Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (653)

Search Parameters:
Keywords = liquid probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4766 KB  
Article
Electrochemical/Colorimetric Dual-Mode Aptasensor Based on CuZr-MOF and Fe3O4@ZIF-8 for Detection of Malathion in Vegetables
by Kaili Liu, Jiwei Dong, Youkai Wang, Jiashuai Sun, Peisen Li, Yemin Guo and Xia Sun
Biosensors 2026, 16(2), 101; https://doi.org/10.3390/bios16020101 - 4 Feb 2026
Viewed by 115
Abstract
In on-site rapid detection, the electrochemical method boasts high sensitivity and rapid response capabilities, while the colorimetric method can provide intuitive visual readings suitable for on-site screening. Therefore, this study developed an innovative dual-mode electrochemical/colorimetric aptasensor for the accurate detection of malathion (MAL) [...] Read more.
In on-site rapid detection, the electrochemical method boasts high sensitivity and rapid response capabilities, while the colorimetric method can provide intuitive visual readings suitable for on-site screening. Therefore, this study developed an innovative dual-mode electrochemical/colorimetric aptasensor for the accurate detection of malathion (MAL) in vegetables. The sensor combines magnetic Fe3O4@ZIF-8-DNA composites and CuZr-MOF-cDNA probes, enabling simultaneous detection of the target through electrochemical reactions and colorimetric changes. The introduction of CuZr-MOF not only enhances the sensor’s conductivity but also significantly amplifies the electrochemical signal through its catalytic properties. The magnetic Fe3O4@ZIF-8-DNA composite facilitates solid–liquid separation under an external magnetic field. When the target MAL is present, the aptamer binds to the target, causing the CuZr-MOF-cDNA probes to release from the composite, altering the number of free probes in the supernatant and generating varying intensities of colorimetric signals. Meanwhile, the MAL captured in the precipitate by the aptamer is quantitatively detected through electrochemical methods. Experimental results demonstrate that as the target concentration increases, the colorimetric signal intensifies while the electrochemical signal weakens, showing a good linear relationship between the two. The aptasensor’s limit of detection (LOD) for colorimetric and electrochemical modes was 1.57 × 10−11 M and 4.76 × 10−11 M, respectively, with recoveries ranging from 87.71% to 107.68% and relative standard deviations between 3.23% and 10.75%. This method exhibits high sensitivity, excellent selectivity, and strong reliability, providing a novel technique for the accurate quantification of MAL in vegetables, particularly suited for on-site rapid detection. Full article
(This article belongs to the Special Issue Aptamer-Based Sensing: Designs and Applications)
Show Figures

