Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = keloid pathogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2093 KB  
Review
Fibrotic Disease of the Skin and Lung: Shared Pathways, Environmental Drivers, and Therapeutic Opportunities in a Changing Climate
by Katerina Grafanaki, Alexandros Maniatis, Vasilina Sotiropoulou, Efstathia Pasmatzi and Argyris Tzouvelekis
Int. J. Mol. Sci. 2025, 26(17), 8394; https://doi.org/10.3390/ijms26178394 - 29 Aug 2025
Viewed by 275
Abstract
Fibrotic diseases of the skin and lung, such as systemic sclerosis, hypertrophic scars, keloids, and pulmonary fibrosis, share core molecular mechanisms despite their distinct anatomical settings. Central to their pathogenesis are persistent fibroblast activation, immune dysregulation, ECM remodeling, and failure of resolution pathways, [...] Read more.
Fibrotic diseases of the skin and lung, such as systemic sclerosis, hypertrophic scars, keloids, and pulmonary fibrosis, share core molecular mechanisms despite their distinct anatomical settings. Central to their pathogenesis are persistent fibroblast activation, immune dysregulation, ECM remodeling, and failure of resolution pathways, all modulated by an ever-changing environment and epigenetic regulation. Increasing evidence reveals that chronic injury from air pollution, ultraviolet radiation, climate stressors, and occupational hazards accelerates fibroinflammatory remodeling across these barrier organs. Moreover, shared signaling networks, including TGF-β, IL-4/IL-13, Wnt/β-catenin, and epigenetic regulators like miR-21 and miR-29, suggest convergent fibrotic programs may be subject to cross-organ therapeutic targeting. This review integrates recent insights into the exposome’s role in driving fibrosis, highlights novel RNA- and epigenetic-based interventions, and evaluates the repurposing of antifibrotic agents approved for pulmonary disease within dermatologic contexts. We emphasize the emerging concept of fibrosis-aware precision medicine and propose a unifying framework to guide integrated therapeutic strategies. In the face of global climate change and rising environmental insults, a cross-organ perspective on fibrosis offers a timely and translationally relevant approach to addressing this growing burden on human health. Full article
(This article belongs to the Special Issue Advanced Research of Skin Inflammation and Related Diseases)
Show Figures

Graphical abstract

22 pages, 1553 KB  
Review
An Update on Molecular Mechanisms of Scarring—A Narrative Review
by Michael Kohlhauser, Marcel Mayrhofer, Lars-Peter Kamolz and Christian Smolle
Int. J. Mol. Sci. 2024, 25(21), 11579; https://doi.org/10.3390/ijms252111579 - 28 Oct 2024
Cited by 13 | Viewed by 5977
Abstract
Fibroblasts, the principal cellular mediators of connective tissue remodeling, play a crucial role in the formation of physiological and pathological scars. Understanding the intricate interplay between fibroblasts and other cellular and molecular components is essential for elucidating the underlying mechanisms driving scar formation. [...] Read more.
Fibroblasts, the principal cellular mediators of connective tissue remodeling, play a crucial role in the formation of physiological and pathological scars. Understanding the intricate interplay between fibroblasts and other cellular and molecular components is essential for elucidating the underlying mechanisms driving scar formation. Hypertrophic scars, keloids and atrophic scars arise from dysregulated wound healing processes characterized by persistent inflammation, aberrant collagen deposition, and impaired extracellular matrix remodeling. Fibroblasts play a central role in the pathogenesis of such pathological scars, driving aberrant extracellular matrix remodeling, subsequently contributing to the formation of raised or depressed fibrotic lesions. The investigation of complex interactions between fibroblasts and the microenvironment is crucial for developing targeted therapeutic interventions aimed at modulating fibroblast activity and improving clinical outcomes in patients with pathological scars. Further research into the molecular pathways governing fibroblast behavior and their heterogeneity holds promise for advancing scar management strategies. This narrative review was performed to shed light on the mechanisms behind scar formation, with a special focus on the role of fibroblasts in the formation of different types of scars, providing insights into the pathophysiology of these conditions. Through the analysis of current knowledge, this review seeks to identify the key cellular and molecular mechanisms involved in fibroblast activation, collagen synthesis, and extracellular matrix remodeling in hypertrophic scar, keloid, or atrophic scar formation. Full article
(This article belongs to the Special Issue Molecular Landscape of Cutaneous Wound Healing in Health and Disease)
Show Figures

