Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = ion time-of-flight spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3950 KB  
Article
Provenance of Claystones and Lithium Occurrence State in the Xishanyao Formation, Liuhuanggou Coal Mine
by Jie Liu, Bo Wei, Shuo Feng, Xin Li, Wenfeng Wang, Rongkun Jia and Kexin Che
Minerals 2025, 15(10), 1004; https://doi.org/10.3390/min15101004 - 23 Sep 2025
Viewed by 295
Abstract
Strategic lithium resources are critical to national security and have attained heightened importance in contemporary geopolitical, economic, and military contexts. Persistent geochemical anomalies of lithium were first identified in coal-bearing claystones of the Middle Jurassic Xishanyao Formation at the Liuhuanggou Coal Mine in [...] Read more.
Strategic lithium resources are critical to national security and have attained heightened importance in contemporary geopolitical, economic, and military contexts. Persistent geochemical anomalies of lithium were first identified in coal-bearing claystones of the Middle Jurassic Xishanyao Formation at the Liuhuanggou Coal Mine in the southern Junggar Basin, Xinjiang. In this study, a suite of analytical techniques, including X-ray fluorescence spectrometry, inductively coupled plasma mass spectrometry, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, time-of-flight secondary ion mass spectrometry, and sequential chemical extraction, was employed to investigate the provenance, depositional environment, and modes of lithium occurrence in the claystone. Results indicated that the claystone at the Liuhuanggou Coal Mine was dominated by moderately felsic rocks. The notable enrichment of lithium in the Liuhuanggou coal mine claystone indicates favorable metallogenic potential. Lithium was primarily hosted in the aluminosilicate-bound fraction with inorganic affinity and was structurally incorporated within clay minerals, such as kaolinite, illite, and Fe-rich chlorite (chamosite). Lithium-rich claystone was deposited under intense chemical weathering conditions in a transitional, slightly brackish environment characterized by elevated temperatures and low oxygen levels. These findings advance our understanding of sedimentary lithium mineralization mechanisms and offer direct practical guidance for lithium resource exploration and metallogenic prediction in the Xinjiang region, thereby supporting the development of efficient extraction technologies. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

23 pages, 2763 KB  
Article
The Effect of Caffeic Acid on Zn Corrosion in NaCl: Electrochemical Studies
by Aleksander Kucharek, Elżbieta Kuśmierek, Ewa Chrześcijańska, Waldemar Maniukiewicz, Jacek Rogowski, Aleksandra Bednarek and Andrzej Żarczyński
Molecules 2025, 30(17), 3648; https://doi.org/10.3390/molecules30173648 - 8 Sep 2025
Viewed by 759
Abstract
Caffeic acid (CA) can be applied as a green corrosion inhibitor for metals and alloys. The inhibition properties of caffeic acid for Zn in 0.1 M NaCl were investigated using electrochemical methods. The changes in Zn morphology were studied via scanning electron microscopy [...] Read more.
Caffeic acid (CA) can be applied as a green corrosion inhibitor for metals and alloys. The inhibition properties of caffeic acid for Zn in 0.1 M NaCl were investigated using electrochemical methods. The changes in Zn morphology were studied via scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) techniques. Potentiodynamic polarisation (PDP) and electrochemical impedance spectroscopy (EIS) measurements proved that caffeic acid applied in the form of coatings on Zn surface was more effective than the addition of CA to NaCl. Furthermore, CA coatings revealed better corrosion protection with increasing duration of immersion. The highest inhibition efficiency was achieved for CA coating obtained from ethanol solution of CA (10 mM), and its value was almost 95%. The positive impact of CA coatings on the corrosion of Zn surface was confirmed with SEM-EDS, XRD and TOF-SIMS measurements. They proved not only the presence of CA on the Zn surface but also noticeably a lower amount of Zn corrosion products. Full article
Show Figures

Figure 1

22 pages, 8208 KB  
Article
Elastomeric Biocomposites of Natural Rubber Containing Biosynthesized Zinc Oxide
by Anna Sowińska-Baranowska and Magdalena Maciejewska
Int. J. Mol. Sci. 2025, 26(3), 1101; https://doi.org/10.3390/ijms26031101 - 27 Jan 2025
Cited by 1 | Viewed by 1035
Abstract
Zinc oxide (ZnO) particles were successfully synthesized through the green method using aloe vera extract and zinc nitrate (1:1). The structure, morphology and properties of the biosynthesized ZnO (bioZnO) particles were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), time of [...] Read more.
Zinc oxide (ZnO) particles were successfully synthesized through the green method using aloe vera extract and zinc nitrate (1:1). The structure, morphology and properties of the biosynthesized ZnO (bioZnO) particles were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), time of flight secondary ion mass spectrometry (TOF-SIMS) and thermogravimetry (TG). The morphology and the size of ZnO particles were elucidated by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Then, the ability of bioZnO to activate sulfur curing of natural rubber (NR) was tested and compared to commercial ZnO traditionally used as vulcanization activator. The bioZnO showed similar activity in the vulcanization process to commercial ZnO. NR composites containing bioZnO were pro-ecological in nature and exhibited better mechanical characteristics and durability against thermo-oxidative aging than NR with commonly used micrometric ZnO. Moreover, NR vulcanizates containing bioZnO showed good mechanical properties in dynamic conditions and satisfactory thermal stability. The present research is new and in addition to the analysis of biosynthesized ZnO particles, the effect of the activator in the vulcanization process of the NR elastomer and its influence on the properties of the final products were additionally discussed. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 6979 KB  
Article
Analysis of Biomolecular Changes in HeLa Cervical Cancer Cell Line Induced by Interaction with [Pd(dach)Cl2]
by Vanja Ralić, Maja D. Nešić, Tanja Dučić, Milutin Stepić, Lela Korićanac, Katarina Davalieva and Marijana Petković
Inorganics 2025, 13(1), 20; https://doi.org/10.3390/inorganics13010020 - 14 Jan 2025
Cited by 2 | Viewed by 2040
Abstract
Transition metal complexes have been used in medicine for several decades, but their intracellular effects are not yet fully elucidated. Therefore, in this study, we investigate biomolecular changes induced by a palladium(II) complex in cervical carcinoma (HeLa) cells as a model to study [...] Read more.
Transition metal complexes have been used in medicine for several decades, but their intracellular effects are not yet fully elucidated. Therefore, in this study, we investigate biomolecular changes induced by a palladium(II) complex in cervical carcinoma (HeLa) cells as a model to study the subtle changes caused by transition metal ions ingested by the cells. The impact of dichloro(1,2-diaminocyclohexane)palladium(II), [Pd(dach)Cl2], was studied by synchrotron radiation-based Fourier transform infrared (SR FTIR) spectroscopy, a powerful tool for studying alterations in cellular components’ biochemical composition and biomolecular secondary structure on a single-cell level. A spectral analysis, complemented by statistics, revealed that the Pd(II) complex considerably affected all major types of macromolecules in HeLa cells and induced structural changes in proteins through an increased formation of cross-β-sheets and causes structural rearrangement in deoxyribonucleic acid (DNA) through potential chromosome fragmentation. Although a certain level of lipid peroxidation was detectable by SR FTIR spectroscopy and confirmed by an analysis of cellular lipids by matrix-assisted laser desorption and ionisation time-of-flight mass spectrometry, the oxidative stress is not a significant mechanism by which Pd(II) expresses the effect on the HeLa cells. Full article
(This article belongs to the Special Issue Evaluation of the Potential Biological Activity of Metallo-Drugs)
Show Figures

Figure 1

24 pages, 2390 KB  
Article
Goat’s Milk Powder Enriched with Red (Lycium barbarum L.) and Black (Lycium ruthenicum Murray) Goji Berry Extracts: Chemical Characterization, Antioxidant Properties, and Prebiotic Activity
by Danijel D. Milinčić, Aleksandar Ž. Kostić, Steva Lević, Uroš M. Gašić, Dragana D. Božić, Relja Suručić, Tijana D. Ilić, Viktor A. Nedović, Bojana B. Vidović and Mirjana B. Pešić
Foods 2025, 14(1), 62; https://doi.org/10.3390/foods14010062 - 29 Dec 2024
Cited by 3 | Viewed by 2034
Abstract
The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat’s milk powders enriched with lyophilized fruit extracts of Lycium ruthenicum Murray (GMLR) and Lycium [...] Read more.
The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat’s milk powders enriched with lyophilized fruit extracts of Lycium ruthenicum Murray (GMLR) and Lycium barbarum L. (GMLB). Proximate analysis, ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), and electrophoretic analysis were assessed. Total phenolic content (TPC), total protein content, and antioxidant properties of enriched goat milk powders were determined spectrophotometrically, and prebiotic potential was evaluated by the broth microdilution method. A total of 25 phenolic compounds and 18 phenylamides were detected in the enriched goat milk powders. Electrophoretic analysis showed the absence of proteolysis in the prepared powders. The GMLR showed the highest TPC and displayed a ferric ion-reducing power, probably contributed by anthocyanins and some phenylamides. GMLR and GMLB had higher ABTS radical scavenging activity but lower ferrous ion-chelating capacity than control goat′s milk powder. GMLB and GMLR in a dose-dependent manner (0.3–5 mg/mL) showed a growth-promoting effect on probiotic strains. In summary, prepared goji/goat milk powders, primarily GMLR, might be used as prebiotic supplements or functional food additives. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

13 pages, 6164 KB  
Article
Characterization of Antimicrobial Properties of Copper-Doped Graphitic Nanoplatelets
by Jun-Kyu Kang, Seo Jeong Yoon, Honghyun Park, Seung-Jae Lee, Jaehoon Baek, In-Yup Jeon and So-Jung Gwak
Int. J. Mol. Sci. 2024, 25(22), 12414; https://doi.org/10.3390/ijms252212414 - 19 Nov 2024
Cited by 2 | Viewed by 1701
Abstract
Recent clinical outbreaks of infectious diseases caused by pathogenic microorganisms, such as viruses, bacteria, and fungi, along with the emergence of unwanted microorganisms in industrial settings, have significantly reduced efficiency. Graphene has recently attracted significant attention as a potential antimicrobial agent because of [...] Read more.
Recent clinical outbreaks of infectious diseases caused by pathogenic microorganisms, such as viruses, bacteria, and fungi, along with the emergence of unwanted microorganisms in industrial settings, have significantly reduced efficiency. Graphene has recently attracted significant attention as a potential antimicrobial agent because of its low toxicity, ease of production and functionalization, and high solubility in water. The presence of oxygen functional groups allows the interaction of the compound with bacteria and other biomolecules, making it an interesting candidate for antimicrobial therapy. Moreover, integrating graphene into copper coatings has been shown to enhance their antimicrobial properties. However, the implementation of copper–graphene composite coatings is currently limited by the difficulty of uniformly distributing graphene within the copper matrix. Copper (Cu)-doped graphitic nanoplatelets (CuGnPs), one option to overcome this challenge, are made via a mechanochemical reaction between solid graphite and Cu powder. The configuration of C–Cu bonds within CuGnPs can be identified using a range of analytical techniques, including transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry. To evaluate the antibacterial activity of the Cu-GnPs, we employed Escherichia coli or Staphylococcus aureus. Various amounts (250, 500, 750, and 1000 μg/mL) of prepared CuGnP samples were incubated in a bacterial suspension for 3 or 6 h at 150 rpm and 37 °C for a colony-forming unit assay. Three hours and six hours of treatment of the bacteria with CuGnPs led to a significant difference in bacterial survival compared with that of the control. It was observed that CuGnPs, with copper bound to graphene oxide, more effectively inhibited the proliferation of E. coli compared with nanoplatelets containing graphene oxide alone. These findings suggest that the unique properties of CuGnPs, such as C–Cu bonds, high surface area, and the coexistence of micropores and mesopores, are valuable for exerting strong antimicrobial effects making CuGnPs effective at preventing bacterial colonization on industrial surfaces. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Figure 1

14 pages, 2976 KB  
Article
Multi-Domain Data Integration for Plasma Diagnostics in Semiconductor Manufacturing Using Tri-CycleGAN
by Minji Kang, Sung Kyu Jang, Jihun Kim, Seongho Kim, Changmin Kim, Hyo-Chang Lee, Wooseok Kang, Min Sup Choi, Hyeongkeun Kim and Hyeong-U Kim
J. Sens. Actuator Netw. 2024, 13(6), 75; https://doi.org/10.3390/jsan13060075 - 4 Nov 2024
Cited by 3 | Viewed by 2327
Abstract
The precise monitoring of chemical reactions in plasma-based processes is crucial for advanced semiconductor manufacturing. This study integrates three diagnostic techniques—Optical Emission Spectroscopy (OES), Quadrupole Mass Spectrometry (QMS), and Time-of-Flight Mass Spectrometry (ToF-MS)—into a reactive ion etcher (RIE) system to analyze CF4 [...] Read more.
The precise monitoring of chemical reactions in plasma-based processes is crucial for advanced semiconductor manufacturing. This study integrates three diagnostic techniques—Optical Emission Spectroscopy (OES), Quadrupole Mass Spectrometry (QMS), and Time-of-Flight Mass Spectrometry (ToF-MS)—into a reactive ion etcher (RIE) system to analyze CF4-based plasma. To synchronize and integrate data from these different domains, we developed a Tri-CycleGAN model that utilizes three interconnected CycleGANs for bi-directional data transformation between OES, QMS, and ToF-MS. This configuration enables accurate mapping of data across domains, effectively compensating for the blind spots of individual diagnostic techniques. The model incorporates self-attention mechanisms to address temporal misalignments and a direct loss function to preserve fine-grained features, further enhancing data accuracy. Experimental results show that the Tri-CycleGAN model achieves high consistency in reconstructing plasma measurement data under various conditions. The model’s ability to fuse multi-domain diagnostic data offers a robust solution for plasma monitoring, potentially improving precision, yield, and process control in semiconductor manufacturing. This work lays a foundation for future applications of machine learning-based diagnostic integration in complex plasma environments. Full article
(This article belongs to the Special Issue AI-Assisted Machine-Environment Interaction)
Show Figures

Figure 1

15 pages, 6476 KB  
Article
Efficient Flotation Separation of Ilmenite and Olivine in a Weak Alkaline Pulp Using a Ternary Combination Collector Centered around Al3+
by Jinhui Li, Hao He, Yanhai Shao, Chenjie Liu, Rui Li, Hongqin Chen and Xiao Meng
Molecules 2024, 29(18), 4379; https://doi.org/10.3390/molecules29184379 - 14 Sep 2024
Cited by 3 | Viewed by 1553
Abstract
Due to the similar physical and chemical properties of ilmenite and olivine, separating them is challenging. The flotation process, with the use of collectors, is an effective method. In this study, a ternary collector consisting of aluminum ion (III), benzohydroxamic acid (BHA), and [...] Read more.
Due to the similar physical and chemical properties of ilmenite and olivine, separating them is challenging. The flotation process, with the use of collectors, is an effective method. In this study, a ternary collector consisting of aluminum ion (III), benzohydroxamic acid (BHA), and sodium oleate (NaOL) was prepared for the flotation separation of ilmenite and olivine. Through micro-flotation experiments, molecular dynamics simulation (MD), density functional theory (DFT), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis, the synergistic effect between the components of the ternary collector and the adsorption configuration on the surface of ilmenite was investigated. The results revealed that at pH = 8, Al (III), BHA, and NaOL could coordinate and adsorb effectively on the surface of ilmenite, enhancing its floatability for separation from olivine. The adsorption configuration differed from previous reports, showing a co-adsorption of multiple forms on the surface of ilmenite. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Graphical abstract

19 pages, 6045 KB  
Article
Performance of Phenolic-Epoxy Coatings after Exposure to High Temperatures
by Saleh Ahmed, Katerina Lepkova, Xiao Sun, William D. A. Rickard and Thunyaluk Pojtanabuntoeng
Corros. Mater. Degrad. 2024, 5(1), 73-91; https://doi.org/10.3390/cmd5010004 - 29 Feb 2024
Cited by 2 | Viewed by 4880
Abstract
Phenolic-epoxy coatings, which are designed to protect substrates from thermal damage, are widely applied in many fields. There remains an inadequate understanding of how such coatings change during their service life after exposure to various temperature conditions. To further elucidate this issue, this [...] Read more.
Phenolic-epoxy coatings, which are designed to protect substrates from thermal damage, are widely applied in many fields. There remains an inadequate understanding of how such coatings change during their service life after exposure to various temperature conditions. To further elucidate this issue, this case study investigated the effects of high temperatures on carbon steel panels coated with phenolic epoxy and exposed to different heating conditions. A general trend of decreasing barrier performance was observed after exposure to 150 °C for 3 d, as evidenced by the appearance of cracks on the panel surfaces. In contrast, the coating performance improved after exposure to isothermal conditions (120 °C) or thermal cycling from room temperature to 120 °C, as indicated by the increased low-frequency impedance modulus values of the coating. This unexpected improvement was further examined by characterising the coatings using transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), pull-off adhesion tests, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The maximum pull-off adhesion force (24.9 ± 3.6 MPa) was measured after thermal cycling for 40 d. Full article
(This article belongs to the Special Issue Advances in Corrosion Protection by Coatings)
Show Figures

Figure 1

23 pages, 8828 KB  
Article
Synthesis and Morphology Characteristics of New Highly Branched Polycaprolactone PCL
by Aleksandra Zioło, Beata Mossety-Leszczak, Małgorzata Walczak, Beata Strachota, Adam Strachota, Kamil Awsiuk, Natalia Janiszewska and Joanna Raczkowska
Molecules 2024, 29(5), 991; https://doi.org/10.3390/molecules29050991 - 24 Feb 2024
Cited by 6 | Viewed by 3095
Abstract
A simple and efficient method for the synthesis of biodegradable, highly branched polycaprolactone (PCL) is presented. The solvent-free (bulk) reaction was carried out via ring opening polymerization (ROP), catalyzed by tin octanoate Sn(Oct)2, and it employed hyperbranched polyamide (HPPA) as a [...] Read more.
A simple and efficient method for the synthesis of biodegradable, highly branched polycaprolactone (PCL) is presented. The solvent-free (bulk) reaction was carried out via ring opening polymerization (ROP), catalyzed by tin octanoate Sn(Oct)2, and it employed hyperbranched polyamide (HPPA) as a macro-initiator. The core–shell structure of the obtained products (PCL-HPPA), with the hyperbranched HPPA core and linear PCL chains as shell, was in the focus of the product characterization. 1H nuclear magnetic resonance (1H NMR) and elemental analysis confirmed the covalent incorporation of the HPPA in the products, as well as a high degree of grafting conversion of its amino functional groups. Confocal Raman Micro spectroscopy, and especially Time-of-Flight Secondary Ion Mass Spectrometry, further supported the existence of a core–shell structure in the products. Direct observation of macromolecules by means of cryogenic transmission electron microscopy, as well as gel permeation chromatography (GPC), suggested the existence of a minor ‘aggregated’ product fraction with multiple HPPA cores, which was attributed to transesterification reactions. Differential scanning calorimetry, as well as X-ray diffraction, demonstrated that the PCL-HPPA polymers displayed a similar degree of crystallinity to linear neat PCL, but that the branched products possessed smaller and less regular crystallites. Full article
Show Figures

Graphical abstract

8 pages, 2448 KB  
Communication
Effect of Temperature-Dependent Low Oxygen Partial Pressure Annealing on SiC MOS
by Qian Zhang, Nannan You, Jiayi Wang, Yang Xu, Kuo Zhang and Shengkai Wang
Nanomaterials 2024, 14(2), 192; https://doi.org/10.3390/nano14020192 - 15 Jan 2024
Cited by 5 | Viewed by 2305
Abstract
Oxygen post annealing is a promising method for improving the quality of the SiC metal oxide semiconductor (MOS) interface without the introduction of foreign atoms. In addition, a low oxygen partial pressure annealing atmosphere would prevent the additional oxidation of SiC, inhibiting the [...] Read more.
Oxygen post annealing is a promising method for improving the quality of the SiC metal oxide semiconductor (MOS) interface without the introduction of foreign atoms. In addition, a low oxygen partial pressure annealing atmosphere would prevent the additional oxidation of SiC, inhibiting the generation of new defects. This work focuses on the effect and mechanism of low oxygen partial pressure annealing at different temperatures (900–1250 °C) in the SiO2/SiC stack. N2 was used as a protective gas to achieve the low oxygen partial pressure annealing atmosphere. X-ray photoelectron spectroscopy (XPS) characterization was carried out to confirm that there are no N atoms at or near the interface. Based on the reduction in interface trap density (Dit) and border trap density (Nbt), low oxygen partial pressure annealing is proven to be an effective method in improving the interface quality. Vacuum annealing results and time of flight secondary ion mass spectrometry (ToF-SIMS) results reveal that the oxygen vacancy (V[O]) filling near the interface is the dominant annealing mechanism. The V[O] near the interface is filled more by O2 in the annealing atmosphere with the increase in temperature. Full article
Show Figures

Figure 1

22 pages, 4559 KB  
Article
Synthesis of Poly(ethylene furanoate) Based Nanocomposites by In Situ Polymerization with Enhanced Antibacterial Properties for Food Packaging Applications
by Johan Stanley, Eleftheria Xanthopoulou, Matjaž Finšgar, Lidija Fras Zemljič, Panagiotis A. Klonos, Apostolos Kyritsis, Savvas Koltsakidis, Dimitrios Tzetzis, Dimitra A. Lambropoulou, Diana Baciu, Theodore A. Steriotis, Georgia Charalambopoulou and Dimitrios N. Bikiaris
Polymers 2023, 15(23), 4502; https://doi.org/10.3390/polym15234502 - 23 Nov 2023
Cited by 7 | Viewed by 2899
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce–bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) [...] Read more.
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce–bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites’ structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0–5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9–22% for Gram-positive bacterial strains and 5–16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF. Full article
Show Figures

Figure 1

22 pages, 6336 KB  
Review
Mass Spectral Imaging to Map Plant–Microbe Interactions
by Gabriel D. Parker, Luke Hanley and Xiao-Ying Yu
Microorganisms 2023, 11(8), 2045; https://doi.org/10.3390/microorganisms11082045 - 9 Aug 2023
Cited by 6 | Viewed by 3744
Abstract
Plant–microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the [...] Read more.
Plant–microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers the challenges within investigations of plant and microbe interactions. We highlight the importance of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI), and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions. Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding microbe and host interactions at the molecular level with single-cell and community communication information. More research utilizing MSI has emerged in the past several years. We first introduce the principles of major MSI techniques that have been employed in the research of microorganisms. An overview of proper sample preparation methods is offered as a prerequisite for successful MSI analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however, they do not provide a true representation of the bacterial biofilms compared to living cell analysis and chemical imaging. New developments such as microfluidic devices that can be used under a vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they have a subcellular spatial resolution to map and image plant and microbe interactions, including the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to recent MSI advancements in the past five years are selected and highlighted. The latest developments utilizing machine learning are captured as an important outlook for maximal output using MSI to study microorganisms. Full article
(This article belongs to the Special Issue Plant Microbiome and Host Tolerance to Biotic and Abiotic Stresses)
Show Figures

Figure 1

35 pages, 16163 KB  
Article
Studies of Benzotriazole on and into the Copper Electrodeposited Layer by Cyclic Voltammetry, Time-of-Flight Secondary-Ion Mass Spectrometry, Atomic Force Microscopy, and Surface Enhanced Raman Spectroscopy
by Robert Mroczka and Agnieszka Słodkowska
Molecules 2023, 28(15), 5912; https://doi.org/10.3390/molecules28155912 - 6 Aug 2023
Cited by 6 | Viewed by 4559
Abstract
Benzotriazole (BTA) is an important compound that demonstrates the strongest anticorrosion properties of copper and plays a role as a leveler and an additive to the electroplating bath for control of the roughness and corrosion resistance of the electrodeposited copper layer. In this [...] Read more.
Benzotriazole (BTA) is an important compound that demonstrates the strongest anticorrosion properties of copper and plays a role as a leveler and an additive to the electroplating bath for control of the roughness and corrosion resistance of the electrodeposited copper layer. In this paper, we combined cyclic voltammetry (CV), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), surface enhanced Raman spectroscopy (SERS), and atomic force microscopy (AFM) to study the interaction of BTA with copper surfaces at varied concentrations with and without the presence of chloride ions. We identified the most relevant molecular copper and its complex forms with BTA on the copper electrodeposited layer. BTA is adsorbed and incorporated into the copper surface in monomeric, dimeric, trimeric, tetrameric, and pentameric forms, inhibiting the copper electrodeposition. The addition of chloride ions diminishes the inhibiting properties of BTA. The Cu-BTA-Cl complexes were identified in the forms C12H8N6Cu2Cl and C6H4N3CuCl. Coadsorption of chloride ions and BTA molecules depends on their concentration and applied potential. Chloride ions are replaced by BTA molecules. BTA and chloride ions, depending on their concentration and applied potential, control the copper nucleation processes at the micro- and nanoscales. We compared the abilities and limitations of TOF-SIMS and SERS for studies of the interactions of benzotriazole with copper and chloride ions at the molecular level. Full article
(This article belongs to the Special Issue Recent Progress in Nanomaterials in Electrochemistry)
Show Figures

Figure 1

10 pages, 3398 KB  
Article
Photodegradation of Tropaeolin O in the Presence of Ag-Doped ZnO Nanoparticles
by Sonia J. Bailon-Ruiz, Yarilyn Cedeño-Mattei, Kerianys Torres-Torres and Luis Alamo-Nole
Micro 2023, 3(3), 643-652; https://doi.org/10.3390/micro3030045 - 28 Jul 2023
Cited by 3 | Viewed by 1984
Abstract
Azo dyes such as Tropaeolin O have diverse applications in the textile, food, and biomedical industries. However, their recalcitrant properties make them toxic substances in surface waters. Nanocatalysts are photoactive nanoparticles that generate reactive oxygen species to destroy organic compounds. Moreover, the presence [...] Read more.
Azo dyes such as Tropaeolin O have diverse applications in the textile, food, and biomedical industries. However, their recalcitrant properties make them toxic substances in surface waters. Nanocatalysts are photoactive nanoparticles that generate reactive oxygen species to destroy organic compounds. Moreover, the presence of dopant agents in the nanoparticles’ crystalline structure efficiently enhances photocatalytic activity. Ag-doped ZnO nanoparticles were prepared in ethylene glycol at 197 °C and characterized by UV-Vis absorption, photoluminescence, high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and electron diffraction (ED). The particles were mainly spherical with a size of ~10 nm, a hexagonal structure, and an elemental composition of 56.2% Zn, 37.8% O, and 5.9% Ag. The particles evidenced a broad absorption peak in the UV region and two emission peaks. Absorption analysis indicates that 92% and 58% of Tropaeolin O were degraded using 100 and 50 ppm of Ag-doped ZnO nanoparticles, respectively, during the first 550 min. Ion chromatograms selected using quadrupole time-of-flight liquid chromatography-mass spectrometry (QTOF-LC-MS) indicate a complete Tropaeolin O degradation (295.04 m/z) during the first 330 min. Initially, the nanocatalyst attacks the electron-rich groups (-OH and -NH), generating the 277.03 m/z [M-OH]+ and 174.02 m/z (molecule rupture on the azo group). In addition, small oxidized fragments 167.03 m/z and 114.03 m/z confirm the nanoparticles’ photocatalytic capacity, and oxidized chains indicate the tropaeolin’s opening rings (including phtalic acids) and mineralization. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

Back to TopTop