Figure 1

16 pages, 3848 KB  
Article
Photoelectric Composite Three-Phase Flow Sensor for Complex Oil and Gas Wells
by Qiang Chen, Xueguang Qiao, Tao Chen, Hong Gao and Congcong Li
Sensors 2026, 26(3), 808; https://doi.org/10.3390/s26030808 - 26 Jan 2026
Viewed by 220
Abstract
Reliable measurement of multiphase flow is fundamental to production evaluation in complex oil and gas wells. However, conventional sensors often suffer from low integration, limited measurement capability, and potential environmental impact. To address these challenges, a photoelectric composite three-phase flow sensor is developed, [...] Read more.
Reliable measurement of multiphase flow is fundamental to production evaluation in complex oil and gas wells. However, conventional sensors often suffer from low integration, limited measurement capability, and potential environmental impact. To address these challenges, a photoelectric composite three-phase flow sensor is developed, integrating multiple electrode rings for water holdup and liquid-phase velocity measurement, with dual optical-fiber probes for gas holdup and gas-phase velocity detection. A slip model is further applied to quantify the dependence of slip velocity on liquid holdup based on measured phase rates. Experimental results demonstrate high sensitivity to bubble-flow structures, accurate extraction of gas holdup and phase velocities, and stable full-range water holdup calibration from 0% to 100% at 5 V and 15 V with effective temperature and salinity compensation. And compared with existing technologies, the sensor designed in this paper has the advantages of high integration, a simple structure, multiple measurement parameters, and higher water-holding capacity resolution in low-saturation areas, providing more advanced technical means for conventional profile three-phase flow logging. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 4083 KB  
Article
Metabolism of the Isoflavone Derivative Structural Isomers ACF-02 and ACF-03 in Human Liver Microsomes
by Zhuoning Liang, Eui-Hyeon Kim, Ga-Young Kim, Jin-Hyuk Choi, Hyung-Ju Seo, Kwang-Hyeon Liu and Moonjae Cho
Pharmaceutics 2026, 18(1), 114; https://doi.org/10.3390/pharmaceutics18010114 - 15 Jan 2026
Viewed by 313
Abstract
Background/Objectives: Flavonoids are widely used as lead structures in drug discovery, and their pharmacological and metabolic properties are strongly influenced by structural features such as positional isomerism. This study aimed to compare the metabolic profiles and underlying mechanisms of two isoflavone-based positional isomers, [...] Read more.
Background/Objectives: Flavonoids are widely used as lead structures in drug discovery, and their pharmacological and metabolic properties are strongly influenced by structural features such as positional isomerism. This study aimed to compare the metabolic profiles and underlying mechanisms of two isoflavone-based positional isomers, ACF-02 (2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-3-(4-methoxyphenyl)-4H-chromen-4-one) and ACF-03 (2-(3-hydroxy-4-methoxyphenyl)-6,7-dimethoxy-3-(4-methoxyphenyl)-4H-chromen-4-one). Methods: The metabolic pathways of synthetically prepared ACF-02 and ACF-03 were investigated using an in vitro incubation system with human liver microsomes (HLMs) supplemented with an NADPH-regenerating system, followed by liquid chromatography–high-resolution tandem mass spectrometry (LC–HRMS/MS) analysis. Metabolites were identified based on LC–HRMS/MS data and molecular networking-based node connectivity with the parent compounds. Major metabolites were further characterized by CYP phenotyping using recombinant CYP450 isoforms, and the potential for drug–drug interactions of ACF-03 was evaluated using a CYP probe substrate cocktail approach. Results: HLM incubation of ACF-02 and ACF-03 produced both hydroxylated and O-demethylated metabolites, with O-demethylation as the predominant pathway; notably, the most abundant O-demethylated metabolite differed in an isomer-dependent manner, occurring at the B2 ring for ACF-02 and at the A ring for ACF-03, with distinct CYP isoform involvement. Molecular networking supported the relationships between the parent compounds and their metabolites, and both compounds exhibited relatively high metabolic stability with limited CYP inhibition. Conclusions: Despite differing only in the position of a single methyl substituent, ACF-02 and ACF-03 exhibited distinct isomer-dependent metabolic profiles. These findings demonstrate that even subtle positional isomerism can significantly influence metabolic behavior and should be carefully considered during lead optimization and drug design. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

28 pages, 3256 KB  
Article
Comparative Analysis of Sonication, Microfluidics, and High-Turbulence Microreactors for the Fabrication and Scaling-Up of Diclofenac-Loaded Liposomes
by Iria Naveira-Souto, Roger Fabrega Alsina, Elisabet Rosell-Vives, Eloy Pena-Rodríguez, Francisco Fernandez-Campos, Jessica Malavia, Xavier Julia Camprodon, Maximilian Schelden, Nazende Günday-Türeli, Andrés Cruz-Conesa and Maria Lajarin-Reinares
Pharmaceutics 2026, 18(1), 105; https://doi.org/10.3390/pharmaceutics18010105 - 13 Jan 2026
Viewed by 411
Abstract
Background: Liposomes are attractive topical carriers, yet translating laboratory fabrication to scalable, well-controlled processes remains challenging. Objectives: We compared three manufacturing methods for diclofenac-loaded liposomes: probe sonication, microfluidic mixing, and a high-turbulence microreactor, under a Quality-by-Design framework. Methods: Differential scanning [...] Read more.
Background: Liposomes are attractive topical carriers, yet translating laboratory fabrication to scalable, well-controlled processes remains challenging. Objectives: We compared three manufacturing methods for diclofenac-loaded liposomes: probe sonication, microfluidic mixing, and a high-turbulence microreactor, under a Quality-by-Design framework. Methods: Differential scanning calorimetry (DSC) was used to define a processing-relevant liquid-crystalline temperature window for the lipid excipients. For sonication scale-up, a Plackett-Burman screening design identified key process factors and supported an energy-density (W·s·L−1) control approach. For microfluidics, the effects of flow-rate ratio (FRR) and total flow rate (TFR) were mapped and optimized using a desirability function. Microreactor trials were performed at elevated throughput. Residual ethanol during post-processing was monitored at-line by Raman spectroscopy calibrated against gas chromatography (GC). Particle size and dispersity were measured by DLS and morphology assessed by cryo-TEM. Results: DSC supported a 70–85 °C processing window. Sonication scale-up using an energy-density target (~11,000 W·s·L−1) reproduced lab-scale quality at 8 L (Z-average ~87–92 nm; PDI 0.16–0.23; %EE 86–94%). Microfluidics optimization selected FRR 3:1/TFR 4 mL·min−1, yielding ~64 nm liposomes with PDI ~0.13 and %EE ~93%. The microreactor achieved ~50 nm liposomes with %EE ~95% at 50 mL·min−1. Cryo-TEM corroborated size trends and showed no evident aggregates. Conclusions: All three routes met topical CQAs (~50–100 nm; PDI ≤ 0.30; high %EE). Method selection should be guided by target size/dispersity and operational constraints: sonication enables energy-based scale-up, microfluidics offers precise size control, and microreactors provide higher throughput. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

