Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = inner BRB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4864 KB  
Article
Müller Glia Co-Regulate Barrier Permeability with Endothelial Cells in an Vitro Model of Hyperglycemia
by Juan S. Peña, François Berthiaume and Maribel Vazquez
Int. J. Mol. Sci. 2024, 25(22), 12271; https://doi.org/10.3390/ijms252212271 - 15 Nov 2024
Cited by 4 | Viewed by 3573
Abstract
Diabetic retinopathy is a complex, microvascular disease that impacts millions of working adults each year. High blood glucose levels from Diabetes Mellitus lead to the accumulation of advanced glycation end-products (AGEs), which promote inflammation and the breakdown of the inner blood retinal barrier [...] Read more.
Diabetic retinopathy is a complex, microvascular disease that impacts millions of working adults each year. High blood glucose levels from Diabetes Mellitus lead to the accumulation of advanced glycation end-products (AGEs), which promote inflammation and the breakdown of the inner blood retinal barrier (iBRB), resulting in vision loss. This study used an in vitro model of hyperglycemia to examine how endothelial cells (ECs) and Müller glia (MG) collectively regulate molecular transport. Changes in cell morphology, the expression of junctional proteins, and the reactive oxygen species (ROS) of ECs and MG were examined when exposed to a hyperglycemic medium containing AGEs. Trans-endothelial resistance (TEER) assays were used to measure the changes in cell barrier resistance in response to hyperglycemic and inflammatory conditions, with and without an anti-VEGF compound. Both of the cell types responded to hyperglycemic conditions with significant changes in the cell area and morphology, the ROS, and the expression of the junctional proteins ZO-1, CX-43, and CD40, as well as the receptor for AGEs. The resistivities of the individual and dual ECs and MG barriers decreased within the hyperglycemia model but were restored to that of basal, normoglycemic levels when treated with anti-VEGF. This study illustrated significant phenotypic responses to an in vitro model of hyperglycemia, as well as significant changes in the expression of the key proteins used for cell–cell communication. The results highlight important, synergistic relationships between the ECs and MG and how they contribute to changes in barrier function in combination with conventional treatments. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

16 pages, 4917 KB  
Article
Eucalyptol Ameliorates Retinal Microvascular Defects through Modulating ER Stress and Angiopoietin–Tie Signaling in Diabetic Eyes
by Dong Yeon Kim, Sin-Hye Park, Zaee Yoon, Jimin Kim, Min-Kyung Kang and Young-Hee Kang
Int. J. Mol. Sci. 2024, 25(14), 7826; https://doi.org/10.3390/ijms25147826 - 17 Jul 2024
Cited by 4 | Viewed by 1675
Abstract
Loss of the inner blood–retinal barrier (BRB) integrity is a main feature of ocular diseases such as diabetic macular edema. However, there is a lack of clarity on how inner BRB function is modulated within the diabetic retina. The current study examined whether [...] Read more.
Loss of the inner blood–retinal barrier (BRB) integrity is a main feature of ocular diseases such as diabetic macular edema. However, there is a lack of clarity on how inner BRB function is modulated within the diabetic retina. The current study examined whether eucalyptol inhibited inner BRB destruction and aberrant retinal angiogenesis in 33 mM glucose-exposed human retinal microvascular endothelial (RVE) cells and db/db mice. This study further examined the molecular mechanisms underlying endothelial dysfunction including retinal endoplasmic reticulum (ER) stress and angiopoietin (Ang)/Tie axis in conjunction with vascular endothelial growth factor (VEGF). Eucalyptol is a naturally occurring monoterpenoid and an achiral aromatic component of many plants including eucalyptus leaves. Nontoxic eucalyptol reduced the production of amyloid-β (Aβ) protein in glucose-loaded RVE cells and in diabetic mice. This natural compound blocked apoptosis of Aβ-exposed RVE cells in diabetic mouse eyes by targeting ER stress via the inhibition of PERK-eIF2α-ATF4-CHOP signaling. Eucalyptol promoted activation of the Ang-1/Tie-2 pathway and dual inhibition of Ang-2/VEGF in Aβ-exposed RVE cells and in diabetic eyes. Supply of eucalyptol reversed the induction of junction proteins in glucose/Aβ-exposed RVE cells within the retina and reduced permeability. In addition, oral administration of eucalyptol reduced vascular leaks in diabetic retinal vessels. Taken together, these findings clearly show that eucalyptol inhibits glucose-induced Aβ-mediated ER stress and manipulates Ang signaling in diabetic retinal vessels, which ultimately blocks abnormal angiogenesis and loss of inner BRB integrity. Therefore, eucalyptol provides new treatment strategies for diabetes-associated RVE defects through modulating diverse therapeutic targets including ER stress, Ang-1/Tie-2 signaling, and Ang-2/VEGF. Full article
Show Figures

Graphical abstract

9 pages, 1560 KB  
Communication
Neurovascular Relationships in AGEs-Based Models of Proliferative Diabetic Retinopathy
by Juan S. Peña, Ranjini K. Ramanujam, Rebecca A. Risman, Valerie Tutwiler, Francois Berthiaume and Maribel Vazquez
Bioengineering 2024, 11(1), 63; https://doi.org/10.3390/bioengineering11010063 - 8 Jan 2024
Cited by 6 | Viewed by 2314
Abstract
Diabetic retinopathy affects more than 100 million people worldwide and is projected to increase by 50% within 20 years. Increased blood glucose leads to the formation of advanced glycation end products (AGEs), which cause cellular and molecular dysfunction across neurovascular systems. These molecules [...] Read more.
Diabetic retinopathy affects more than 100 million people worldwide and is projected to increase by 50% within 20 years. Increased blood glucose leads to the formation of advanced glycation end products (AGEs), which cause cellular and molecular dysfunction across neurovascular systems. These molecules initiate the slow breakdown of the retinal vasculature and the inner blood retinal barrier (iBRB), resulting in ischemia and abnormal angiogenesis. This project examined the impact of AGEs in altering the morphology of healthy cells that comprise the iBRB, as well as the effects of AGEs on thrombi formation, in vitro. Our results illustrate that AGEs significantly alter cellular areas and increase the formation of blood clots via elevated levels of tissue factor. Likewise, AGEs upregulate the expression of cell receptors (RAGE) on both endothelial and glial cells, a hallmark biomarker of inflammation in diabetic cells. Examining the effects of AGEs stimulation on cellular functions that work to diminish iBRB integrity will greatly help to advance therapies that target vision loss in adults. Full article
(This article belongs to the Special Issue Bioengineering and the Eye—2nd Edition)
Show Figures

Figure 1

20 pages, 4272 KB  
Review
Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome
by Vincent Le, Gabrielle Abdelmessih, Wendy A. Dailey, Cecille Pinnock, Victoria Jobczyk, Revati Rashingkar, Kimberly A. Drenser and Kenneth P. Mitton
Cells 2023, 12(21), 2579; https://doi.org/10.3390/cells12212579 - 5 Nov 2023
Cited by 13 | Viewed by 4149
Abstract
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early [...] Read more.
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Genetic Eye Diseases)
Show Figures

Graphical abstract

46 pages, 4606 KB  
Review
Assessment of Inner Blood–Retinal Barrier: Animal Models and Methods
by Kiran Bora, Neetu Kushwah, Meenakshi Maurya, Madeline C. Pavlovich, Zhongxiao Wang and Jing Chen
Cells 2023, 12(20), 2443; https://doi.org/10.3390/cells12202443 - 12 Oct 2023
Cited by 30 | Viewed by 6804
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood–retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes [...] Read more.
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood–retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs. Full article
Show Figures

Figure 1

14 pages, 2151 KB  
Article
Carrier-Mediated Process of Putrescine Elimination at the Rat Blood–Retinal Barrier
by Yuma Tega, Yoshiyuki Kubo, Hiroaki Miura, Kairi Ri, Ayaka Tomise, Shin-ichi Akanuma and Ken-ichi Hosoya
Int. J. Mol. Sci. 2023, 24(10), 9003; https://doi.org/10.3390/ijms24109003 - 19 May 2023
Cited by 2 | Viewed by 1762
Abstract
Putrescine is a bioactive polyamine. Its retinal concentration is strictly controlled to maintain a healthy sense of vision. The present study investigated putrescine transport at the blood–retinal barrier (BRB) to gain a better understanding of the mechanisms of putrescine regulation in the retina. [...] Read more.
Putrescine is a bioactive polyamine. Its retinal concentration is strictly controlled to maintain a healthy sense of vision. The present study investigated putrescine transport at the blood–retinal barrier (BRB) to gain a better understanding of the mechanisms of putrescine regulation in the retina. Our microdialysis study showed that the elimination rate constant during the terminal phase was significantly greater (1.90-fold) than that of [14C]D-mannitol, which is a bulk flow marker. The difference in the apparent elimination rate constants of [3H]putrescine and [14C]D-mannitol was significantly decreased by unlabeled putrescine and spermine, suggesting active putrescine transport from the retina to the blood across the BRB. Our study using model cell lines of the inner and outer BRB showed that [3H]putrescine transport was time-, temperature-, and concentration-dependent, suggesting the involvement of carrier-mediated processes in putrescine transport at the inner and outer BRB. [3H]Putrescine transport was significantly reduced under Na+-free, Cl-free, and K+-replacement conditions, and attenuated by polyamines or organic cations such as choline, a choline transporter-like protein (CTL) substrate. Rat CTL1 cRNA-injected oocytes exhibited marked alterations in [3H]putrescine uptake, and CTL1 knockdown significantly reduced [3H]putrescine uptake in model cell lines, suggesting the possible participation of CTL1 in putrescine transport at the BRB. Full article
(This article belongs to the Special Issue Modes of Action of Polyamine Metabolism 2.0)
Show Figures

Figure 1

18 pages, 7888 KB  
Article
Design Method of Core-Separated Assembled Buckling Restrained Braces Confined by Two Lightweight Concrete-Infilled Tubes
by Boli Zhu, Junyuan Zhao and Yuqing Yang
Appl. Sci. 2023, 13(7), 4306; https://doi.org/10.3390/app13074306 - 28 Mar 2023
Cited by 5 | Viewed by 1858
Abstract
This paper introduces a novel type of buckling restrained braces (BRBs) called core-separated assembled BRBs (CSA-BRBs). These braces are comprised of two single BRBs that are confined by lightweight concrete-infilled tubes, which are longitudinally connected by two continuous webs. The CSA-BRBs utilize materials [...] Read more.
This paper introduces a novel type of buckling restrained braces (BRBs) called core-separated assembled BRBs (CSA-BRBs). These braces are comprised of two single BRBs that are confined by lightweight concrete-infilled tubes, which are longitudinally connected by two continuous webs. The CSA-BRBs utilize materials more efficiently by increasing the height of the webs to create a large inner cavity, leading to an economical design. This paper predicts the threshold of the restraint ratio of CSA-BRBs approximately. This is achieved by assuming that the maximum moment resulting from applied loads at mid-height is less than the moment-bearing resistance that is conducted according to the outermost fiber of the external restraining section reading yielding. Elastic-plastic numerical analysis is conducted using FEM with beam elements for CSA-BRBs that are subjected to both monotonic and cyclic axial loads. The load resistance, hysteretic performance, and failure mechanism of CSA-BRBs are investigated by varying their restraining ratios. It is recommended that the restraint ratio threshold of CSA-BRBs under monotonic axial compression is used as a bearing type and the restraint ratio threshold of CSA-BRBs under axially compressive-tensile cyclic loads as an energy-dissipation type. This method provides a complete design for CSA-BRBs. Full article
(This article belongs to the Special Issue Steel Structures Design and Evaluation in Building Engineering)
Show Figures

Figure 1

12 pages, 1914 KB  
Article
The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier
by Yusuke Shinozaki, Yuma Tega, Shin-ichi Akanuma and Ken-ichi Hosoya
Pharmaceuticals 2023, 16(3), 435; https://doi.org/10.3390/ph16030435 - 13 Mar 2023
Cited by 3 | Viewed by 2708
Abstract
Blood-to-retina transport across the inner blood–retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives [...] Read more.
Blood-to-retina transport across the inner blood–retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives exhibit neuroprotective effects, it is expected that a detailed understanding of this transport system would lead to the efficient retinal delivery of these potential neuroprotective agents for the treatment of retinal diseases. The objective of this study was to characterize the structural features of compounds for the amantadine-sensitive transport system. Inhibition analysis conducted on a rat inner BRB model cell line indicated that the transport system strongly interacts with lipophilic amines, especially primary amines. In addition, lipophilic primary amines that have polar groups, such as hydroxy and carboxy groups, did not inhibit the amantadine transport system. Furthermore, certain types of primary amines with an adamantane skeleton or linear alkyl chain exhibited a competitive inhibition of amantadine uptake, suggesting that these compounds are potential substrates for the amantadine-sensitive drug transport system at the inner BRB. These results are helpful for producing the appropriate drug design to improve the blood-to-retina delivery of neuroprotective drugs. Full article
Show Figures

Graphical abstract

18 pages, 7734 KB  
Article
IL-33 via PKCμ/PRKD1 Mediated α-Catenin Phosphorylation Regulates Endothelial Cell-Barrier Integrity and Ischemia-Induced Vascular Leakage
by Deepti Sharma, Geetika Kaur, Shivantika Bisen, Anamika Sharma, Ahmed S. Ibrahim and Nikhlesh K. Singh
Cells 2023, 12(5), 703; https://doi.org/10.3390/cells12050703 - 23 Feb 2023
Cited by 5 | Viewed by 2971
Abstract
Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell–cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin–catenin adhesion complex is a key contributor to inner blood–retinal barrier (iBRB) [...] Read more.
Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell–cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin–catenin adhesion complex is a key contributor to inner blood–retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCμ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity. Full article
(This article belongs to the Special Issue Molecular and Cellular Basis of Retinal Diseases)
Show Figures

Graphical abstract

14 pages, 3409 KB  
Article
Lipopolysaccharide-Induced Functional Alteration of P-glycoprotein in the Ex Vivo Rat Inner Blood–Retinal Barrier
by Kiyotaka Daikohara, Shin-ichi Akanuma, Yoshiyuki Kubo and Ken-ichi Hosoya
Int. J. Mol. Sci. 2022, 23(24), 15504; https://doi.org/10.3390/ijms232415504 - 7 Dec 2022
Cited by 5 | Viewed by 2437
Abstract
At the inner blood–retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered [...] Read more.
At the inner blood–retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered in various tissues. The purpose of this study was to clarify the alterations in P-gp activity at the inner BRB due to lipopolysaccharide (LPS), an inflammatory agent, and the molecular mechanisms of the alterations induced by LPS. Ex vivo P-gp activity was evaluated as luminal accumulation of 7-nitro-2,1,3-benzoxadiazole-cyclosporin A (NBD-CSA), a fluorescent P-gp substrate, in freshly prepared rat retinal capillaries. The luminal NBD-CSA accumulation was significantly decreased in the presence of LPS, indicating that P-gp activity at the inner BRB is reduced by LPS. This LPS-induced attenuation of the luminal NBD-CSA accumulation was abolished by inhibiting toll-like receptor 4 (TLR4), a receptor for LPS. Furthermore, an inhibitor/antagonist of tumor necrosis factor receptor 1, endothelin B receptor, nitric oxide synthase, or protein kinase C (PKC) significantly restored the LPS-induced decrease in the luminal NBD-CSA accumulation. Consequently, it is suggested that the TLR4/PKC pathway is involved in the reduction in P-gp function in the inner BRB by LPS. Full article
(This article belongs to the Special Issue Drug Transporter in Pathological Conditions)
Show Figures

Graphical abstract

17 pages, 54861 KB  
Article
C1q/TNF-Related Protein 3 Prevents Diabetic Retinopathy via AMPK-Dependent Stabilization of Blood–Retinal Barrier Tight Junctions
by Zheyi Yan, Chunfang Wang, Zhijun Meng, Lu Gan, Rui Guo, Jing Liu, Wayne Bond Lau, Dina Xie, Jianli Zhao, Bernard L. Lopez, Theodore A. Christopher, Ulhas P. Naik, Xinliang Ma and Yajing Wang
Cells 2022, 11(5), 779; https://doi.org/10.3390/cells11050779 - 23 Feb 2022
Cited by 17 | Viewed by 3172
Abstract
Background The impairment of the inner blood–retinal barrier (iBRB) increases the pathological development of diabetic retinopathy (DR), a severe complication in diabetic patients. Identifying approaches to preserving iBRB integrity and function is a significant challenge in DR. C1q/tumor necrosis factor-related protein-3 (CTRP3) is [...] Read more.
Background The impairment of the inner blood–retinal barrier (iBRB) increases the pathological development of diabetic retinopathy (DR), a severe complication in diabetic patients. Identifying approaches to preserving iBRB integrity and function is a significant challenge in DR. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly discovered adipokine and a vital biomarker, predicting DR severity. We sought to determine whether and how CTRP3 affects the pathological development of non-proliferative diabetic retinopathy (NPDR). Methods To clarify the pathophysiologic progress of the blood–retinal barrier in NPDR and explore its potential mechanism, a mouse Type 2 diabetic model of diabetic retinopathy was used. The capillary leakage was assessed by confocal microscope with fluorescent-labeled protein in vivo. Furthermore, the effect of CTRP3 on the inner blood–retinal barrier (iBRB) and its molecular mechanism was clarified. Results The results demonstrated that CTRP3 protects iBRB integrity and resists the vascular permeability induced by DR. Mechanistically, the administration of CTRP3 activates the AMPK signaling pathway and enhances the expression of Occludin and Claudin-5 (tight junction protein) in vivo and in vitro. Meanwhile, CTRP3 improves the injury of human retinal endothelial cells (HRMECs) induced by high glucose/high lipids (HG/HL), and its protective effects are AMPK-dependent. Conclusions In summary, we report, for the first time, that CTRP3 prevents diabetes-induced retinal vascular permeability via stabilizing the tight junctions of the iBRB and through the AMPK-dependent Occludin/Claudin-5 signaling pathway, thus critically affecting the development of NPDR. Full article
Show Figures

Graphical abstract

20 pages, 1333 KB  
Review
Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature
by Thomas L. Maurissen, Georgios Pavlou, Colette Bichsel, Roberto Villaseñor, Roger D. Kamm and Héloïse Ragelle
J. Pers. Med. 2022, 12(2), 148; https://doi.org/10.3390/jpm12020148 - 24 Jan 2022
Cited by 12 | Viewed by 5529
Abstract
Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood–brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules [...] Read more.
Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood–brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing. Full article
(This article belongs to the Special Issue Age-Related Macular Degeneration and Diabetic Retinopathy)
Show Figures

Figure 1

25 pages, 2848 KB  
Review
Wnt Signaling in Inner Blood–Retinal Barrier Maintenance
by Felix Yemanyi, Kiran Bora, Alexandra K. Blomfield, Zhongxiao Wang and Jing Chen
Int. J. Mol. Sci. 2021, 22(21), 11877; https://doi.org/10.3390/ijms222111877 - 2 Nov 2021
Cited by 30 | Viewed by 7116
Abstract
The retina is a light-sensing ocular tissue that sends information to the brain to enable vision. The blood–retinal barrier (BRB) contributes to maintaining homeostasis in the retinal microenvironment by selectively regulating flux of molecules between systemic circulation and the retina. Maintaining such physiological [...] Read more.
The retina is a light-sensing ocular tissue that sends information to the brain to enable vision. The blood–retinal barrier (BRB) contributes to maintaining homeostasis in the retinal microenvironment by selectively regulating flux of molecules between systemic circulation and the retina. Maintaining such physiological balance is fundamental to visual function by facilitating the delivery of nutrients and oxygen and for protection from blood-borne toxins. The inner BRB (iBRB), composed mostly of inner retinal vasculature, controls substance exchange mainly via transportation processes between (paracellular) and through (transcellular) the retinal microvascular endothelium. Disruption of iBRB, characterized by retinal edema, is observed in many eye diseases and disturbs the physiological quiescence in the retina’s extracellular space, resulting in vision loss. Consequently, understanding the mechanisms of iBRB formation, maintenance, and breakdown is pivotal to discovering potential targets to restore function to compromised physiological barriers. These unraveled targets can also inform potential drug delivery strategies across the BRB and the blood–brain barrier into retinas and brain tissues, respectively. This review summarizes mechanistic insights into the development and maintenance of iBRB in health and disease, with a specific focus on the Wnt signaling pathway and its regulatory role in both paracellular and transcellular transport across the retinal vascular endothelium. Full article
(This article belongs to the Special Issue Molecular Research on Stress Response and Ocular Homeostasis 2.0)
Show Figures

Figure 1

18 pages, 2995 KB  
Article
Interleukin-6 Trans-Signaling Mediated Regulation of Paracellular Permeability in Human Retinal Endothelial Cells
by Joshua Glass, Rebekah Robinson, Tae-Jin Lee, Ashok Sharma and Shruti Sharma
Int. J. Transl. Med. 2021, 1(2), 137-153; https://doi.org/10.3390/ijtm1020010 - 16 Sep 2021
Cited by 5 | Viewed by 4738
Abstract
Long-term hyperglycemia-mediated oxidative stress and inflammation lead to the blood-retinal barrier (BRB) dysfunction and increased vascular permeability associated with diabetic retinopathy (DR). Interleukin-6 (IL-6) is one of the primary mediators of retinal vascular inflammation. IL-6 signaling through its membrane-bound IL-6 receptor is known [...] Read more.
Long-term hyperglycemia-mediated oxidative stress and inflammation lead to the blood-retinal barrier (BRB) dysfunction and increased vascular permeability associated with diabetic retinopathy (DR). Interleukin-6 (IL-6) is one of the primary mediators of retinal vascular inflammation. IL-6 signaling through its membrane-bound IL-6 receptor is known as classical signaling, and through a soluble IL-6 receptor (sIL-6R) is known as trans-signaling. Increasing evidence suggests that classical signaling is primarily anti-inflammatory, whereas trans-signaling induces the pro-inflammatory effects of IL-6. The purpose of this study was to compare the effects of these two pathways on paracellular permeability and expression of genes involved in inter-endothelial junctions in human retinal endothelial cells (HRECs). IL-6 trans-signaling activation caused significant disruption to paracellular integrity, with increased paracellular permeability, and was associated with significant changes in gene expression related to adherens, tight, and gap junctions. IL-6 classical signaling did not alter paracellular resistance in HRECs and had no distinct effects on gene expression. In conclusion, IL-6 trans-signaling, but not classical signaling, is a major mediator of the increased paracellular permeability characteristic of inner BRB breakdown in diabetic retinopathy. This study also identified potential inter-endothelial junction genes involved in the IL-6 trans-signaling mediated regulation of paracellular permeability in HRECs. Full article
(This article belongs to the Special Issue Diabetic Retinopathy)
Show Figures

Figure 1

13 pages, 1477 KB  
Article
Comprehensive Evidence of Carrier-Mediated Distribution of Amantadine to the Retina across the Blood–Retinal Barrier in Rats
by Yusuke Shinozaki, Shin-ichi Akanuma, Yuika Mori, Yoshiyuki Kubo and Ken-ichi Hosoya
Pharmaceutics 2021, 13(9), 1339; https://doi.org/10.3390/pharmaceutics13091339 - 26 Aug 2021
Cited by 8 | Viewed by 3307
Abstract
Amantadine, a drug used for the blockage of NMDA receptors, is well-known to exhibit neuroprotective effects. Accordingly, assessment of amantadine transport at retinal barriers could result in the application of amantadine for retinal diseases such as glaucoma. The objective of this study was [...] Read more.
Amantadine, a drug used for the blockage of NMDA receptors, is well-known to exhibit neuroprotective effects. Accordingly, assessment of amantadine transport at retinal barriers could result in the application of amantadine for retinal diseases such as glaucoma. The objective of this study was to elucidate the retinal distribution of amantadine across the inner and outer blood–retinal barrier (BRB). In vivo blood-to-retina [3H]amantadine transport was investigated by using the rat retinal uptake index method, which was significantly reduced by unlabeled amantadine. This result indicated the involvement of carrier-mediated processes in the retinal distribution of amantadine. In addition, in vitro model cells of the inner and outer BRB (TR-iBRB2 and RPE-J cells) exhibited saturable kinetics (Km in TR-iBRB2 cells, 79.4 µM; Km in RPE-J cells, 90.5 and 9830 µM). The inhibition of [3H]amantadine uptake by cationic drugs/compounds indicated a minor contribution of transport systems that accept cationic drugs (e.g., verapamil), as well as solute carrier (SLC) organic cation transporters. Collectively, these outcomes suggest that carrier-mediated transport systems, which differ from reported transporters and mechanisms, play a crucial role in the retinal distribution of amantadine across the inner/outer BRB. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop