Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = learning-assisted extended Kalman filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1117 KB  
Article
Driver Clustering Based on Individual Curve Path Selection Preference
by Gergo Igneczi, Tamas Dobay, Erno Horvath and Krisztian Nyilas
Appl. Sci. 2025, 15(14), 7718; https://doi.org/10.3390/app15147718 - 9 Jul 2025
Viewed by 278
Abstract
The development of Advanced Driver Assistance Systems (ADASs) has reached a stage where, in addition to the traditional challenges of path planning and control, there is an increasing focus on the behavior of these systems. Assistance functions shall be personalized to deliver a [...] Read more.
The development of Advanced Driver Assistance Systems (ADASs) has reached a stage where, in addition to the traditional challenges of path planning and control, there is an increasing focus on the behavior of these systems. Assistance functions shall be personalized to deliver a full user experience. Therefore, driver modeling is a key area of research for next-generation ADASs. One of the most common tasks in everyday driving is lane keeping. Drivers are assisted by lane-keeping systems to keep their vehicle in the center of the lane. However, human drivers often deviate from the center line. It has been shown that the driver’s choice to deviate from the center line can be modeled by a linear combination of preview curvature information. This model is called the Linear Driver Model. In this paper, we fit the LDM parameters to real driving data. The drivers are then clustered based on the individual parameters. It is shown that clusters are not only formed by the numerical similarity of the driver parameters, but the drivers in a cluster actually have similar behavior in terms of path selection. Finally, an Extended Kalman Filter (EKF) is proposed to learn the model parameters at run-time. Any new driver can be classified into one of the driver type groups. This information can be used to modify the behavior of the lane-keeping system to mimic human driving, resulting in a more personalized driving experience. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

16 pages, 1978 KB  
Article
Learning-Assisted Multi-IMU Proprioceptive State Estimation for Quadruped Robots
by Xuanning Liu, Yajie Bao, Peng Cheng, Dan Shen, Zhengyang Fan, Hao Xu and Genshe Chen
Information 2025, 16(6), 479; https://doi.org/10.3390/info16060479 - 9 Jun 2025
Viewed by 3150
Abstract
This paper presents a learning-assisted approach for state estimation of quadruped robots using observations of proprioceptive sensors, including multiple inertial measurement units (IMUs). Specifically, one body IMU and four additional IMUs attached to each calf link of the robot are used for sensing [...] Read more.
This paper presents a learning-assisted approach for state estimation of quadruped robots using observations of proprioceptive sensors, including multiple inertial measurement units (IMUs). Specifically, one body IMU and four additional IMUs attached to each calf link of the robot are used for sensing the dynamics of the body and legs, in addition to joint encoders. The extended Kalman filter (KF) is employed to fuse sensor data to estimate the robot’s states in the world frame and enhance the convergence of the extended KF (EKF). To circumvent the requirements for the measurements from the motion capture (mocap) system or other vision systems, the right-invariant EKF (RI-EKF) is extended to employ the foot IMU measurements for enhanced state estimation, and a learning-based approach is presented to estimate the vision system measurements for the EKF. One-dimensional convolutional neural networks (CNN) are leveraged to estimate required measurements using only the available proprioception data. Experiments on real data from a quadruped robot demonstrate that proprioception can be sufficient for state estimation. The proposed learning-assisted approach, which does not rely on data from vision systems, achieves competitive accuracy compared to EKF using mocap measurements and lower estimation errors than RI-EKF using multi-IMU measurements. Full article
(This article belongs to the Special Issue Sensing and Wireless Communications)
Show Figures

Figure 1

23 pages, 3816 KB  
Article
Integration of Deep Sequence Learning-Based Virtual GPS Model and EKF for AUV Navigation
by Peng-Fei Lv, Jun-Yi Lv, Zhi-Chao Hong and Li-Xin Xu
Drones 2024, 8(9), 441; https://doi.org/10.3390/drones8090441 - 29 Aug 2024
Cited by 5 | Viewed by 1450
Abstract
To address the issue of increasing navigation errors in low-cost autonomous underwater vehicles (AUVs) operating without assisted positioning underwater, this paper proposes a Virtual GPS Model (VGPSM) based on deep sequence learning. This model is integrated with an Extended Kalman Filter (EKF) to [...] Read more.
To address the issue of increasing navigation errors in low-cost autonomous underwater vehicles (AUVs) operating without assisted positioning underwater, this paper proposes a Virtual GPS Model (VGPSM) based on deep sequence learning. This model is integrated with an Extended Kalman Filter (EKF) to provide a high-precision navigation solution for AUVs. The VGPSM leverages the time-series characteristics of data from sensors such as the Attitude and Heading Reference System (AHRS) and the Doppler Velocity Log (DVL) while the AUV is on the surface. It learns the relationship between these sensor data and GPS data by utilizing a hybrid model of Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (Bi-LSTM), which are well-suited for processing and predicting time-series data. This approach constructs a virtual GPS model that generates virtual GPS displacements updated at the same frequency as the real GPS data. When the AUV navigates underwater, the virtual GPS displacements generated using the VGPSM in real-time are used as measurements to assist the EKF in state estimation, thereby enhancing the accuracy and robustness of underwater navigation. The effectiveness of the proposed method is validated through a series of experiments under various conditions. The experimental results demonstrate that the proposed method significantly reduces cumulative errors, with navigation accuracy improvements ranging from 29.2% to 69.56% compared to the standard EKF, indicating strong adaptability and robustness. Full article
Show Figures

Figure 1

20 pages, 3776 KB  
Article
An Integrated Navigation Method Aided by Position Correction Model and Velocity Model for AUVs
by Pengfei Lv, Junyi Lv, Zhichao Hong and Lixin Xu
Sensors 2024, 24(16), 5396; https://doi.org/10.3390/s24165396 - 21 Aug 2024
Cited by 1 | Viewed by 4073
Abstract
When autonomous underwater vehicles (AUVs) perform underwater tasks, the absence of GPS position assistance can lead to a decrease in the accuracy of traditional navigation systems, such as the extended Kalman filter (EKF), due to the accumulation of errors. To enhance the navigation [...] Read more.
When autonomous underwater vehicles (AUVs) perform underwater tasks, the absence of GPS position assistance can lead to a decrease in the accuracy of traditional navigation systems, such as the extended Kalman filter (EKF), due to the accumulation of errors. To enhance the navigation accuracy of AUVs in the absence of position assistance, this paper proposes an innovative navigation method that integrates a position correction model and a velocity model. Specifically, a velocity model is developed using a dynamic model and the Optimal Pruning Extreme Learning Machine (OP-ELM) method. This velocity model is trained online to provide velocity outputs during the intervals when the Doppler Velocity Log (DVL) is not updating, ensuring more consistent and reliable velocity estimation. Additionally, a position correction model (PCM) is constructed, based on a hybrid gated recurrent neural network (HGRNN). This model is specifically designed to correct the AUV’s navigation position when GPS data are unavailable underwater. The HGRNN utilizes historical navigation data and patterns learned during training to predict and adjust the AUV’s estimated position, thereby reducing the drift caused by the lack of real-time position updates. Experimental results demonstrate that the proposed VM-PCM-EKF algorithm can significantly improve the positioning accuracy of the navigation system, with a maximum accuracy improvement of 87.2% compared to conventional EKF algorithms. This method not only improves the reliability and accuracy of AUV missions but also opens up new possibilities for more complex and extended underwater operations. Full article
(This article belongs to the Topic Multi-Sensor Integrated Navigation Systems)
Show Figures

Figure 1

28 pages, 8400 KB  
Article
A Hybrid Model and Data-Driven Vision-Based Framework for the Detection, Tracking and Surveillance of Dynamic Coastlines Using a Multirotor UAV
by Sotirios N. Aspragkathos, George C. Karras and Kostas J. Kyriakopoulos
Drones 2022, 6(6), 146; https://doi.org/10.3390/drones6060146 - 15 Jun 2022
Cited by 11 | Viewed by 3635
Abstract
A hybrid model-based and data-driven framework is proposed in this paper for autonomous coastline surveillance using an unmanned aerial vehicle. The proposed approach comprises three individual neural network-assisted modules that work together to estimate the state of the target (i.e., shoreline) to contribute [...] Read more.
A hybrid model-based and data-driven framework is proposed in this paper for autonomous coastline surveillance using an unmanned aerial vehicle. The proposed approach comprises three individual neural network-assisted modules that work together to estimate the state of the target (i.e., shoreline) to contribute to its identification and tracking. The shoreline is first detected through image segmentation using a Convolutional Neural Network. The part of the segmented image that includes the detected shoreline is then fed into a CNN real-time optical flow estimator. The position of pixels belonging to the detected shoreline, as well as the initial approximation of the shoreline motion, are incorporated into a neural network-aided Extended Kalman Filter that learns from data and can provide on-line motion estimation of the shoreline (i.e., position and velocity in the presence of waves) using the system and measurement models with partial knowledge. Finally, the estimated feedback is provided to a Partitioned Visual Servo tracking controller for autonomous multirotor navigation along the coast, ensuring that the latter will always remain inside the onboard camera field of view. A series of outdoor comparative studies using an octocopter flying along the shoreline in various weather and beach settings demonstrate the effectiveness of the suggested architecture. Full article
(This article belongs to the Special Issue UAVs for Coastal Surveying)
Show Figures

Figure 1

21 pages, 11354 KB  
Article
Vehicle Trajectory Estimation Based on Fusion of Visual Motion Features and Deep Learning
by Lianen Qu and Matthew N. Dailey
Sensors 2021, 21(23), 7969; https://doi.org/10.3390/s21237969 - 29 Nov 2021
Cited by 6 | Viewed by 4676
Abstract
Driver situation awareness is critical for safety. In this paper, we propose a fast, accurate method for obtaining real-time situation awareness using a single type of sensor: monocular cameras. The system tracks the host vehicle’s trajectory using sparse optical flow and tracks vehicles [...] Read more.
Driver situation awareness is critical for safety. In this paper, we propose a fast, accurate method for obtaining real-time situation awareness using a single type of sensor: monocular cameras. The system tracks the host vehicle’s trajectory using sparse optical flow and tracks vehicles in the surrounding environment using convolutional neural networks. Optical flow is used to measure the linear and angular velocity of the host vehicle. The convolutional neural networks are used to measure target vehicles’ positions relative to the host vehicle using image-based detections. Finally, the system fuses host and target vehicle trajectories in the world coordinate system using the velocity of the host vehicle and the target vehicles’ relative positions with the aid of an Extended Kalman Filter (EKF). We implement and test our model quantitatively in simulation and qualitatively on real-world test video. The results show that the algorithm is superior to state-of-the-art sequential state estimation methods such as visual SLAM in performing accurate global localization and trajectory estimation for host and target vehicles. Full article
(This article belongs to the Topic Intelligent Transportation Systems)
Show Figures

Figure 1

Back to TopTop