Figure 1

19 pages, 4691 KB  
Article
Different Shades of Desmoid-Type Fibromatosis (DTF): Detection of Noval Mutations in the Clinicopathologic Analysis of 32 Cases
by Rana Ajabnoor
Diagnostics 2024, 14(19), 2161; https://doi.org/10.3390/diagnostics14192161 - 28 Sep 2024
Viewed by 2029
Abstract
Background: Desmoid-type fibromatosis (DTF) is a locally aggressive myofibroblastic/fibroblastic neoplasm with a high risk of local recurrence. It has a variety of histologic features that might confuse diagnosis, especially when detected during core needle biopsy. The Wnt/β-catenin pathway is strongly linked to the [...] Read more.
Background: Desmoid-type fibromatosis (DTF) is a locally aggressive myofibroblastic/fibroblastic neoplasm with a high risk of local recurrence. It has a variety of histologic features that might confuse diagnosis, especially when detected during core needle biopsy. The Wnt/β-catenin pathway is strongly linked to the pathogenesis of DT fibromatosis. Method: This study examined 33 desmoid-type fibromatoses (DTFs) from 32 patients, analyzing its clinical characteristics, histologic patterns, occurrence rates, relationship with clinical outcomes, immunohistochemical and molecular findings. Results: The DTFs exhibit a range of 1 to 7 histologic patterns per tumor, including conventional, hypercellular, myxoid, hyalinized/hypocellular, staghorn/hemangiopericytomatous blood vessels pattern, nodular fasciitis-like, and keloid-like morphology. No substantial association was found between the existence of different histologic patterns and the clinical outcome. All thirty-three (100%) samples of DTF had a variable percentage of cells that were nuclear positive for β-catenin. An NGS analysis detected novel non-CTNNB1 mutations in two DTFs, including BCL10, MPL, and RBM10 gene mutations. Conclusions: This study reveals a diverse morphology of DTFs that could result in misdiagnosis. Therefore, surgical pathologists must comprehend this thoroughly. Also, the importance of the newly identified non-CTNNB1 gene mutations is still unclear. More research and analyses are needed to completely grasp the clinical implications of these mutations. Full article
(This article belongs to the Special Issue Histopathology in Cancer Diagnosis and Prognosis)
Show Figures

Figure 1

13 pages, 5726 KB  
Article
Increased Susceptibility to Mechanical Stretch Drives the Persistence of Keloid Fibroblasts: An Investigation Using a Stretchable PDMS Platform
by Jihee Kim, Chihyeong Won, Seoyoon Ham, Heetak Han, Sungsik Shin, Jieun Jang, Sanghyeon Lee, Chaebeen Kwon, Sungjoon Cho, Hyeonjoo Park, Dongwon Lee, Won Jai Lee, Taeyoon Lee and Ju Hee Lee
Biomedicines 2024, 12(10), 2169; https://doi.org/10.3390/biomedicines12102169 - 24 Sep 2024
Viewed by 2188
Abstract
Background: Keloids are a common fibrotic disease of the skin, with the pathological hallmark of excessive extracellular matrix synthesis due to abnormal fibroblast activity. Since keloids clinically arise in areas of high mechanical tension, the mechanotransductory pathway may be attributed to its pathogenesis. [...] Read more.
Background: Keloids are a common fibrotic disease of the skin, with the pathological hallmark of excessive extracellular matrix synthesis due to abnormal fibroblast activity. Since keloids clinically arise in areas of high mechanical tension, the mechanotransductory pathway may be attributed to its pathogenesis. We aimed to establish a preclinical platform to elucidate the underlying mechanism of keloid development and its clinical persistence. Methods: We fabricated a mechanically stretchable polydimethylsiloxane cell culture platform; with its mimicry of the in vivo cyclic stretch of skeletal muscles, cells showed higher proliferation compared with conventional modalities. Results: In response to mechanical strain, TGF-β and type 1 collagen showed significant increases, suggesting possible TGF-β/Smad pathway activation via mechanical stimulation. Protein candidates selected by proteomic analysis were evaluated, indicating that key molecules involved in cell signaling and oxidative stress were significantly altered. Additionally, the cytoskeletal network of keloid fibroblasts showed increased expression of its components after periodic mechanical stimulation. Conclusions: Herein, we demonstrated and validated the existing body of knowledge regarding profibrotic mechanotransduction signaling pathways in keloid fibroblasts. Cyclic stretch, as a driving force, could help to decipher the tension-mediated biomechanical processes, leading to the development of optimized therapeutic targets. Full article
(This article belongs to the Special Issue Wound Healing: From Basic to Clinical Research)
Show Figures

Figure 1

23 pages, 1237 KB  
Review
Comprehensive Insights into Keloid Pathogenesis and Advanced Therapeutic Strategies
by Hyun Jee Kim and Yeong Ho Kim
Int. J. Mol. Sci. 2024, 25(16), 8776; https://doi.org/10.3390/ijms25168776 - 12 Aug 2024
Cited by 16 | Viewed by 8149
Abstract
Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial, involving genetic predisposition, immune response dysregulation, and aberrant wound-healing [...] Read more.
Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial, involving genetic predisposition, immune response dysregulation, and aberrant wound-healing processes. Central molecular pathways such as TGF-β/Smad and JAK/STAT are important in keloid formation by sustaining fibroblast activation and ECM deposition. Conventional treatments, including surgical excision, radiation, laser therapies, and intralesional injections, yield variable success but are limited by high recurrence rates and potential adverse effects. Emerging therapies targeting specific immune pathways, small molecule inhibitors, RNA interference, and mesenchymal stem cells show promise in disrupting the underlying mechanisms of keloid pathogenesis, potentially offering more effective and lasting treatment outcomes. Despite advancements, further research is essential to fully elucidate the precise mechanisms of keloid formation and to develop targeted therapies. Ongoing clinical trials and research efforts are vital for translating these scientific insights into practical treatments that can markedly enhance the quality of life for individuals affected by keloid scars. Full article
Show Figures

Figure 1

27 pages, 2425 KB  
Review
Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets
by Yong Chool Boo
Int. J. Mol. Sci. 2024, 25(2), 1235; https://doi.org/10.3390/ijms25021235 - 19 Jan 2024
Cited by 10 | Viewed by 4400
Abstract
Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, [...] Read more.
Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds 2.0)
Show Figures

Graphical abstract

14 pages, 599 KB  
Review
The Communication from Immune Cells to the Fibroblasts in Keloids: Implications for Immunotherapy
by Xiya Zhang, Xinfeng Wu and Dongqing Li
Int. J. Mol. Sci. 2023, 24(20), 15475; https://doi.org/10.3390/ijms242015475 - 23 Oct 2023
Cited by 12 | Viewed by 4988
Abstract
Keloids are a type of fibrotic disease characterized by excessive collagen production and extracellular matrix (ECM) deposition. The symptoms of pain and itching and frequent recurrence after treatment significantly impact the quality of life and mental health of patients. A deeper understanding of [...] Read more.
Keloids are a type of fibrotic disease characterized by excessive collagen production and extracellular matrix (ECM) deposition. The symptoms of pain and itching and frequent recurrence after treatment significantly impact the quality of life and mental health of patients. A deeper understanding of the pathogenesis of keloids is crucial for the development of an effective therapeutic approach. Fibroblasts play a central role in the pathogenesis of keloids by producing large amounts of collagen fibers. Recent evidence indicates that keloids exhibit high immune cell infiltration, and these cells secrete cytokines or growth factors to support keloid fibroblast proliferation. This article provides an update on the knowledge regarding the keloid microenvironment based on recent single-cell sequencing literature. Many inflammatory cells gathered in keloid lesions, such as macrophages, mast cells, and T lymphocytes, indicate that keloids may be an inflammatory skin disease. In this review, we focus on the communication from immune cells to the fibroblasts and the potential of immunotherapy for keloids. We hope that this review will trigger interest in investigating keloids as an inflammatory disease, which may open up new avenues for drug development by targeting immune mediators. Full article
(This article belongs to the Special Issue Immunological and Molecular Networks in the Skin and Skin Diseases)
Show Figures

Figure 1

15 pages, 8675 KB  
Article
Role of Senescence-Resumed Proliferation in Keloid Pathogenesis
by Ching-Yun Wang, Chieh-Wen Wu and Ting-Yi Lin
Future Pharmacol. 2023, 3(1), 198-212; https://doi.org/10.3390/futurepharmacol3010014 - 7 Feb 2023
Cited by 1 | Viewed by 2461
Abstract
Senescence-resumed proliferation (SRP) is proposed to be a mechanism associated with the escape of p21-mediated senescence and the activation of Wnt/β-catenin pathways that enhance malignancy. The keloid genomic landscape shows heavy intersections between TP53 and TGF-β signaling. The machinery to maintain cellular integrity [...] Read more.
Senescence-resumed proliferation (SRP) is proposed to be a mechanism associated with the escape of p21-mediated senescence and the activation of Wnt/β-catenin pathways that enhance malignancy. The keloid genomic landscape shows heavy intersections between TP53 and TGF-β signaling. The machinery to maintain cellular integrity through senescence, apoptosis, and autophagy is co-regulated with stemness, hedgehog, and immunomodulation. Our study demonstrated the presence of SRP and how, on the transcriptome level, TP53 and Wnt/β-catenin pathways are regulated to deliver the same cellular fate. Our study proves that SRP co-regulated with senescence-associated reprogramming (Wnt/β-catenin pathways) and TP53-p21 dysregulations originate from a common etiology and present a novel therapeutic target opportunity. Full article
Show Figures

Figure 1

14 pages, 1999 KB  
Article
The Role of Hippo Signaling Pathway and ILK in the Pathophysiology of Human Hypertrophic Scars and Keloids: An Immunohistochemical Investigation
by Ilias G. Petrou, Sofia Nikou, Srinivas Madduri, Martha Nifora, Vasiliki Bravou and Daniel F. Kalbermatten
Cells 2022, 11(21), 3426; https://doi.org/10.3390/cells11213426 - 29 Oct 2022
Cited by 10 | Viewed by 3338
Abstract
Background: Keloids and hypertrophic scars are characterized by abnormal fibroblast activation and proliferation. While their molecular pathogenesis remains unclear, myofibroblasts have been associated with their development. Hippo pathway effectors YAP/TAZ promote cell proliferation and matrix stiffening. Integrin-linked kinase (ILK), a central component of [...] Read more.
Background: Keloids and hypertrophic scars are characterized by abnormal fibroblast activation and proliferation. While their molecular pathogenesis remains unclear, myofibroblasts have been associated with their development. Hippo pathway effectors YAP/TAZ promote cell proliferation and matrix stiffening. Integrin-linked kinase (ILK), a central component of focal adhesions that mediates cell–matrix interactions, has been linked to tissue repair and fibrosis. The aim of this study was to investigate the expression of key Hippo pathway molecules and ILK in hypertrophic scars and keloids. Methods: YAP/TAZ, TEAD4, ILK and a-SMA expression were evaluated by immunohistochemistry in keloids (n = 55), hypertrophic scars (n = 38) and normal skin (n = 14). Results: The expression of YAP/TAZ, TEAD4, ILK and a-SMA was higher in fibroblasts of keloids compared to hypertrophic scars while negative in normal skin. There was a significant positive correlation between the expression of ILK and Hippo pathway effectors. Conclusions: Our results suggest that the deregulation of Hippo signaling and ILK are implicated in keloid and hypertrophic scar formation. Full article
(This article belongs to the Special Issue Cellular Mechanisms of Skin Diseases)
Show Figures