16 pages, 3094 KB  
Article
Effects of Lipopolysaccharides from Hafnia alvei PCM1200, Proteus penneri 12, and Proteus vulgaris 9/57 on Liposomal Membranes Composed of Natural Egg Yolk Lecithin (EYL) and Synthetic DPPC: An EPR Study and Computer Simulations
by Dariusz Man, Barbara Pytel and Izabella Pisarek
Membranes 2026, 16(1), 38; https://doi.org/10.3390/membranes16010038 - 8 Jan 2026
Viewed by 411
Abstract
The aim of this study was to investigate the effects of three lipopolysaccharides (LPS), obtained from Hafnia alvei PCM 1200, Proteus penneri 12, and Proteus vulgaris 9/57, on the fluidity of liposomal lipid membranes. The experiments were performed on liposomes composed of egg [...] Read more.
The aim of this study was to investigate the effects of three lipopolysaccharides (LPS), obtained from Hafnia alvei PCM 1200, Proteus penneri 12, and Proteus vulgaris 9/57, on the fluidity of liposomal lipid membranes. The experiments were performed on liposomes composed of egg yolk lecithin (EYL) in the liquid-crystalline phase and synthetic lecithin (DPPC) in the gel phase. The experimental results were compared with data obtained from a computational model of the membrane surface layer. Membrane fluidity was assessed using EPR spectroscopy with the spin probes TEMPO (surface layer; changes in the F parameter) and 16-DOXYL (hydrophobic core; changes in the τ parameter). In EYL liposomes, all LPS samples induced a reduction in surface-layer fluidity (decrease in the F/F0 ratio). In contrast, effects on the hydrophobic core (τ/τ0) were observed only at low dopant concentrations (<0.2%), above which membrane fluidity plateaued. In DPPC membranes, the response was more complex: local minima in F/F0 and maxima in τ/τ0 were detected, indicating transient alterations in membrane stiffening and plasticization that depended on the specific LPS applied. Computational simulations of the membrane surface further confirmed the greater susceptibility of low-mobility systems (corresponding to the gel phase) to dopant-induced perturbations. In the model, the best agreement with the EPR data was obtained when an effective dopant charge of q = 3 was assumed. Full article
Show Figures

Figure 1

19 pages, 1068 KB  
Article
The Relationship Between Short-Chain Fatty Acid Secretion and Polymorphisms rs3894326 and rs778986 of the FUT3 Gene in Patients with Multiple Sclerosis—An Exploratory Analysis
by Monika Kulaszyńska, Wiktoria Czarnecka, Natalia Jakubiak, Daniel Styburski, Mateusz Sowiński, Norbert Czapla, Ewa Stachowska, Dorota Koziarska and Karolina Skonieczna-Żydecka
Nutrients 2026, 18(1), 62; https://doi.org/10.3390/nu18010062 - 24 Dec 2025
Viewed by 451
Abstract
Background: The intestinal microflora is a population of microorganisms that resides in the human gastrointestinal tract and is important in maintaining metabolic and immune homeostasis in the body. Bacteria residing in the intestine produce short-chain fatty acids (SCFAs), which communicate with, among other [...] Read more.
Background: The intestinal microflora is a population of microorganisms that resides in the human gastrointestinal tract and is important in maintaining metabolic and immune homeostasis in the body. Bacteria residing in the intestine produce short-chain fatty acids (SCFAs), which communicate with, among other things, the brain–gut axis—disorders of which are one of the causes of MS-like pathologies. A particular property of SCFAs is the induction of regulatory T cells, which are finding their way into pioneering therapies for MS patients. The aim of the study is to evaluate SCFA secretion in patients with multiple sclerosis from the West Pomeranian region depending on the genotypes of rs778986 and rs3894326 polymorphisms of the FUT3 gene. Methods: The study group included 47 patients clinically diagnosed with MS. Genotyping was performed by real-time PCR using TaqMan probes. Analysis of short-chain fatty acids in faeces was performed on a quadrupole mass spectrometer coupled to a time-of-flight (QTOF) analyser coupled to an AB Sciex high-performance liquid chromatograph (UHPLC). Results: Statistical analysis did not reveal any statistically significant differences in the prevalence of the studied polymorphisms in MS patients compared to the healthy control group. It was observed that the intestinal microflora and SCFA production in MS patients may be disturbed, while the studied FUT3 gene polymorphisms probably do not have a significant effect on their concentrations. A statistical tendency towards higher caproic acid content in heterozygotes of the rs778986 polymorphism and higher valeric acid secretion in homozygotes of rs3894326 was demonstrated. Conclusions: In summary, the studied FUT3 gene polymorphisms are not overrepresented in patients with MS. The rs778986 FUT3 polymorphism may affect the caproic acid content in the faeces of patients with MS, and the rs3894326 polymorphism may affect valeric acid secretion. Due to the small sample size and sparse genotype groups, the study has limited power and negative findings may reflect Type II error; replication in larger cohorts is warranted. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

21 pages, 2543 KB  
Review
Broadband and Intense Terahertz Time-Domain Spectroscopy for Investigating Liquid Solutions
by Domenico Paparo, Anna Martinez and Andrea Rubano
Liquids 2026, 6(1), 1; https://doi.org/10.3390/liquids6010001 - 23 Dec 2025
Viewed by 1246
Abstract
Over the past two decades, terahertz (THz) spectroscopy has demonstrated remarkable potential for the investigation of liquids, including studies of living organisms and biological components in their natural, aqueous environments. The main advantages of THz radiation lie in its ability to interact with [...] Read more.
Over the past two decades, terahertz (THz) spectroscopy has demonstrated remarkable potential for the investigation of liquids, including studies of living organisms and biological components in their natural, aqueous environments. The main advantages of THz radiation lie in its ability to interact with collective and low-energy vibrational modes of macromolecules and microorganisms, while being non-harmful due to the low photon energy involved. These characteristics make THz spectroscopy particularly valuable for research in liquids compared to other well-established techniques such as Raman and infrared spectroscopy. In this study, we offer a concise overview and comparison of two case studies from our earlier publications, highlighting how Ultrabroadband THz spectroscopy and Intense THz Spectroscopy serve as complementary methods for advancing research in liquids. Ultrabroadband THz spectroscopy enables simultaneous probing of both intermolecular and intramolecular interactions in a single experiment. On the other hand, intense THz spectroscopy greatly simplifies the determination of the optical constants of liquid solutions, eliminating the need for additional assumptions or prior knowledge. Moreover, it offers high sensitivity, allowing the detection of dilute solutions and subtle spectral variations. Currently, these two techniques typically rely on different THz sources, as achieving both broadband coverage and high intensity in a single setup remains challenging. In fact, the experimental results reviewed here were obtained at two different times and within two distinct scientific collaborations. In particular, the intense source was accessed through a collaboration with Prof. Novelli at Ruhr University in Bochum. Integrating both capabilities into a single apparatus would be highly desirable. Therefore, we also present a theoretical investigation of a novel experimental approach that could enable combined ultrabroadband and intense THz spectroscopy, merging the strengths of both methods. Full article
(This article belongs to the Collection Feature Papers in Solutions and Liquid Mixtures Research)
Show Figures

Figure 1

17 pages, 2021 KB  
Article
Development of a Liquid-Phased Probe Array for Upland Cotton and Its Application in Cultivar Identification
by Haiyan Tian, Yongping Zhou, Yongqiang Wang, Mengzhe Li, Guiyuan Zhao, Haiying Du, Jianguang Liu and Zhao Geng
Genes 2026, 17(1), 8; https://doi.org/10.3390/genes17010008 - 21 Dec 2025
Viewed by 395
Abstract
Single-nucleotide polymorphism (SNP) genotyping arrays are important tools for crop genetic research. Addressing the current issues of insufficient accuracy in upland cotton cultivar identification and difficulties in distinguishing closely related germplasm and hybrids, developing an SNP array enabling rapid and accurate cotton cultivar [...] Read more.
Single-nucleotide polymorphism (SNP) genotyping arrays are important tools for crop genetic research. Addressing the current issues of insufficient accuracy in upland cotton cultivar identification and difficulties in distinguishing closely related germplasm and hybrids, developing an SNP array enabling rapid and accurate cotton cultivar identification and applicable to molecular breeding is a key demand in cotton cultivar identification and genetic breeding. This study aims to develop a low-cost and high-precision SNP array for upland cotton (Gossypium hirsutum L.) based on Genotyping by Target Sequencing (GBTS) technology. The array will integrate high accuracy in cultivar identification with applicability to molecular breeding, and this study further aims to clarify its application in cultivar identification. The Cotton 13K SNP array contains 13,571 high-quality SNP loci, including 8658 polymorphic sites derived from resequencing data and 4913 functional loci linked to key agronomic traits. All these loci are relatively evenly distributed across the genome. Genotyping 219 upland cotton cultivars/lines accurately clustered them into four genetic subgroups (K = 4), which closely matched their breeding institutions and geographical origins. Analysis of 44 experimental cotton materials (including sister lines and backcross materials) established a genetic similarity threshold of ≥90% for effectively distinguishing closely related germplasm. Comparative analysis of 38 F1 hybrids and conventional cotton cultivars demonstrated that the average heterozygosity (Het) of hybrids (16.01%) was significantly higher than that of conventional cultivars (5.52%, p < 0.001). A preliminary threshold of Het ≥ 10% was identified for accurate discrimination of cotton hybrids. In conclusion, the Cotton 13K SNP array is a robust tool for population genetic analysis, discrimination of closely related cultivars, and hybrid identification. It also facilitates key molecular breeding steps, including parental evaluation, backcross monitoring, and marker-assisted selection (MAS). Its integration into breeding pipelines is expected to accelerate the development of new cotton varieties. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

22 pages, 5738 KB  
Review
Probing Membrane Structure of Lipid Nanomedicines Using Solution Small-Angle X-Ray Scattering: Applications and Prospects
by Ke-Meng Li, Panqi Song, Xiao-Peng He and Na Li
Membranes 2025, 15(12), 382; https://doi.org/10.3390/membranes15120382 - 16 Dec 2025
Viewed by 922
Abstract
Lipid-based nanomedicines are already widely used in antitumor therapy and gene delivery. However, their complex structural features demand advanced mesoscopic structural characterization tools for effective research and development (R&D) and quality control. Synchrotron small-angle X-ray scattering (SAXS) is a powerful, non-invasive technique for [...] Read more.
Lipid-based nanomedicines are already widely used in antitumor therapy and gene delivery. However, their complex structural features demand advanced mesoscopic structural characterization tools for effective research and development (R&D) and quality control. Synchrotron small-angle X-ray scattering (SAXS) is a powerful, non-invasive technique for probing nanoscale membrane organizations, monitoring in situ dynamic membrane assembly, and exploring the interactions of components in lipid-based drug delivery systems, including liposomes, lipoplexes, lipid nanoparticles (LNPs), and lyotropic liquid crystals (LLCs). Recent advances in high-flux synchrotron facilities, high-frequency detectors, and automated SAXS data processing pipelines permit a detailed structural characterization of lamellarity, bilayer spacing, internal phases, core–shell morphology, as well as “pump-probe” dynamic process studies for lipid nanomedicines. Though major challenges remain in sample polydispersity and model fitting, the advances in time-resolved synchrotron SAXS, high-throughput automation, and artificial intelligence (AI)-assisted modeling are rapidly reducing this barrier. This review summarizes SAXS methodology and introduces representative case studies in the field of lipid nanomedicines. The performance of BioSAXS beamline BL19U2 in the Shanghai synchrotron radiation facility (SSRF) and prospects of AI-guided drug screening at BL19U2 are highlighted to advance intelligent R&D and quality control for lipid nanomedicines. Full article
Show Figures

Graphical abstract

47 pages, 17387 KB  
Article
Numerical Evaluation and Assessment of Key Two-Phase Flow Parameters Using Four-Sensor Probes in Bubbly Flow
by Guillem Monrós-Andreu, Carlos Peña-Monferrer, Raúl Martínez-Cuenca, Salvador Torró and Sergio Chiva
Sensors 2025, 25(24), 7490; https://doi.org/10.3390/s25247490 - 9 Dec 2025
Viewed by 434
Abstract
Intrusive phase-detection probes remain a standard tool for local characterization of gas–liquid bubbly flows, but their accuracy is strongly affected by probe geometry and bubble–probe interaction kinematics. This work presents a Monte Carlo-based framework to evaluate four-sensor intrusive probes in bubbly flow, relaxing [...] Read more.
Intrusive phase-detection probes remain a standard tool for local characterization of gas–liquid bubbly flows, but their accuracy is strongly affected by probe geometry and bubble–probe interaction kinematics. This work presents a Monte Carlo-based framework to evaluate four-sensor intrusive probes in bubbly flow, relaxing the classical assumptions of spherical bubbles and purely axial trajectories. Bubbles are represented as spheres or ellipsoids, a broad range of non-dimensional probe geometries are explored, and local quantities such as interfacial area concentration, bubble and flux velocities, and chord lengths are recovered from synthetic four-sensor signals. The purpose of the framework is threefold: (i) it treats four-sensor probes in a unified way for interfacial area, velocity, and chord length estimation; (ii) it includes ellipsoidal bubbles and statistically distributed incidence angles; and (iii) it yields compact correction laws and design maps expressed in terms of the spacing-to-diameter ratio ap/D, the dimensionless probe radius rp/D, and the missing ratio mr (defined as the fraction of bubbles that cross the probe footprint without being detected), which can be applied to different intrusive four-sensor probes. The numerical results show that, within a recommended geometric range 0.5ap/D2 and rp/D0.25 and for missing ratios mr0.7, the axial velocity Vz estimates the bubble centroid velocity and its projection with typical errors within ±10%, while a chord length correction CLcorr(mr) recovers the underlying chord length distribution with a residual bias of only a few percent. The proposed interfacial area correction, written solely in terms of mr, remains accurate in polydisperse bubbly flows. Outside the recommended (ap/D,rp/D) range, large probe radius or extreme tip spacing lead to velocity and chord length errors that can exceed 20–30%. Overall, the framework provides quantitative guidelines for designing and using four-sensor intrusive probes in bubbly flows and for interpreting their measurements through geometry-aware correction factors. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

12 pages, 2152 KB  
Article
A Compact Cryogenic Environment for In Situ Neutron Diffraction Under Mechanical Loading
by Dunji Yu, Yan Chen, Harley Skorpenske and Ke An
Quantum Beam Sci. 2025, 9(4), 36; https://doi.org/10.3390/qubs9040036 - 5 Dec 2025
Cited by 1 | Viewed by 434
Abstract
Understanding the deformation mechanisms of materials at cryogenic temperatures is crucial for cryogenic engineering applications. In situ neutron diffraction is a powerful technique for probing such mechanisms under cryogenic conditions. In this study, we present the development of a compact cryogenic environment (CCE) [...] Read more.
Understanding the deformation mechanisms of materials at cryogenic temperatures is crucial for cryogenic engineering applications. In situ neutron diffraction is a powerful technique for probing such mechanisms under cryogenic conditions. In this study, we present the development of a compact cryogenic environment (CCE) designed to facilitate in situ neutron diffraction experiments under mechanical loading at temperatures as low as 77 K with a maximum cooling rate of 6 K/min. The CCE features a polystyrene foam cryogenic chamber, aluminum blocks serving as neutron-transparent cold sinks, a liquid nitrogen dosing system for cryogen delivery, a nitrogen gas flow control system for thermal management, a process controller for temperature control, and a pair of thermally isolated grip adapters for mechanical testing. The CCE achieves reliable temperature control with minimal neutron attenuation. Utilizing this setup, we conducted three in situ neutron diffraction tensile tests on a 316L stainless steel at 77, 173, and 298 K, respectively. The results highlight the pronounced effects of cryogenic temperatures on the material’s deformation mechanisms, underscoring both the significance of cryogenic deformation studies and the effectiveness of the CCE. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

27 pages, 7755 KB  
Article
Characterization of a Multi-Diffuser Fine-Bubble Aeration Reactor: Influence of Local Parameters and Hydrodynamics on Oxygen Transfer
by Oscar Prades-Mateu, Guillem Monrós-Andreu, Delia Trifi, Jaume Luis-Gómez, Salvador Torró, Raúl Martínez-Cuenca and Sergio Chiva
Water 2025, 17(24), 3448; https://doi.org/10.3390/w17243448 - 5 Dec 2025
Viewed by 729
Abstract
Fine-bubble aeration is a core process in wastewater treatment plants (WWTPs). However, the physical mechanisms linking bubble plume hydrodynamics to oxygen transfer performance remain insufficiently quantified under configurations representative of full-scale installations. This study presents a local multi-sensor experimental characterization of a multiple [...] Read more.
Fine-bubble aeration is a core process in wastewater treatment plants (WWTPs). However, the physical mechanisms linking bubble plume hydrodynamics to oxygen transfer performance remain insufficiently quantified under configurations representative of full-scale installations. This study presents a local multi-sensor experimental characterization of a multiple bubble plume system using a 4 × 4 array of commercial membrane diffusers in a pilot-scale aeration tank (2 m3), emulating WWTP diffuser density and geometry. Airflow rate was varied to analyze its effects on mixing and oxygen transfer efficiency. The experimental methodology combines three complementary measurement approaches. Oxygen transfer performance is quantified using a dissolved oxygen probe. Liquid-phase velocity fields are then mapped using Acoustic Doppler Velocimetry (ADV). Finally, local two-phase measurements are obtained using dual-tip Conductivity Probe (CP) arrays, which provide bubble size, bubble velocity, void fraction, and Interfacial Area Concentration (IAC). Based on these observations, a zonal hydrodynamic model is proposed to describe plume interaction, wall-driven recirculation, and the formation of a collective plume core at higher airflows. Quantitatively, the results reveal a 29% reduction in Standard Oxygen Transfer Efficiency (SOTE) between 10 and 40 m3/h, driven by a 41% increase in bubble size and an 18% rise in bubble velocity. Bubble chord length also increased with height, by 33%, 19%, and 15% over 0.8 m for 10, 20, and 40 m3/h, respectively. These trends indicate that increasing airflow enhances turbulent mixing but simultaneously enlarges bubbles and accelerates their ascent, thereby reducing residence time and negatively affecting oxygen transfer. Overall, the validated multiphase datasets and mechanistic insights demonstrate the dominant role of diffuser interaction in dense layouts, supporting improved parameterization and experimental benchmarking of fine-bubble aeration systems in WWTPs. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

41 pages, 1678 KB  
Article
Analysis of Adiabatic Strain Localization Coupled to Ductile Fracture and Melting, with Application and Verification for Simple Shear
by John D. Clayton
AppliedMath 2025, 5(4), 169; https://doi.org/10.3390/appliedmath5040169 - 3 Dec 2025
Viewed by 434
Abstract
Material failure by adiabatic shear is analyzed in viscoplastic metals that can demonstrate up to three distinct softening mechanisms: thermal softening, ductile fracture, and melting. An analytical framework is constructed for studying simple shear deformation with superposed static pressure. A continuum power-law viscoplastic [...] Read more.
Material failure by adiabatic shear is analyzed in viscoplastic metals that can demonstrate up to three distinct softening mechanisms: thermal softening, ductile fracture, and melting. An analytical framework is constructed for studying simple shear deformation with superposed static pressure. A continuum power-law viscoplastic formulation is coupled to a ductile damage model and a solid–liquid phase transition model in a thermodynamically consistent manner. Criteria for localization to a band of infinite shear strain are discussed. An analytical–numerical method for determining the critical average shear strain for localization and commensurate stress decay is devised. Averaged results for a high-strength steel agree reasonably well with experimental dynamic torsion data. Calculations probe possible effects of ductile fracture and melting on shear banding, and vice versa, including influences of cohesive energy, equilibrium melting temperature, and initial defects. A threshold energy density for localization onset is positively correlated to critical strain and inversely correlated to initial defect severity. Tensile pressure accelerates damage softening and increases defect sensitivity, promoting shear failure. In the present steel, melting is precluded by ductile fracture for loading conditions and material properties within realistic protocols. For this steel, if conduction, fracture, and damage softening are artificially suppressed, melting is confined to a narrow region in the core of the band. However, for other metals with vastly different physical properties, or for more diverse loading conditions, melting has not been unequivocally ruled out, even if fracture and conduction are permitted. Full article
Show Figures

Figure 1

42 pages, 1598 KB  
Review
Nanoscale Characterization of Nanomaterial-Based Systems: Mechanisms, Experimental Methods, and Challenges in Probing Corrosion, Mechanical, and Tribological Properties
by Md Ashraful Hoque and Chun-Wei Yao
Nanomaterials 2025, 15(23), 1824; https://doi.org/10.3390/nano15231824 - 2 Dec 2025
Viewed by 1359
Abstract
Nanomaterial-based systems (NBS) have emerged as transformative elements in advanced surface engineering, offering superior corrosion resistance, mechanical strength, and tribological resilience governed by unique phenomena inherent to the nanoscale. However, bridging the knowledge gap between these enhanced physicochemical properties and the metrological tools [...] Read more.
Nanomaterial-based systems (NBS) have emerged as transformative elements in advanced surface engineering, offering superior corrosion resistance, mechanical strength, and tribological resilience governed by unique phenomena inherent to the nanoscale. However, bridging the knowledge gap between these enhanced physicochemical properties and the metrological tools required to quantify them remains a critical challenge. This review provides a comprehensive examination of the fundamental mechanisms, state-of-the-art experimental techniques, and computational strategies employed to probe NBS behavior. The article first elucidates the core mechanisms driving performance, including passive barrier formation, stimuli-responsive active corrosion inhibition, grain boundary strengthening, and the formation of protective tribo-films by 2D nanomaterial-based systems. Subsequently, the article evaluates the transition from conventional macroscopic testing to high-resolution in situ characterization, highlighting the capabilities of High-Speed Atomic Force Microscopy (HS-AFM), Liquid Cell Transmission Electron Microscopy (LC-TEM), and nanoindentation in visualizing dynamic defect evolution and measuring localized mechanical responses. Furthermore, the indispensable role of computational materials science—specifically Molecular Dynamics (MD) and Machine Learning (ML)—in predictive modeling and elucidating atomic-scale interactions is discussed. Finally, persistent challenges regarding substrate interference, sample heterogeneity, and instrumentation limits are addressed, concluding with a perspective on future research directions focused on standardization, operando testing, and the development of AI-driven “Digital Twins” for accelerated testing and material optimization. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

29 pages, 10715 KB  
Article
Amphibole-Based Constraints on Magmatic Evolution and Fe–Ti Oxide Enrichment in the Xiaohaizi Ultramafic–Mafic Intrusion, Bachu, Xinjiang, China
by Donghui Liu, Shigang Duan, Maohong Chen, Weicheng Wang, Jinmao Yin and Maihemuti Maimaiti
Minerals 2025, 15(12), 1275; https://doi.org/10.3390/min15121275 - 1 Dec 2025
Viewed by 836
Abstract
A large, low-grade Fe–Ti–V oxide deposit occurs within the Xiaohaizi Ultramafic–Mafic intrusion. Based on petrographic observations and electron probe microanalysis (EPMA) of amphibole, this study examines the magmatic evolution and ore-forming processes of the intrusion through analyses of amphibole occurrence, mineral chemistry, and [...] Read more.
A large, low-grade Fe–Ti–V oxide deposit occurs within the Xiaohaizi Ultramafic–Mafic intrusion. Based on petrographic observations and electron probe microanalysis (EPMA) of amphibole, this study examines the magmatic evolution and ore-forming processes of the intrusion through analyses of amphibole occurrence, mineral chemistry, and crystallization conditions. Five textural types of amphibole were identified: (i) inclusions, (ii) co-crystallization with early silicates, (iii) reaction rims, (iv) co-crystallization with late Fe–Ti oxides, and (v) phenocrysts. The amphiboles are calcic varieties, mainly composed of magnesio-hastingsite, kaersutite, and tschermakite. Crystallization occurred at temperatures of 901–1013 °C and pressures of 254–424 MPa, with ΔNNO values ranging from −1.3 to +2.8 and estimated melt H2O contents of 3.3–7.1 wt.%, corresponding to crystallization depths of 9.6–16.0 km. Importantly, the crystallization interval of the Fe–Ti oxides is defined by these amphibole-assemblage conditions, as evidenced by their direct intergrowth. Integration of mineralogical and geochemical data indicates that the Xiaohaizi intrusion underwent four distinct stages of magmatic evolution. During these stages, the crystallization of Fe–Ti oxides was accompanied by notable fluctuations in oxygen fugacity and melt water content. These results suggest that fractional crystallization played a dominant role in ore formation, with possible late-stage liquid immiscibility observed at the mineral scale. Overall, this study proposes that the Xiaohaizi Fe–Ti–V oxide deposit represents a magmatic conduit-type ore-forming system developed within a crystal mush. The enrichment of Fe–Ti oxides is strongly associated with hydrous melts and elevated oxygen fugacity conditions. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop