last years serving as a pivotal moment for comprehending its epidemiological patterns and its impact on public health. Melanoma is one of the most frequently occurring malignancies, arising from a complex interplay of genetic factors, environmental factors, lifestyle and socio-economic conditions. Epigenetic changes play a critical role in tumor development, influencing progression and aggressiveness. Epigenetic therapies could represent novel therapeutic options, while drug repositioning may serve as a viable strategy for cancer treatment. Demethylating agents, commonly used in hematological malignancies, show promising results on solid tumors, including melanoma. Methylation patterns are responsible for tumor development by modulating gene expression, while histone acetylation influences DNA processes such as transcription, replication, repair, and recombination. This review aims to identify existing potential therapeutical approaches using therapeutic agents that can modulate DNA methylation and histone modification, which can lead to tumor inhibition, cell death initiation and reactivation of tumor suppressor genes. Full article
(This article belongs to the Special Issue Feature Reviews in Cell Death)
Show Figures

Figure 1

33 pages, 7606 KiB  
Review
DNA Replication in Time and Space: The Archaeal Dimension
by Anastasia Serdyuk and Thorsten Allers
DNA 2025, 5(2), 24; https://doi.org/10.3390/dna5020024 - 6 May 2025
Viewed by 282
Abstract
The ability of a nucleic acid molecule to self-replicate is the driving force behind the evolution of cellular life and the transition from RNA to DNA as the genetic material. Thus, the physicochemical properties of genome replication, such as the requirement for a [...] Read more.
The ability of a nucleic acid molecule to self-replicate is the driving force behind the evolution of cellular life and the transition from RNA to DNA as the genetic material. Thus, the physicochemical properties of genome replication, such as the requirement for a terminal hydroxyl group for de novo DNA synthesis, are conserved in all three domains of life: eukaryotes, bacteria, and archaea. Canonical DNA replication is initiated from specific chromosomal sequences termed origins. Early bacterial models of DNA replication proposed origins as regulatory points for spatiotemporal control, with replication factors acting on a single origin on the chromosome. In eukaryotes and archaea, however, replication initiation usually involves multiple origins, with complex spatiotemporal regulation in the former. An alternative replication initiation mechanism, recombination-dependent replication, is observed in every cellular domain (and viruses); DNA synthesis is initiated instead from the 3′ end of a recombination intermediate. In the domain archaea, species including Haloferax volcanii are not only capable of initiating DNA replication without origins but grow faster without them. This raises questions about the necessity and nature of origins. Why have archaea retained such an alternative DNA replication initiation mechanism? Might recombination-dependent replication be the ancestral mode of DNA synthesis that was used during evolution from the primordial RNA world? This review provides a historical overview of major advancements in the study of DNA replication, followed by a comparative analysis of replication initiation systems in the three domains of life. Our current knowledge of origin-dependent and recombination-dependent DNA replication in archaea is summarised. Full article
Show Figures

Graphical abstract

18 pages, 7164 KiB  
Article
Mechanisms of Viral DNA Replication of Human Papillomavirus: E2 Protein-Dependent Recruitment of E1 DNA Helicase to the Origin of DNA Replication
by Anshul Rana, Gulden Yilmaz, Esther E. Biswas-Fiss and Subhasis Biswas
Int. J. Mol. Sci. 2025, 26(9), 4333; https://doi.org/10.3390/ijms26094333 - 2 May 2025
Viewed by 371
Abstract
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect epithelial cells and cause cervical, anogenital, and oropharyngeal cancers. HPV genome replication relies on the viral E1 and E2 proteins to initiate DNA replication. The first step is the assembly of the E1-E2 [...] Read more.
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect epithelial cells and cause cervical, anogenital, and oropharyngeal cancers. HPV genome replication relies on the viral E1 and E2 proteins to initiate DNA replication. The first step is the assembly of the E1-E2 complex at the origin of replication. We have examined the role of full-length HPV E1 helicase and its interaction with E2 in pre-initiation complex formation. Electrophoretic mobility shift assays (EMSAs) with purified E1 and E2 proteins revealed that the HPV genome does not have a specific E1 binding site, or such a sequence is not required for pre-initiation complex formation. E1 alone did not show any binding to the origin DNA sequences, while E2 facilitated E1 recruitment to the origin, forming the E1-E2-DNA ternary complex. Formation of such a complex required at least two E2 binding sites. These findings led us to propose a novel mechanism in which E2 dimers serve as the primary recruiters of E1 to form the pre-initiation complex. This study provides new insights into the mechanistic role of E2 in the recruitment of E1 at the origin of HPV DNA replication, enhancing our understanding of HPV biology and potentially informing future therapeutic strategies. Full article
Show Figures

Graphical abstract

17 pages, 2271 KiB  
Article
Persistent Infections in Tick Cell Lines: The Role of Viral-Derived DNA Forms in Hazara Virus Replication and Cellular Survival
by Eva Dias, Filipe Tomaz, Silvia Fabi, Cristiano Salata, Ana Domingos and Gonçalo Seixas
Viruses 2025, 17(5), 591; https://doi.org/10.3390/v17050591 - 22 Apr 2025
Viewed by 281
Abstract
Crimean–Congo hemorrhagic fever virus (CCHFV) causes severe or fatal infections in humans and is geographically widespread. The virus has coevolved with its tick vectors, establishing persistent infections critical to its transmission. This study explored the mechanisms underpinning these persistent infections, using tick cell [...] Read more.
Crimean–Congo hemorrhagic fever virus (CCHFV) causes severe or fatal infections in humans and is geographically widespread. The virus has coevolved with its tick vectors, establishing persistent infections critical to its transmission. This study explored the mechanisms underpinning these persistent infections, using tick cell lines and the Hazara virus (HAZV) as a biosafety level 2 (BSL-2) model for CCHFV. Initially, an RT-qPCR protocol was developed to detect HAZV in tick cells. The study then focused on the production of virus-derived DNA (vDNAs) by tick cells as a defensive response to infection. These vDNAs regulate viral particle production, enabling tick cells to maintain viability and establish persistent infections. The experiments characterized vDNAs production, viral titers, and subcellular localization, and they examined the effect of the reverse transcriptase inhibitor azidothymidine triphosphate (AZT). The results showed that all tested tick cell lines supported HAZV replication, achieving persistent infections without cytopathic effects. vDNAs was detected in both the cytoplasm and nucleus, and its formation was dependent on HAZV infection. Importantly, vDNAs presence was linked to infection persistence; cells treated with AZT exhibited a marked reduction in vDNAs production and an associated increase in viral particle production, which correlated with higher cell death. These findings underscore the critical role of vDNAs in balancing viral replication and promoting long-term cell survival in tick cells, highlighting their importance in the coevolution of tick-borne viruses and their vectors. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 862 KiB  
Review
Chemical Versus Enzymatic Nucleic Acid Modifications and Genomic Stability
by Jonathan R. Cortez and Marie E. Migaud
DNA 2025, 5(2), 19; https://doi.org/10.3390/dna5020019 - 9 Apr 2025
Viewed by 496
Abstract
DNA damage and repair have been central themes in cellular biology research. Broadly, DNA damage is understood as modifications to canonical nucleotides that disrupt their function during transcription and replication. A deeper biochemical understanding of DNA damage is essential, as the genome governs [...] Read more.
DNA damage and repair have been central themes in cellular biology research. Broadly, DNA damage is understood as modifications to canonical nucleotides that disrupt their function during transcription and replication. A deeper biochemical understanding of DNA damage is essential, as the genome governs all cellular processes. We can classify DNA damage according to whether the modifications to the nucleic acid scaffold are chemically or enzymatically initiated. This distinction is important because chemical modifications are often irreversible, sometimes sparse, and difficult to detect or control spatially and replicate systematically. This can result in genomic damage or modifications to nucleotides in the nucleotide pool, which is less commonly studied. In contrast, enzymatic modifications are typically induced by the cell for specific purposes and are under strong regulatory control. Enzymatic DNA modifications also present a degree of sequence specificity and are often reversible. However, both types of DNA modifications contribute to cellular aging when poorly repaired and, as a result, remain incompletely understood. This review hopes to gather less studied mechanisms in nucleotide modifications and show research gaps in our current understanding of nucleotide biology. By examining the implications of these mechanisms on DNA modifications, in the nucleotide pool and genome, we may gain insights into innovative strategies for mitigating the effects of cellular aging. Full article
(This article belongs to the Special Issue Epigenetics and Environmental Exposures)
Show Figures

Graphical abstract

17 pages, 1419 KiB  
Review
DNA Transactions in Bacteria and Membranes: A Place for the Hfq Protein?
by Sylwia Bloch, Richard R. Sinden, Frank Wien, Grzegorz Węgrzyn and Véronique Arluison
Membranes 2025, 15(4), 103; https://doi.org/10.3390/membranes15040103 - 1 Apr 2025
Viewed by 906
Abstract
DNA metabolism consists of crucial processes occurring in all living cells. These processes include various transactions, such as DNA replication, genetic recombination, transposition, mutagenesis, and DNA repair. While it was initially assumed that these processes might occur in the cytoplasm of prokaryotic cells, [...] Read more.
DNA metabolism consists of crucial processes occurring in all living cells. These processes include various transactions, such as DNA replication, genetic recombination, transposition, mutagenesis, and DNA repair. While it was initially assumed that these processes might occur in the cytoplasm of prokaryotic cells, subsequent reports indicated the importance of the cell membrane in various DNA transactions. Furthermore, newly identified factors play significant roles in regulating DNA-related cellular processes. One such factor is the Hfq protein, originally discovered as an RNA chaperone but later shown to be involved in several molecular mechanisms. These include DNA transactions and interaction with the cell membrane. Recent studies have suggested that Hfq plays a role in the regulation of DNA replication, mutagenesis, and recombination. In this narrative review, we will focus on the importance of membranes in DNA transactions and discuss the potential role of Hfq-mediated regulation of these processes in Escherichia coli, where the protein is the best characterized. Special attention is given to the affinity of this small protein for both DNA and membranes, which might help explain some of the findings from recent experiments. Full article
(This article belongs to the Collection Featured Reviews in Membrane Science)
Show Figures

Figure 1

15 pages, 1603 KiB  
Article
Expression Profile of Human Cytomegalovirus UL111A cmvIL-10 and LAcmvIL-10 Transcripts in Primary Cells and Cells from Renal Transplant Recipients
by Giovana W. C. Almeida, Martha T. Oliveira, Isabella G. L. Martines, Giuliano C. Fiori, Michael M. Nevels, Ian J. Groves, John Sinclair, José Medina-Pestana, Rayra Sampaio da Silva, Monica Nakamura, Lucio Requião-Moura, Emma Poole and Maria C. Carlan da Silva
Viruses 2025, 17(4), 501; https://doi.org/10.3390/v17040501 - 31 Mar 2025
Viewed by 394
Abstract
Human cytomegalovirus (HCMV) is a high-risk pathogen in immunocompromised individuals, especially in transplant recipients. HCMV viremia must be monitored, and frequently, patients are treated with antiviral agents. HCMV has a variety of strategies to modulate host antiviral responses, and one important player is [...] Read more.
Human cytomegalovirus (HCMV) is a high-risk pathogen in immunocompromised individuals, especially in transplant recipients. HCMV viremia must be monitored, and frequently, patients are treated with antiviral agents. HCMV has a variety of strategies to modulate host antiviral responses, and one important player is a viral homolog of the cellular interleukin-10 (cIL-10). The viral UL111A gene produces several HCMV IL-10 transcripts and protein isoforms through alternative splicing. The cmvIL-10 (isoform A) has similar properties to cIL-10, while LAcmvIL-10 (isoform B) has more restricted biological properties. Other isoforms are produced (C to H) but have unknown functions. Here, we investigated the expression of the most abundant transcripts, cmvIL-10 and LAcmvIL-10, in productively and latently infected cells and in peripheral blood mononuclear cells from renal transplant recipients up to 60 days post-transplantation. This study investigated HCMV cmvIL-10 and LAcmvIL-10 transcription profiles in vitro, in productive and latent infection, and in vivo, in peripheral blood mononuclear cells (PBMCs) of renal transplant patients. In vitro, both cmvIL-10 and LAcmvIL-10 transcripts were detected in both types at high levels and low levels in MRC-5 and latent infected (CD14+). When PBMCs from transplant patients were analyzed, LAcmvIL-10 was detected mostly sporadically and in only a few patients, while cmvIL-10 was found in all patients at all time points. Furthermore, it was observed in PBMCs that expression of cmvIL-10 was positively associated with an increase in viral DNA detection in the subsequently collected sample, indicating that expression of cmvIL-10 might precede viral DNA replication. These results contribute to the understanding of HCMV biology in different phases of infection. In addition, our initial analysis suggests that monitoring cmvIL-10, along with viral DNA, could improve early detection of HCMV reactivation in transplant recipients. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 3239 KiB  
Brief Report
Characterizing Common Factors Affecting Replication Initiation During H2O2 Exposure and Genetic Mutation-Induced Oxidative Stress in Escherichia coli
by Jiaxin Qiao, Weiwei Zhu, Dongdong Du and Morigen Morigen
Int. J. Mol. Sci. 2025, 26(7), 2968; https://doi.org/10.3390/ijms26072968 - 25 Mar 2025
Viewed by 347
Abstract
Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and [...] Read more.
Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and mutations in antioxidant enzymes suppress replication initiation in Escherichia coli. The existence of common regulatory factors governing replication initiation across diverse causes-induced oxidative stress remains unclear. In this study, we utilized flow cytometry to determine the replication pattern of E. coli, and found that oxidative stress also participated in the inhibition of replication initiation by a defective iron regulation (fur-bfr-dps deletion). Adding a certain level of ATP promoted replication initiation in various antioxidant enzyme-deficient mutants and the ΔfurΔbfrΔdps mutant, suggesting that low ATP levels could be a common factor in the inhibition of replication initiation by different causes-induced oxidative stress. More potential common factors were screened using proteomics, followed by genetic validation with H2O2 stress. We found that oxidative stress might mediate the inhibition of replication initiation by interfering with the metabolism of glycine, glutamate, ornithine, and aspartate. Blocking CcmA-dependent cytochrome c biosynthesis, deleting the efflux pump proteins MdtABCD and TolC, or the arabinose transporter AraFHG eliminated the replication initiation inhibition by H2O2. In conclusion, this study uncovers a common multifactorial pathway of different causes-induced oxidative stress inhibiting replication initiation. Dormant and persistent bacteria exhibit an arrested or slow cell cycle, and non-lethal oxidative stress promotes their formation. Our findings contribute to exploring strategies to limit dormant and persistent bacterial formation by maintaining faster DNA replication initiation (cell cycle progression). Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

23 pages, 1120 KiB  
Review
Acute HIV-1 Infection: Paradigm and Singularity
by Antoine Chéret
Viruses 2025, 17(3), 366; https://doi.org/10.3390/v17030366 - 3 Mar 2025
Viewed by 2171
Abstract
Acute HIV-1 infection (AHI) is a transient period where the virus causes evident damage to the immune system, including an extensive apoptosis of CD4+ T cells associated with a high level of activation and a major cytokine storm to fight the invading virus. [...] Read more.
Acute HIV-1 infection (AHI) is a transient period where the virus causes evident damage to the immune system, including an extensive apoptosis of CD4+ T cells associated with a high level of activation and a major cytokine storm to fight the invading virus. HIV infection establishes persistence by integrating the viral genome into host cell DNA in both replicating and non-replicating forms, effectively hiding from immune surveillance within infected lymphocytes as cellular reservoirs. The measurement of total HIV-1 DNA in peripheral blood mononuclear cells (PBMCs) is a reliable reflection of this reservoir. Initiating treatments during AHI with nucleoside reverse transcriptase inhibitors (NRTIs) and/or integrase strand transfer inhibitors (INSTIs) is essential to alter the dynamics of the global reservoir expansion, and to reduce the establishment of long-lived cellular and tissue reservoirs, while preserving and enhancing specific and non-specific immune responses. Furthermore, some of the patients treated at the AHI stage may become post-treatment controllers and should be informative regarding the mechanism of viral control, so patients treated during AHI are undoubtedly the best candidates to test innovative remission strategies toward a functional cure that could play a pivotal role in long-term HIV control. AHI is characterized by high levels of viral replication, with a significant increase in the risk of HIV transmission. Detecting AHI and initiating early treatment following diagnosis provides a window of opportunity to control the epidemic, particularly in high-risk populations. Full article
(This article belongs to the Special Issue Acute HIV Infections)
Show Figures

Figure 1

31 pages, 3433 KiB  
Review
Nucleotide Excision Repair: Insights into Canonical and Emerging Functions of the Transcription/DNA Repair Factor TFIIH
by Amélie Zachayus, Jules Loup-Forest, Vincent Cura and Arnaud Poterszman
Genes 2025, 16(2), 231; https://doi.org/10.3390/genes16020231 - 19 Feb 2025
Viewed by 1353
Abstract
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key [...] Read more.
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key player of the NER pathway in eukaryotes. This 10-subunit multiprotein complex notably verifies the presence of a lesion and opens the DNA around the damage via its XPB and XPD subunits, two proteins identified in patients suffering from Xeroderma Pigmentosum syndrome. Isolated as a class II gene transcription factor in the late 1980s, TFIIH is a prototypic molecular machine that plays an essential role in both DNA repair and transcription initiation and harbors a DNA helicase, a DNA translocase, and kinase activity. More recently, TFIIH subunits have been identified as participating in other cellular processes, including chromosome segregation during mitosis, maintenance of mitochondrial DNA integrity, and telomere replication. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Microorganisms, Plants and Mammalian Systems)
Show Figures

Figure 1

33 pages, 7980 KiB  
Review
PERK-Olating Through Cancer: A Brew of Cellular Decisions
by Laurent Mazzolini and Christian Touriol
Biomolecules 2025, 15(2), 248; https://doi.org/10.3390/biom15020248 - 8 Feb 2025
Viewed by 935
Abstract
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced [...] Read more.
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced during the unfolded protein response (UPR), which is triggered, in particular, in tumor cells that constitutively experience various intracellular and extracellular stresses that impair protein folding within the ER. PERK activation can lead to both pro-survival and proapoptotic outcomes, depending on the cellular context and the extent of ER stress. It helps the reprogramming of the gene expression in cancer cells, thereby ensuring survival in the face of oncogenic stress, such as replicative stress and DNA damage, and also microenvironmental challenges, including hypoxia, angiogenesis, and metastasis. Consequently, PERK contributes to tumor initiation, transformation, adaptation to the microenvironment, and chemoresistance. However, sustained PERK activation in cells can also impair cell proliferation and promote apoptotic death by various interconnected processes, including mitochondrial dysfunction, translational inhibition, the accumulation of various cellular stresses, and the specific induction of multifunctional proapoptotic factors, such as CHOP. The dual role of PERK in promoting both tumor progression and suppression makes it a complex target for therapeutic interventions. A comprehensive understanding of the intricacies of PERK pathway activation and their impact is essential for the development of effective therapeutic strategies, particularly in diseases like cancer, where the ER stress response is deregulated in most, if not all, of the solid and liquid tumors. This article provides an overview of the knowledge acquired from the study of animal models of cancer and tumor cell lines cultured in vitro on PERK’s intracellular functions and their impact on cancer cells and their microenvironment, thus highlighting potential new therapeutic avenues that could target this protein. Full article
(This article belongs to the Special Issue Feature Papers in Enzymology—2nd Edition)
Show Figures

Figure 1

17 pages, 2759 KiB  
Article
Transcriptomic Response of Balamuthia mandrillaris to Lippia graveolens Extract Fractions
by Leobardo Daniel Gonzalez-Zuñiga, Jose Reyes Gonzalez-Galaviz, Abraham Cruz-Mendívil, Fernando Lares Villa, Erick Paul Gutiérrez-Grijalva, Jaime López-Cervantes, Dalia I. Sánchez-Machado, Luis Fernando Lares-Jiménez and Libia Zulema Rodriguez-Anaya
Microbiol. Res. 2025, 16(2), 40; https://doi.org/10.3390/microbiolres16020040 - 6 Feb 2025
Viewed by 759
Abstract
Balamuthia mandrillaris is a free-living amoeba pathogenic to humans, causing amoebic granulomatous encephalitis (GAE). Due to the associated mortality rates of <95%, the absence of treatments, and a clear understanding of the pathogenesis of this amoeba, Lippia graveolens could be an interesting alternative [...] Read more.
Balamuthia mandrillaris is a free-living amoeba pathogenic to humans, causing amoebic granulomatous encephalitis (GAE). Due to the associated mortality rates of <95%, the absence of treatments, and a clear understanding of the pathogenesis of this amoeba, Lippia graveolens could be an interesting alternative since it has been used against bacteria, fungi, and other pathogenic protozoa. This study employed RNA sequencing to analyze differentially expressed genes (DEGs), following treatment with two fractionated L. graveolens extracts (concentration: 150 µg/mL) at 48, 96, and 120 h. The DEGs identified are associated with several functions such as stress responses (Prohibitin domain-containing protein), and oxidative damage repair and cell stability (Peroxiredoxin). Genes implicated in virulence and host interaction also showed significant expression changes, such as the ADP ribosylation factor (Arf) GTPase and ephrin type-A receptor, alongside transcription factors involved in the phagocytosis of amoebas. Additionally, the analysis of Gene Ontology categories revealed terms including transmembrane signaling receptor and protein tyrosine activity, DNA replication initiation, the mitotic M phase, and membrane integrity. These results provide valuable insights into the molecular mechanisms utilized by B. mandrillaris to respond to environmental stressors and the repression of genes related to essential functions, which could serve as potential targets for developing novel strategies. Full article
Show Figures

Figure 1

24 pages, 3436 KiB  
Article
Transcription Factor Inhibition as a Potential Additional Mechanism of Action of Pyrrolobenzodiazepine (PBD) Dimers
by Julia Mantaj, Paul J. M. Jackson, Richard B. Parsons, Tam T. T. Bui, David E. Thurston and Khondaker Miraz Rahman
DNA 2025, 5(1), 8; https://doi.org/10.3390/dna5010008 - 5 Feb 2025
Viewed by 799
Abstract
Background: The pyrrolobenzodiazepine (PBD) dimer SJG-136 reached Phase II clinical trials in ovarian cancer and leukaemia in the UK and USA in the 2000s. Several structural analogues of SJG-136 are currently in clinical development as payloads for Antibody-Drug Conjugates (ADCs). There is growing [...] Read more.
Background: The pyrrolobenzodiazepine (PBD) dimer SJG-136 reached Phase II clinical trials in ovarian cancer and leukaemia in the UK and USA in the 2000s. Several structural analogues of SJG-136 are currently in clinical development as payloads for Antibody-Drug Conjugates (ADCs). There is growing evidence that PBDs exert their pharmacological effects through inhibition of transcription factors (TFs) in addition to arrest at the replication fork, DNA strand breakage, and inhibition of enzymes including endonucleases and RNA polymerases. Hence, PBDs can be used to target specific DNA sequences to inhibit TFs as a novel anticancer therapy. Objective: To explore the ability of SJG-136 to bind to the cognate sequences of transcription factors using a previously described HPLC/MS method, to obtain preliminary mechanistic evidence of its ability to inhibit transcription factors (TF), and to determine its effect on TF-dependent gene expression. Methods: An HPLC/MS method was used to assess the kinetics and thermodynamics of adduct formation between the PBD dimer SJG-136 and the cognate recognition sequence of the TFs NF-κB, EGR-1, AP-1, and STAT3. CD spectroscopy, molecular dynamics simulations, and gene expression analyses were used to rationalize the findings of the HPLC/MS study. Results: Notable differences in the rate and extent of adduct formation were observed with different DNA sequences, which might explain the variations in cytotoxicity of SJG-136 observed across different tumour cell lines. The differences in adduct formation result in variable downregulation of several STAT3-dependent genes in the human colon carcinoma cell line HT-29 and the human breast cancer cell line MDA-MB-231. Conclusions: SJG-136 can disrupt transcription factor-mediated gene expression, which contributes to its exceptional cytotoxicity in addition to the DNA-strand cleavage initiated by its ability to crosslink DNA. Full article
Show Figures

Figure 1

27 pages, 1468 KiB  
Opinion
60 Years of Studies into the Initiation of Chromosome Replication in Bacteria
by John Herrick, Vic Norris and Masamichi Kohiyama
Biomolecules 2025, 15(2), 203; https://doi.org/10.3390/biom15020203 - 1 Feb 2025
Viewed by 1002
Abstract
The Replicon Theory has guided the way experiments into DNA replication have been designed and interpreted for 60 years. As part of the related, explanatory package guiding experiments, it is thought that the timing of the cell cycle depends in some way on [...] Read more.
The Replicon Theory has guided the way experiments into DNA replication have been designed and interpreted for 60 years. As part of the related, explanatory package guiding experiments, it is thought that the timing of the cell cycle depends in some way on a critical mass for initiation, Mi, as licensed by a variety of macromolecules and molecules reflecting the state of the cell. To help in the re-interpretation of this data, we focus mainly on the roles of DnaA, RNA polymerase, SeqA, and ribonucleotide reductase in the context of the “nucleotypic effect”. Full article
(This article belongs to the Collection Molecular Biology: Feature Papers)
Show Figures

Figure 1

13 pages, 1001 KiB  
Article
High Incidence of False Positives in EGFR S768I Mutation Detection Using the Idylla qPCR System in Non-Small Cell Lung Cancer Patients
by Miguel Carnero-Gregorio, Enzo Perera-Gordo, Vanesa de-la-Peña-Castro, Jesús María González-Martín, Julio José Delgado-Sánchez and Carmen Rodríguez-Cerdeira
Diagnostics 2025, 15(3), 321; https://doi.org/10.3390/diagnostics15030321 - 30 Jan 2025
Viewed by 769
Abstract
Background/Objectives: The accurate detection of EGFR mutations, particularly the rare S768I variant, is crucial for guiding treatment decisions in non-small cell lung cancer (NSCLC) patients. This study investigated the incidence of false positives in S768I mutation detection using the IdyllaTM qPCR system [...] Read more.
Background/Objectives: The accurate detection of EGFR mutations, particularly the rare S768I variant, is crucial for guiding treatment decisions in non-small cell lung cancer (NSCLC) patients. This study investigated the incidence of false positives in S768I mutation detection using the IdyllaTM qPCR system and compared results with next-generation sequencing (NGS). Methods: A prospective observational study was conducted at the Dr. Negrín University Hospital between July 2023 and July 2024. Six NSCLC patient samples with S768I variant detection by IdyllaTM were analyzed from all NSCLC cases tested during the study period. Initial testing was performed on tissue samples (Idylla1), followed by replicate analysis using extracted DNA (Idylla2). Results were compared with NGS as the reference method. Statistical analysis included the calculation of sensitivity, specificity, accuracy, and Kappa concordance index. Results: Initial Idylla testing showed an 80% false positive rate, with only one of five positive results confirmed by NGS. The first analysis demonstrated high sensitivity (100%) but low specificity (20%), with an accuracy of 0.333 and poor concordance with NGS (Kappa = 0.077). Repeat testing using extracted DNA showed improved performance, with increased accuracy (0.833) and better agreement with NGS (Kappa = 0.571). Analysis of amplification curves revealed that false positives typically showed normalized fluorescence values below 12 points, with no clear correlation between false positives and factors such as sample quantity or tumor content. Conclusions: While the IdyllaTM system shows high sensitivity for S768I detection, its initial specificity is problematic, leading to frequent false positives. These findings emphasize the importance of confirming positive S768I results through alternative methods like NGS, particularly when these results could influence therapeutic decisions. Results suggest the need to refine the system’s interpretation algorithms to improve specificity. Full article
(This article belongs to the Special Issue Lung Cancer: Screening, Diagnosis and Management)
Show Figures

Figure 1

Back to TopTop