Figure 1

12 pages, 1187 KB  
Review
Galectin 1—A Key Player between Tissue Repair and Fibrosis
by Anca Hermenean, Daniela Oatis, Hildegard Herman, Alina Ciceu, Giovanbattista D’Amico and Maria Consiglia Trotta
Int. J. Mol. Sci. 2022, 23(10), 5548; https://doi.org/10.3390/ijms23105548 - 16 May 2022
Cited by 35 | Viewed by 4889
Abstract
Galectins are ten family members of carbohydrate-binding proteins with a high affinity for β galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, [...] Read more.
Galectins are ten family members of carbohydrate-binding proteins with a high affinity for β galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, we described recent advances in the Gal-1 modulatory role on wound healing, by focusing on the different phases triggered by Gal-1, such as inflammation, proliferation, tissue repair and re-epithelialization. On the contrary, Gal-1 persistent over-expression enhances angiogenesis and extracellular matrix (ECM) production via PI3K/Akt pathway activation and leads to keloid tissue. Therefore, the targeted Gal-1 modulation should be considered a method of choice to treat wound healing and avoid keloid formation. In the second part of the review article, we discuss studies clarifying the role of Gal-1 in the pathogenesis of proliferative diabetic retinopathy, liver, renal, pancreatic and pulmonary fibrosis. This evidence suggests that Gal-1 may become a biomarker for the diagnosis and prognosis of tissue fibrosis and a promising molecular target for the development of new and original therapeutic tools to treat fibrosis in different chronic diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Chronic and Degenerative Diseases)
Show Figures

Figure 1

15 pages, 4333 KB  
Article
Tauroursodeoxycholic Acid Decreases Keloid Formation by Reducing Endoplasmic Reticulum Stress as Implicated in the Pathogenesis of Keloid
by Sunje Kim, Seong Eun Lee, Shinae Yi, Sangmi Jun, Yoon-Sun Yi, Harsha Nagar, Cuk-Seong Kim, Chungmin Shin, Min-Kyung Yeo, Yea Eun Kang and Sang-Ha Oh
Int. J. Mol. Sci. 2021, 22(19), 10765; https://doi.org/10.3390/ijms221910765 - 5 Oct 2021
Cited by 13 | Viewed by 4328
Abstract
Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein [...] Read more.
Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein processing in the endoplasmic reticulum, and TGF-β signaling in human keloid tissue samples compared to controls, based on ingenuity pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Electron microscopic examinations revealed an increased number of dysmorphic mitochondria and expanded endoplasmic reticulum (ER) in human keloid tissue samples than that in controls. Western blot analysis performed using human tissues suggested noticeably higher ER stress signaling in keloids than in normal tissues. Treatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, significantly decreased scar formation in rabbit models, compared to normal saline and steroid injections. In summary, our findings demonstrate the contributions of mitochondrial dysfunction and dysregulated ER stress signaling in human keloid formation and the potential of TUDCA in the treatment of keloids. Full article
Show Figures

Figure 1

16 pages, 4209 KB  
Article
Multi-Antigen Imaging Reveals Inflammatory DC, ADAM17 and Neprilysin as Effectors in Keloid Formation
by Mathias Rath, Alain Pitiot, Michael Kirr, Waltraud Fröhlich, Bianca Plosnita, Stefan Schliep, Jürgen Bauerschmitz, Andreas S. Baur and Christian Ostalecki
Int. J. Mol. Sci. 2021, 22(17), 9417; https://doi.org/10.3390/ijms22179417 - 30 Aug 2021
Cited by 8 | Viewed by 4193
Abstract
Keloid is an aberrant scarring process of the skin, characterized by excessive extracellular matrix synthesis and deposition. The pathogenesis of this prevalent cutaneous disorder is not fully understood; however, a persistent inflammatory process is observed. To obtain more insight into this process, we [...] Read more.
Keloid is an aberrant scarring process of the skin, characterized by excessive extracellular matrix synthesis and deposition. The pathogenesis of this prevalent cutaneous disorder is not fully understood; however, a persistent inflammatory process is observed. To obtain more insight into this process, we analyzed lesional, perilesional and healthy tissue using multi-antigen-analysis (MAA) in conjunction with a data mining approach. Here, we demonstrate that monocyte-derived inflammatory dendritic cells (CD1a+, CD11c+, CD14+) and activated CD4+ T lymphocytes (CD45 RO+) dominated the immune infiltration in keloids while associating with fibroblasts. In perilesional tissue, precursor immune cells were dominant in the perivascular area, suggesting that they were attracted by an immune process, potentially in the lesional area. Supporting this hypothesis, only in keloid lesions, high levels of ADAM10/17 and Neprilysin (CD10) were observed in both fibroblasts and leukocytes. The spatial proximity of these two cell types, which could be confirmed by image analysis only in lesional tissue, could be a potential factor leading to the activation of fibroblasts. Our findings provide new insight into the pathogenesis of keloid formation and reveal metalloproteinases as a target for therapeutical intervention. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 12822 KB  
Article
Antifibrotic Effects of High-Mobility Group Box 1 Protein Inhibitor (Glycyrrhizin) on Keloid Fibroblasts and Keloid Spheroids through Reduction of Autophagy and Induction of Apoptosis
by Yeo Reum Jeon, Hyun Roh, Ji Hyuk Jung, Hyo Min Ahn, Ju Hee Lee, Chae-Ok Yun and Won Jai Lee
Int. J. Mol. Sci. 2019, 20(17), 4134; https://doi.org/10.3390/ijms20174134 - 24 Aug 2019
Cited by 24 | Viewed by 6052
Abstract
Overabundance of extracellular matrix resulting from hyperproliferation of keloid fibroblasts (KFs) and dysregulation of apoptosis represents the main pathophysiology underlying keloids. High-mobility group box 1 (HMGB1) plays important roles in the regulation of cellular death. Suppression of HMGB1 inhibits autophagy while increasing apoptosis. [...] Read more.
Overabundance of extracellular matrix resulting from hyperproliferation of keloid fibroblasts (KFs) and dysregulation of apoptosis represents the main pathophysiology underlying keloids. High-mobility group box 1 (HMGB1) plays important roles in the regulation of cellular death. Suppression of HMGB1 inhibits autophagy while increasing apoptosis. Suppression of HMGB1 with glycyrrhizin has therapeutic benefits in fibrotic diseases. In this study, we explored the possible involvement of autophagy and HMGB1 as a cell death regulator in keloid pathogenesis. We have highlighted the potential utility of glycyrrhizin as an antifibrotic agent via regulation of the aberrant balance between autophagy and apoptosis in keloids. Higher HMGB1 expression and enhanced autophagy were observed in keloids. The proliferation of KFs was decreased following glycyrrhizin treatment. While apoptosis was enhanced in keloids after glycyrrhizin treatment, autophagy was significantly reduced. The expressions of ERK1/2, Akt, and NF-κB, were enhanced in HMGB1-teated fibroblasts, but decreased following glycyrrhizin treatment. The expression of extracellular matrix (ECM) components was reduced in glycyrrhizin-treated keloids. TGF-β, Smad2/3, ERK1/2, and HMGB1 were decreased in glycyrrhizin-treated keloids. Treatment with the autophagy inhibitor 3-MA resulted in a decrease of autophagy markers and collagen in the TGF-β-treated fibroblasts. The results indicated that autophagy plays an important role in the pathogenesis of keloids. Because glycyrrhizin appears to reduce ECM and downregulate autophagy in keloids, its potential use for treatment of keloids is indicated. Full article
(This article belongs to the Special Issue Recent Advances in Pathophysiology of Fibrosis and Scarring)
Show Figures

