Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = iterated extended Kalman filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3346 KB  
Article
Online Parameter Identification for PMSM Based on Multi-Innovation Extended Kalman Filtering
by Chuan Xiang, Xilong Liu, Zilong Guo, Hongge Zhao and Jingxiang Liu
J. Mar. Sci. Eng. 2025, 13(9), 1660; https://doi.org/10.3390/jmse13091660 - 29 Aug 2025
Viewed by 403
Abstract
Subject to magnetic saturation, temperature rise, and other factors, the electrical parameters of permanent magnet synchronous motors (PMSMs) in marine electric propulsion systems exhibit time-varying characteristics. Existing parameter identification algorithms fail to fully satisfy the requirements of high-performance PMSM control systems in terms [...] Read more.
Subject to magnetic saturation, temperature rise, and other factors, the electrical parameters of permanent magnet synchronous motors (PMSMs) in marine electric propulsion systems exhibit time-varying characteristics. Existing parameter identification algorithms fail to fully satisfy the requirements of high-performance PMSM control systems in terms of accuracy, response speed, and robustness. To address these limitations, this paper introduces multi-innovation theory and proposes a novel multi-innovation extended Kalman filter (MIEKF) for the identification of key electrical parameters of PMSMs, including stator resistance, d-axis inductance, q-axis inductance, and permanent magnet flux linkage. Firstly, the extended Kalman filter (EKF) algorithm is applied to linearize the nonlinear system, enhancing the EKF’s applicability for parameter identification in highly nonlinear PMSM systems. Subsequently, multi-innovation theory is incorporated into the EKF framework to construct the MIEKF algorithm, which utilizes historical state data through iterative updates to improve the identification accuracy and dynamic response speed. An MIEKF-based PMSM parameter identification model is then established to achieve online multi-parameter identification. Finally, a StarSim RCP MT1050-based experimental platform for online PMSM parameter identification is implemented to validate the effectiveness and superiority of the proposed MIEKF algorithm under three operational conditions: no-load, speed variation, and load variation. Experimental results demonstrate that (1) across three distinct operating conditions, compared to forget factor recursive least squares (FFRLS) and the EKF, the MIEKF exhibits smaller fluctuation amplitudes, shorter fluctuation durations, mean values closest to calibrated references, and minimal deviation rates and root mean square errors in identification results; (2) under the load increase condition, the EKF shows significantly increased deviation rates while the MIEKF maintains high identification accuracy and demonstrates enhanced anti-interference ability. This research has achieved a comprehensive improvement in parameter identification accuracy, dynamic response speed, convergence effect, and anti-interference performance, providing an electrical parameter identification method characterized by high accuracy, rapid dynamic response, and strong robustness for high-performance control of PMSMs in marine electric propulsion systems. Full article
(This article belongs to the Special Issue Advances in Recent Marine Engineering Technology)
Show Figures

Figure 1

18 pages, 1814 KB  
Article
Student’s t Kernel-Based Maximum Correntropy Criterion Extended Kalman Filter for GPS Navigation
by Dah-Jing Jwo, Yi Chang, Yun-Han Hsu and Amita Biswal
Appl. Sci. 2025, 15(15), 8645; https://doi.org/10.3390/app15158645 - 5 Aug 2025
Viewed by 519
Abstract
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting [...] Read more.
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting the effectiveness of satellite navigation filters. This paper presents a robust Extended Kalman Filter (EKF) based on the Maximum Correntropy Criterion with a Student’s t kernel (STMCCEKF) for GPS navigation under non-Gaussian noise. Unlike traditional EKF and Gaussian-kernel MCCEKF, the proposed method enhances robustness by leveraging the heavy-tailed Student’s t kernel, which effectively suppresses outliers and dynamic observation noise. A fixed-point iterative algorithm is used for state update, and a new posterior error covariance expression is derived. The simulation results demonstrate that STMCCEKF outperforms conventional filters in positioning accuracy and robustness, particularly in environments with impulsive noise and multipath interference. The Student’s t-distribution kernel efficiently mitigates heavy-tailed non-Gaussian noise, while it adaptively adjusts process and measurement noise covariances, leading to improved estimation performance. A detailed explanation of several key concepts along with practical examples are discussed to aid in understanding and applying the Global Positioning System (GPS) navigation filter. By integrating cutting-edge reinforcement learning with robust statistical approaches, this work advances adaptive signal processing and estimation, offering a significant contribution to the field. Full article
Show Figures

Figure 1

18 pages, 12540 KB  
Article
SS-LIO: Robust Tightly Coupled Solid-State LiDAR–Inertial Odometry for Indoor Degraded Environments
by Yongle Zou, Peipei Meng, Jianqiang Xiong and Xinglin Wan
Electronics 2025, 14(15), 2951; https://doi.org/10.3390/electronics14152951 - 24 Jul 2025
Viewed by 714
Abstract
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To [...] Read more.
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To address these challenges, this paper proposes SS-LIO, a precise, robust, and real-time LiDAR–Inertial odometry solution designed for solid-state LiDAR systems. SS-LIO uses uncertainty propagation in LiDAR point-cloud modeling and a tightly coupled iterative extended Kalman filter to fuse LiDAR feature points with IMU data for reliable localization. It also employs voxels to encapsulate planar features for accurate map construction. Experimental results from open-source datasets and self-collected data demonstrate that SS-LIO achieves superior accuracy and robustness compared to state-of-the-art methods, with an end-to-end drift of only 0.2 m in indoor degraded scenarios. The detailed and accurate point-cloud maps generated by SS-LIO reflect the smoothness and precision of trajectory estimation, with significantly reduced drift and deviation. These outcomes highlight the effectiveness of SS-LIO in addressing the SLAM challenges posed by solid-state LiDAR systems and its capability to produce reliable maps in complex indoor settings. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

19 pages, 4219 KB  
Article
Schur Complement Optimized Iterative EKF for Visual–Inertial Odometry in Autonomous Vehicles
by Guo Ma, Cong Li, Hui Jing, Bing Kuang, Ming Li, Xiang Wang and Guangyu Jia
Machines 2025, 13(7), 582; https://doi.org/10.3390/machines13070582 - 4 Jul 2025
Viewed by 673
Abstract
Accuracy and nonlinear processing capabilities are critical to the positioning and navigation of autonomous vehicles in visual–inertial odometry (VIO). Existing filtering-based VIO methods struggle to deal with strongly nonlinear systems and often exhibit low precision. To this end, this paper proposes a VIO [...] Read more.
Accuracy and nonlinear processing capabilities are critical to the positioning and navigation of autonomous vehicles in visual–inertial odometry (VIO). Existing filtering-based VIO methods struggle to deal with strongly nonlinear systems and often exhibit low precision. To this end, this paper proposes a VIO method based on the Schur complement and Iterated Extended Kalman Filtering (IEKF). The algorithm first enhances ORB (Oriented FAST and Rotated BRIEF) features using Multi-Layer Perceptron (MLP) and Transformer architectures to improve feature robustness. It then integrates visual information and Inertial Measurement Unit (IMU) data through IEKF, constructing a complete residual model. The Schur complement is applied during covariance updates to compress the state dimension, improving computational efficiency and significantly enhancing the system’s ability to handle nonlinearities while maintaining real-time performance. Compared to traditional Extended Kalman Filtering (EKF), the proposed method demonstrates stronger stability and accuracy in high-dynamic scenarios. The experimental results show that the algorithm achieves superior state estimation performance on several typical visual–inertial datasets, demonstrating excellent accuracy and robustness. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

25 pages, 9194 KB  
Article
Optimization and Estimation of the State of Charge of Lithium-Ion Batteries for Electric Vehicles
by Luc Vivien Assiene Mouodo and Petros J. Axaopoulos
Energies 2025, 18(13), 3436; https://doi.org/10.3390/en18133436 - 30 Jun 2025
Viewed by 467
Abstract
Lithium batteries have become one of the best choices for current consumer electric vehicle batteries due to their good stability and high energy density. To ensure the safety and reliability of electric vehicles (EVs), the battery management system (BMS) must provide accurate and [...] Read more.
Lithium batteries have become one of the best choices for current consumer electric vehicle batteries due to their good stability and high energy density. To ensure the safety and reliability of electric vehicles (EVs), the battery management system (BMS) must provide accurate and real-time information on the usage status of the onboard battery. This article highlights the precise estimation of the state of charge (SOC) applied to four models of lithium-ion batteries (Turnigy, LG, SAMSUNG, and PANASONIC) for electric vehicles in order to ensure optimal use of the battery and extend its lifespan, which is frequently influenced by certain parameters such as temperature, current, number of charge and discharge cycles, and so on. Because of the work’s novelty, the methodological approach combines the extended Kalman filter algorithm (EKF) with the noise matrix, which is updated in this case through an iterative process. This leads to the migration to a new adaptive extended Kalman filter algorithm (AEKF) in the MATLAB Simulink 2022.b environment, which is novel or original in the sense that it has a first-order association. The four models of batteries from various manufacturers were directly subjected to the Venin estimator, which allowed for direct comparison of the models under a variety of temperature scenarios while keeping an eye on performance metrics. The results obtained were mapped charging status (SOC) versus open circuit voltage (OCV), and the high-performance primitives collection (HPPC) tests were carried out at 40 °C, 25 °C, 10 °C, 0 °C and −10 °C. At these temperatures, their corresponding values for the root mean square error (RMSE) of (SOC) for the Turnigy graphene battery model were found to be: 1.944, 9.6237, 1.253, 1.6963, 16.9715, and for (OCV): 1.3154, 4.895, 4.149, 4.1808, and 17.2167, respectively. The tests cover the SOC range, from 100% to 5% with four different charge and discharge currents at rates of 1, 2, 5 and 10 A. After characterization, the battery was subjected to urban dynamometer driving program (UDDS), Energy Saving Test (HWFET) driving cycles, LA92 (Dynamometric Test), US06 (aggressive driving), as well as combinations of these cycles. Driving cycles were sampled every 0.1 s, and other tests were sampled at a slower or variable frequency, thus verifying the reliability and robustness of the estimator to 97%. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

15 pages, 1903 KB  
Article
Handheld Ground-Penetrating Radar Antenna Position Estimation Using Factor Graphs
by Paweł Słowak, Tomasz Kraszewski and Piotr Kaniewski
Sensors 2025, 25(11), 3275; https://doi.org/10.3390/s25113275 - 23 May 2025
Viewed by 600
Abstract
Accurate localization of handheld ground-penetrating radar (HH-GPR) systems is critical for high-quality subsurface imaging and precise geospatial mapping of detected buried objects. In our previous works, we demonstrated that a UWB positioning system with an extended Kalman filter (EKF) employing a proprietary pendulum [...] Read more.
Accurate localization of handheld ground-penetrating radar (HH-GPR) systems is critical for high-quality subsurface imaging and precise geospatial mapping of detected buried objects. In our previous works, we demonstrated that a UWB positioning system with an extended Kalman filter (EKF) employing a proprietary pendulum (PND) dynamics model yielded highly accurate results. Building on that foundation, we present a factor-graph-based estimation algorithm to further enhance the accuracy of HH-GPR antenna trajectory estimation. The system was modeled under realistic conditions, and both the EKF and various factor-graph algorithms were implemented. Comparative evaluation indicates that the factor-graph approach achieves an improvement in localization accuracy from over 30 to almost 50 percent compared to the EKF PND. The sparse matrix representation inherent in the factor graph enabled an efficient iterative solution of the underlying linearized system. This enhanced positioning accuracy is expected to facilitate the generation of clearer, more distinct underground images, thereby supporting the potential for more reliable identification and classification of buried objects and infrastructure. Full article
(This article belongs to the Special Issue Indoor Wi-Fi Positioning: Techniques and Systems—2nd Edition)
Show Figures

Figure 1

24 pages, 9146 KB  
Article
AI-Driven Dynamic Covariance for ROS 2 Mobile Robot Localization
by Bogdan Felician Abaza
Sensors 2025, 25(10), 3026; https://doi.org/10.3390/s25103026 - 11 May 2025
Cited by 2 | Viewed by 2238
Abstract
In the evolving field of mobile robotics, enhancing localization robustness in dynamic environments remains a critical challenge, particularly for ROS 2-based systems where sensor fusion plays a pivotal role. This study evaluates an AI-driven approach to dynamically adjust covariance parameters for improved pose [...] Read more.
In the evolving field of mobile robotics, enhancing localization robustness in dynamic environments remains a critical challenge, particularly for ROS 2-based systems where sensor fusion plays a pivotal role. This study evaluates an AI-driven approach to dynamically adjust covariance parameters for improved pose estimation in a differential-drive mobile robot. A regression model was integrated into the robot_localization package to adapt the Extended Kalman Filter (EKF) covariance in real time, with experiments conducted in a controlled indoor setting over runs comparing AI-enabled dynamic covariance prediction against a static covariance baseline across Static, Moderate, and Aggressive motion dynamics. The AI-enabled system achieved a Mean Absolute Error (MAE) of 0.0061 for pose estimation and reduced median yaw prediction errors to 0.0362 rad (static) and 0.0381 rad (moderate) with tighter interquartile ranges (0.0489 rad, 0.1069 rad) compared to the baseline (0.0222 rad, 0.1399 rad). Aggressive dynamics posed challenges, with errors up to 0.9491 rad due to data distribution bias and Random Forest model constraints. Enhanced dataset augmentation, LSTM modeling, and online learning are proposed to address these limitations. Datalogging enabled iterative re-training, supporting scalable state estimation with future focus on online learning. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

19 pages, 3176 KB  
Article
Real-Time Estimation of the State of Charge of Lithium Batteries Under a Wide Temperature Range
by Da Li, Lu Liu, Chuanxu Yue, Xiaojin Gao and Yunhai Zhu
Energies 2025, 18(7), 1866; https://doi.org/10.3390/en18071866 - 7 Apr 2025
Cited by 2 | Viewed by 612
Abstract
The state of charge (SOC) of lithium-ion batteries is essential for their proper functioning and serves as the basis for estimating other parameters within the battery management system. To enhance the accuracy of SOC estimation in lithium-ion batteries, we propose a [...] Read more.
The state of charge (SOC) of lithium-ion batteries is essential for their proper functioning and serves as the basis for estimating other parameters within the battery management system. To enhance the accuracy of SOC estimation in lithium-ion batteries, we propose a joint estimation method that integrates lithium-ion battery parameter identification and SOC assessment using cat swarm optimization dual Kalman filtering (CSO–DKF), which accounts for variable-temperature conditions. We adopt a second-order equivalent circuit model, utilizing the Kalman filtering (KF) algorithm as a parameter filter for dynamic parameter identification, while the extended Kalman filtering (EKF) algorithm acts as a state filter for real-time SOC estimation. These two filters operate alternately throughout the iterative process. Additionally, the cat swarm optimization (CSO) algorithm optimizes the noise covariance matrices of both filters, thereby enhancing the precision of parameter identification and SOC estimation. To support this algorithm, we establish an environmental temperature battery database and incorporate temperature variables to achieve accurate SOC estimation under variable-temperature conditions. The results indicate that creating a database that accommodates temperature variations and optimizing dual Kalman filtering through the cat swarm optimization algorithm significantly improves SOC estimation accuracy. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

21 pages, 23303 KB  
Article
Toward Robust GNSS Real-Time Orbit Determination for Microsatellites Using Factor Graph Optimization
by Cong Hou, Xiaojun Jin, Xiaopeng Yang and Tong Xiao
Remote Sens. 2025, 17(7), 1125; https://doi.org/10.3390/rs17071125 - 21 Mar 2025
Viewed by 708
Abstract
Extended Kalman Filter (EKF) is extensively employed in Global Navigation Satellite System (GNSS)-based real-time orbit determination (RTOD) for microsatellites due to its low complexity. However, the performance of EKF-RTOD is markedly degraded when the microsatellite deviates from a stable Earth-pointing attitude and employs [...] Read more.
Extended Kalman Filter (EKF) is extensively employed in Global Navigation Satellite System (GNSS)-based real-time orbit determination (RTOD) for microsatellites due to its low complexity. However, the performance of EKF-RTOD is markedly degraded when the microsatellite deviates from a stable Earth-pointing attitude and employs a low-cost receiver. Factor graph optimization (FGO), which addresses nonlinear problems through multiple iterations and re-linearization, has demonstrated superior accuracy and robustness compared to EKF in challenging environments such as urban canyons. In this study, we introduce a novel FGO-based RTOD (FGO-RTOD) approach, which integrates state transfer factors to establish temporal connections between state nodes across multiple epochs. Real-time processing is achieved through a sliding window mechanism combined with marginalization. This paper evaluates the performance of the proposed algorithm in a regular scenario using data from GRACE-FO-A, which maintains the Earth-pointing attitude and employs a high-performance receiver. The positioning results of GRACE-FO-A indicate that FGO-RTOD marginally outperforms EKF-RTOD in accuracy. Furthermore, the performance of FGO-RTOD is assessed in challenging scenarios using simulation data and on-orbit data from Tianping-2B microsatellite, which is not in an Earth-pointing attitude and employs a low-cost receiver. The simulation results reveal that FGO-RTOD reduces the Root Mean Square (RMS) of positioning error by 79.0% relative to EKF-RTOD and exhibits significantly enhanced smoothing. In the Tianping-2B experiments, FGO-RTOD reduces the RMS of carrier-phase ionosphere-free combination residuals from 2 cm to 1 cm relative to EKF-RTOD, alongside a substantial improvement in the ratio of valid observations. These findings underscore the effectiveness of FGO-RTOD in managing outlier measurements in challenging scenarios. Full article
Show Figures

Figure 1

16 pages, 2774 KB  
Article
Stochastic State-Space Modeling for Sludge Concentration Height at the Ucubamba Guangarcucho Wastewater Treatment Plant
by Cristian-Luis Inca-Balseca, Cristian Salazar, Jesús Rodríguez, María Barrera, Anna Igorevna Kurbatova, Evelyn Inca, Nelly-Margarita Padilla-Padilla, Ider-Nexar Moreno-Yepez, Jorge-Vinicio Toapanta-Dacto, Gustavo-Javier Ávila-Gaibor, Marco-Hjalmar Velasco-Arellano, Franklin-Marcelo Coronel and Julio-Cesar Morocho-Orellana
Water 2025, 17(6), 793; https://doi.org/10.3390/w17060793 - 10 Mar 2025
Cited by 2 | Viewed by 1054
Abstract
Wastewater treatment plants consist of many biological reactors and a settler, representing an example of large-scale, nonlinear systems. The wastewater treatment plant in this study operates using an activated sludge system, which relies on biological processes to treat wastewater effectively. It is for [...] Read more.
Wastewater treatment plants consist of many biological reactors and a settler, representing an example of large-scale, nonlinear systems. The wastewater treatment plant in this study operates using an activated sludge system, which relies on biological processes to treat wastewater effectively. It is for this reason that iterative process modeling was used through the implementation of an Extended Kalman Filter (EKF) to predict the height of the sludge layer in secondary clarifiers, where the accumulation of activated sludge occurs during the sedimentation process. This technique consists of maximum likelihood estimation that works more consistently in various noise scenarios. As a result of the evaluation of the model estimated by the Extended Kalman Filter (EKF), the suitability of the process tends to be concluded on. In this sense, the prediction of the height in the sludge layer in sewage systems represents a complicated and heteroscedastic process, which can be understood as a phenomenon that can be influenced by a variety of factors. Therefore, this study does not identify problems in estimates through a thorough examination of residuals. It is concluded that the implementation of state-space modeling increases the adaptability and adjustability of the process to achieve structural optimization in a treatment plant. This approach is a viable and effective solution for the efficient management of polluting sludge levels and minimizing the possible environmental impact in out-of-control situations in wastewater treatment plants. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 5349 KB  
Article
Post-Processing Kalman Filter Application for Improving Cooperative Awareness Messages’ Position Data Accuracy
by Maximilian Bauder, Robin Langer, Tibor Kubjatko and Hans-Georg Schweiger
Sensors 2024, 24(24), 7892; https://doi.org/10.3390/s24247892 - 10 Dec 2024
Cited by 1 | Viewed by 1346
Abstract
Cooperative intelligent transportation systems continuously send self-referenced data about their current status in the Cooperative Awareness Message (CAM). Each CAM contains the current position of the vehicle based on GPS accuracy, which can have inaccuracies in the meter range. However, a high accuracy [...] Read more.
Cooperative intelligent transportation systems continuously send self-referenced data about their current status in the Cooperative Awareness Message (CAM). Each CAM contains the current position of the vehicle based on GPS accuracy, which can have inaccuracies in the meter range. However, a high accuracy of the position data is crucial for many applications, such as electronic toll collection or the reconstruction of traffic accidents. Kalman filters are already frequently used today to increase the accuracy of position data. The problem with applying the Kalman filter to the position data within the Cooperative Awareness Message is the low temporal resolution (max. 10 Hz) and the non-equidistant time steps between the messages. In addition, the filter can only be applied to the data retrospectively. To solve these problems, an Extended Kalman Filter and an Unscented Kalman Filter were designed and investigated in this work. The Kalman filters were implemented with two kinematic models. Subsequently, driving tests were conducted with two V2X vehicles to investigate and compare the influence on the accuracy of the position data. To address the problem of non-equidistant time steps, an iterative adjustment of the Process Noise Covariance Matrix Q and the introduction of additional interpolation points to equidistance the received messages were investigated. The results show that without one of these approaches, it is impossible to design a generally valid filter to improve the position accuracy of the CAM position data retrospectively. The introduction of interpolation points did not lead to a significant improvement in the results. With the Q matrix adaptation, an Unscented Kalman Filter could be created that improves the longitudinal position accuracy of the two vehicles under investigation by up to 80% (0.54 m) and the lateral position accuracy by up to 72% (0.18 m). The work thus contributes to improving the positioning accuracy of CAM data for applications that receive only these data retrospectively. Full article
(This article belongs to the Special Issue Sensors and Systems for Automotive and Road Safety (Volume 2))
Show Figures

Figure 1

16 pages, 8731 KB  
Article
Combined Identification of Vehicle Parameters and Road Surface Roughness Using Vehicle Responses
by Lexuan Liu, Xiurui Guo, Xinyu Yang and Lijun Liu
Appl. Sci. 2024, 14(22), 10310; https://doi.org/10.3390/app142210310 - 9 Nov 2024
Cited by 1 | Viewed by 1445
Abstract
Highways, urban roads, and bridges are the important transportation infrastructures for the economic development of modern society. The evaluation of bridge and road quality is crucial to the maintenance and management of the bridge and road industry. Road roughness is a widely accepted [...] Read more.
Highways, urban roads, and bridges are the important transportation infrastructures for the economic development of modern society. The evaluation of bridge and road quality is crucial to the maintenance and management of the bridge and road industry. Road roughness is a widely accepted indicator in the evaluation of road quality and safety, which is a major input source for vehicles. The vehicle responses-based method of identifying road roughness is efficient and convenient. However, the dynamic characteristics of the vehicle have an important impact on the interaction between the vehicle and the road. When the vehicle parameters are not yet clear, the coupling of unknown parameters and unknown road roughness results in the need for mutual iteration when the existing methods simultaneously identify vehicle parameters and road roughness. To address this issue, this study proposes an effective method for the combined identification of vehicle parameters and road roughness using vehicle responses. The test vehicle is modeled as a four-degree-of-freedom half-vehicle model. In view of the coupling effect between tire stiffness and road roughness, the unknown vehicle physical parameters, except for tire stiffness, are first included in the extended state vector. Based on the extended Kalman filter for unknown excitation (EKF-UI), unknown vehicle physical parameters and unknown forces on the axle are identified. Subsequently, based on the property that the front and rear axles of the vehicle pass through the same road roughness area at a fixed time lag, the tire stiffness is identified by combining the identified unknown forces on the axle. Finally, the road roughness is obtained using the identified vehicle parameters and unknown forces. Numerical studies with different levels of roughness, different noise levels, and different vehicle speeds have verified the accuracy of this method in identifying vehicle parameters and road roughness. Full article
(This article belongs to the Special Issue Structural Health Monitoring in Bridges and Infrastructure)
Show Figures

Figure 1

16 pages, 7723 KB  
Article
Vehicle State Estimation by Integrating the Recursive Least Squares Method with a Variable Forgetting Factor with an Adaptive Iterative Extended Kalman Filter
by Yong Chen, Yanmin Huang and Zeyu Song
World Electr. Veh. J. 2024, 15(9), 399; https://doi.org/10.3390/wevj15090399 - 2 Sep 2024
Viewed by 4667
Abstract
The sideslip angle and the yaw rate are the key state parameters for vehicle handling and stability control. To improve the accuracy of the input parameters and the time-varying characteristics of noise covariance in state estimation, a combined method of recursive least squares [...] Read more.
The sideslip angle and the yaw rate are the key state parameters for vehicle handling and stability control. To improve the accuracy of the input parameters and the time-varying characteristics of noise covariance in state estimation, a combined method of recursive least squares with a variable forgetting factor and adaptive iterative extended Kalman filtering is proposed for estimation. Based on the established three-degrees-of-freedom nonlinear model of the vehicle, the variable forgetting factor recursive least squares method is used to identify the tire cornering stiffness and serves as an input for vehicle state estimation. An innovative algorithm is used to optimise the uncertain noise covariance in the iterative extended Kalman filter (IEKF) process. Finally, with the help of the joint simulation of CarSim2019 and Matlab/Simulink R2022a, a distributed drive electric vehicle state parameter estimation model is established, and a simulation analysis of typical working conditions is carried out. Furthermore, an experiment is conducted with the pix moving vehicle and the integrated navigation system. The simulation and experimental results show that, compared to the traditional extended Kalman filter algorithm, the proposed algorithm improves the estimation accuracy of the yaw rate, sideslip angle, and longitudinal speed by 58.17%, 57.2%, and 76.47%, respectively, which shows that the algorithm has a higher estimation accuracy and a stronger applicability to provide accurate state information for vehicle handling and stability control. Full article
Show Figures

Figure 1

17 pages, 2091 KB  
Article
Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation
by Amita Biswal and Dah-Jing Jwo
Appl. Sci. 2024, 14(17), 7657; https://doi.org/10.3390/app14177657 - 29 Aug 2024
Cited by 4 | Viewed by 2057
Abstract
One technique that is widely used in various fields, including nonlinear target tracking, is the extended Kalman filter (EKF). The well-known minimum mean square error (MMSE) criterion, which performs magnificently under the assumption of Gaussian noise, is the optimization criterion that is frequently [...] Read more.
One technique that is widely used in various fields, including nonlinear target tracking, is the extended Kalman filter (EKF). The well-known minimum mean square error (MMSE) criterion, which performs magnificently under the assumption of Gaussian noise, is the optimization criterion that is frequently employed in EKF. Further, if the noises are loud (or heavy-tailed), its performance can drastically suffer. To overcome the problem, this paper suggests a new technique for maximum correntropy EKF with nonlinear regression (MCCEKF-NR) by using the maximum correntropy criterion (MCC) instead of the MMSE criterion to calculate the effectiveness and vitality. The preliminary estimates of the state and covariance matrix in MCKF are provided via the state mean vector and covariance matrix propagation equations, just like in the conventional Kalman filter. In addition, a newly designed fixed-point technique is used to update the posterior estimates of each filter in a regression model. To show the practicality of the proposed strategy, we propose an effective implementation for positioning enhancement in GPS navigation and radar measurement systems. Full article
Show Figures

Figure 1

19 pages, 7704 KB  
Article
Modeling the Long-Term Variability in the Surfaces of Three Lakes in Morocco with Limited Remote Sensing Image Sources
by Ionel Haidu, Tarik El Orfi, Zsolt Magyari-Sáska, Sébastien Lebaut and Mohamed El Gachi
Remote Sens. 2024, 16(17), 3133; https://doi.org/10.3390/rs16173133 - 25 Aug 2024
Cited by 3 | Viewed by 2129
Abstract
Satellite imagery has become a widespread resource for modeling variability in lake surfaces. However, the extended monitoring of a lake’s perimeter faces significant challenges due to atmospheric obstacles that cannot be rectified. Due to the atmosphere’s everchanging opacity, only half of the acquired [...] Read more.
Satellite imagery has become a widespread resource for modeling variability in lake surfaces. However, the extended monitoring of a lake’s perimeter faces significant challenges due to atmospheric obstacles that cannot be rectified. Due to the atmosphere’s everchanging opacity, only half of the acquired satellite images have reliable qualitative accuracy making it possible to identify a lake’s contour. Consequently, approximately 50% of the monthly lake outline values can be determined using remote sensing methods, leaving the remaining 50% unknown. This situation is applicable to three lakes in Morocco (Abakhan, Ouiouan, and Tiglmanine), the subjects of the current research for the period between 1984 and 2022. What can we do if, during a period of time in which we monitored the evolution of the surface of a lake by satellite means, we obtain only about 50% of the possible images? Shall we just settle for this and stop the analysis? Although it may be challenging to believe, the present study introduces two statistical methods for interpolating and validating the monthly values of the lake outline: the iterative ratio method based on the autocorrelation of the monthly water balance and the Kalman filter. We estimated the reconstruction errors of the missing values and validated the methodology using an inverse philosophy, reconstructing the initial data from the table of the simulation results. Given that the difference between the initial values and the reconstructed initial values resembles white noise or an AR (1) process with a low coefficient, we deemed the methodological approach acceptable. Several comparison criteria between the two interpolation methods were employed, yet determining the more appropriate one remains challenging. Based on our surface reconstruction method, Lake Abakhan, with an average area of 22 hectares, experienced significant fluctuations, ranging from a maximum of 34 hectares in 2010 to a minimum of 0.8 hectares in 2022. Lake Ouiouan, with an average area of 14 hectares, displayed much lower variation, with a maximum of 17 hectares in 2020 and a minimum of 6.5 hectares in 1988. Lake Tiglmanine showed a pattern similar to that of Lake Abakhan but with less pronounced fluctuations. With an average area of 6.1 hectares, its maximum was 9.2 hectares in 2011 and its minimum was 4.1 hectares in 1984. Full article
Show Figures

Figure 1

Back to TopTop