Graphical abstract

12 pages, 2842 KB  
Article
HtrA1 Is Specifically Up-Regulated in Active Keloid Lesions and Stimulates Keloid Development
by Satoko Yamawaki, Motoko Naitoh, Hiroshi Kubota, Rino Aya, Yasuhiro Katayama, Toshihiro Ishiko, Taku Tamura, Katsuhiro Yoshikawa, Tatsuki Enoshiri, Mika Ikeda and Shigehiko Suzuki
Int. J. Mol. Sci. 2018, 19(5), 1275; https://doi.org/10.3390/ijms19051275 - 24 Apr 2018
Cited by 10 | Viewed by 5550
Abstract
Keloids occur after failure of the wound healing process; inflammation persists, and various treatments are ineffective. Keloid pathogenesis is still unclear. We have previously analysed the gene expression profiles in keloid tissue and found that HtrA1 was markedly up-regulated in the keloid lesions. [...] Read more.
Keloids occur after failure of the wound healing process; inflammation persists, and various treatments are ineffective. Keloid pathogenesis is still unclear. We have previously analysed the gene expression profiles in keloid tissue and found that HtrA1 was markedly up-regulated in the keloid lesions. HtrA1 is a serine protease suggested to play a role in the pathogenesis of various diseases, including age-related macular degeneration and osteoarthritis, by modulating extracellular matrix or cell surface proteins. We analysed HtrA1 localization and its role in keloid pathogenesis. Thirty keloid patients and twelve unrelated patients were enrolled for in situ hybridization, immunohistochemical, western blot, and cell proliferation analyses. Fibroblast-like cells expressed more HtrA1 in active keloid lesions than in surrounding lesions. The proportion of HtrA1-positive cells in keloids was significantly higher than that in normal skin, and HtrA1 protein was up-regulated relative to normal skin. Silencing HtrA1 gene expression significantly suppressed cell proliferation. HtrA1 was highly expressed in keloid tissues, and the suppression of the HtrA1 gene inhibited the proliferation of keloid-derived fibroblasts. HtrA1 may promote keloid development by accelerating cell proliferation and remodelling keloid-specific extracellular matrix or cell surface molecules. HtrA1 is suggested to have an important role in keloid pathogenesis. Full article
(This article belongs to the Special Issue Recent Advances in Scar Biology)
Show Figures

Figure 1

21 pages, 11675 KB  
Article
Adiponectin Is Involved in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the Extracellular Matrix in Keloid Fibroblasts
by Limin Luo, Jun Li, Han Liu, Xiaoqing Jian, Qianlei Zou, Qing Zhao, Qu Le, Hongdou Chen, Xinghua Gao and Chundi He
Int. J. Mol. Sci. 2017, 18(5), 1044; https://doi.org/10.3390/ijms18051044 - 12 May 2017
Cited by 41 | Viewed by 7937
Abstract
Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be [...] Read more.
Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those in normal skin tissue. Adiponectin suppressed the CTGF-induced KFs, but not NFs, proliferation, migration and ECM production. Moreover, adiponectin inhibited the phosphorylation of AMPK, p38 and extracellular-regulated kinase (ERK), but not that of Jun N-terminal kinase (JNK) or Akt, in CTGF-treated KFs. The activity of adiponectin-mediated signalling pathways was attenuated by small interfering RNAs (siRNAs) targeting adipoR1 (but not siRNAs targeting adipoR2, T-cadherin or calreticulin), AMPK (Compound C), p38 (SB203580) inhibitors, and mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059). Based on our results, adiponectin suppresses CTGF-induced KFs proliferation, migration and ECM overproduction. One of the underlying mechanisms is the activation of the adipoR1, AMPK, p38, and ERK signalling pathways. Therefore, adiponectin may play an important role in the progression of keloids, suggesting a potential novel target for keloid treatment. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop