Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (482)

Search Parameters:
Keywords = machine learning engine management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3412 KB  
Review
Review of Health Monitoring and Intelligent Fault Diagnosis for High-Strength Bolts: Failure Mechanisms, Multi-Modal Sensing, and Data-Driven Approaches
by Yingjie Wang, Guanghui Chu, Zhifang Sun, Fei Yang, Jun Yang, Xiaoli Sun, Yi Zhao and Shuai Teng
Buildings 2026, 16(4), 691; https://doi.org/10.3390/buildings16040691 (registering DOI) - 7 Feb 2026
Abstract
High-strength bolted connections are fundamental load-bearing components in critical engineering infrastructures such as wind turbines, bridges, and heavy machinery. Under complex service environments involving dynamic loading, vibration, corrosion, and temperature variations, bolts are prone to interacting failure mechanisms, including fatigue fracture, corrosion-assisted cracking, [...] Read more.
High-strength bolted connections are fundamental load-bearing components in critical engineering infrastructures such as wind turbines, bridges, and heavy machinery. Under complex service environments involving dynamic loading, vibration, corrosion, and temperature variations, bolts are prone to interacting failure mechanisms, including fatigue fracture, corrosion-assisted cracking, hydrogen embrittlement, and progressive preload loss, which pose significant challenges for reliable condition monitoring and early fault diagnosis. This review provides a structured synthesis of recent advances in bolt health monitoring and intelligent fault diagnosis. A unified framework is established to link multi-physics failure mechanisms with multi-modal sensing technologies and data-driven diagnostic methods. Key sensing approaches—such as piezoelectric impedance techniques, ultrasonic phased array inspection, and computer vision-based monitoring—are critically reviewed in terms of their physical principles, diagnostic capabilities, and limitations. Furthermore, the transition from traditional model-based and signal-processing-driven methods to machine learning- and deep learning-based approaches is examined, with emphasis on multi-modal data fusion, real-time monitoring, and lifecycle-oriented health management enabled by IoT and digital twin technologies. Finally, key challenges and future research directions toward robust and scalable intelligent bolt health management systems are outlined. This review’s primary contribution lies in establishing a novel, integrated framework that links failure physics to sensing and diagnosis, thereby providing a structured roadmap for transitioning from isolated component monitoring to lifecycle-oriented, intelligent health management systems for critical bolted connections. Full article
(This article belongs to the Special Issue Advances in Building Structure Analysis and Health Monitoring)
Show Figures

Figure 1

18 pages, 531 KB  
Review
Software Applications in Biomedicine: A Narrative Review of Translational Pathways from Data to Decision
by Gabriela Georgieva Panayotova
BioMedInformatics 2026, 6(1), 9; https://doi.org/10.3390/biomedinformatics6010009 - 4 Feb 2026
Viewed by 125
Abstract
Background/Objectives: Software is now core infrastructure in biomedical science, yet fragmented workflows across subfields hinder reproducibility and delay the translation of data into actionable decisions. There is a critical need for a cross-disciplinary synthesis to bridge these silos and establish a unified framework [...] Read more.
Background/Objectives: Software is now core infrastructure in biomedical science, yet fragmented workflows across subfields hinder reproducibility and delay the translation of data into actionable decisions. There is a critical need for a cross-disciplinary synthesis to bridge these silos and establish a unified framework for software maturity. This narrative review addresses this gap by synthesizing representative software ecosystems across three major pillars: bioinformatics, molecular modeling/simulations, and epidemiology/public health. Methods: A narrative review of articles indexed in PubMed/NCBI, Web of Science, and Scopus between 2000 and 2025 was conducted. Domain-specific terms related to bioinformatics, molecular modeling, docking, molecular dynamics, epidemiology, public health, and workflow management were combined with software- and algorithm-focused keywords. Studies describing, validating, or applying documented tools with biomedical relevance were included. Results: Across domains, mature data standards and reference resources (e.g., FASTQ, BAM/CRAM, VCF, mzML), widely adopted platforms (e.g., BLAST+ (v2.16.0, NCBI, Bethesda, USA), Bioconductor (v3.20, Bioconductor Foundation, Seattle, USA), AutoDock Vina (v1.2.5, Scripps Research, La Jolla, USA), GROMACS (v2024.3, GROMACS Team, Stockholm, Sweden), Epi Info (v7.2.6, CDC, Atlanta, USA), QGIS (v3.40, QGIS.org, Gossau, Switzerland), and increasing use of workflow engines were identified. Software pipelines routinely transform molecular and surveillance data into interpretable features supporting hypothesis generation. Conclusions: Integrated, standards-based, and validated software pipelines can shorten the path from measurement to decision in biomedicine and public health. Future progress depends on reproducibility practices, benchmarking, user-centered design, portable implementations, and responsible deployment of machine learning. Full article
(This article belongs to the Section Computational Biology and Medicine)
19 pages, 2575 KB  
Article
Assessing Urban Flood Susceptibility Using Random Forest Machine Learning and Geospatial Technologies: Application to the Bonoumin-Palmeraie Watershed, Abidjan (Côte d’Ivoire)
by Jean Homian Danumah, Wilfred Ahoumodom Ataba, Valère Carin Jofack Sokeng, You Lucette Akpa, Mahaman Bachir Saley and Andrew Ogilvie
Water 2026, 18(3), 402; https://doi.org/10.3390/w18030402 - 4 Feb 2026
Viewed by 182
Abstract
Recurrent flooding poses a persistent and growing threat to West African watersheds facing rapid urbanization and climate change. Despite advances in machine learning and geospatial datasets, urban planning and flood prevention often rely on limited datasets and traditional analysis. This study addresses this [...] Read more.
Recurrent flooding poses a persistent and growing threat to West African watersheds facing rapid urbanization and climate change. Despite advances in machine learning and geospatial datasets, urban planning and flood prevention often rely on limited datasets and traditional analysis. This study addresses this research gap in the Bonoumin-Palmeraie watershed (Abidjan, Côte d’Ivoire) by developing an integrated approach leveraging remote sensing, Geographic Information Systems (GIS), and the Random Forest algorithm to assess and map flood susceptibility. Twelve conditioning factors related to topography, hydrology, land use, and climate were derived from Sentinel-1, ALOS PALSAR, and multi-source earth observation datasets. Historical flood extents were mapped in Google Earth Engine to train the Random Forest model in a Google Colab environment. The model demonstrated high discriminatory power, yielding an Area Under the Curve of 0.94 and Overall Accuracy of 0.83. Drainage density, rainfall, and altitude were identified as the primary explanatory drivers. The resulting flood susceptibility map indicates that 39% of the watershed exhibits medium to very high susceptibility, with critical hotspots in the neighborhoods of Palmeraie, Attoban, Akouedo, Djorogobité, and Riviera-Sogefiha. While limited by the exclusion of certain anthropogenic variables and ground truth constraints, the study provides a reproducible, data-driven framework for flood risk assessment in tropical urban environments. These findings offer essential scientific support for urban planners and decision-makers to enhance territorial planning and sustainable flood management in Abidjan. Full article
Show Figures

Figure 1

40 pages, 581 KB  
Review
A Survey of AI-Enabled Predictive Maintenance for Railway Infrastructure: Models, Data Sources, and Research Challenges
by Francisco Javier Bris-Peñalver, Randy Verdecia-Peña and José I. Alonso
Sensors 2026, 26(3), 906; https://doi.org/10.3390/s26030906 - 30 Jan 2026
Viewed by 410
Abstract
Rail transport is central to achieving sustainable and energy-efficient mobility, and its digitalization is accelerating the adoption of condition-based maintenance (CBM) strategies. However, existing maintenance practices remain largely reactive or rely on limited rule-based diagnostics, which constrain safety, interoperability, and lifecycle optimization. This [...] Read more.
Rail transport is central to achieving sustainable and energy-efficient mobility, and its digitalization is accelerating the adoption of condition-based maintenance (CBM) strategies. However, existing maintenance practices remain largely reactive or rely on limited rule-based diagnostics, which constrain safety, interoperability, and lifecycle optimization. This survey provides a comprehensive and structured review of Artificial Intelligence techniques applied to the preventive, predictive, and prescriptive maintenance of railway infrastructure. We analyze and compare machine learning and deep learning approaches—including neural networks, support vector machines, random forests, genetic algorithms, and end-to-end deep models—applied to parameters such as track geometry, vibration-based monitoring, and imaging-based inspection. The survey highlights the dominant data sources and feature engineering techniques, evaluates the model performance across subsystems, and identifies research gaps related to data quality, cross-network generalization, model robustness, and integration with real-time asset management platforms. We further discuss emerging research directions, including Digital Twins, edge AI, and Cyber–Physical predictive systems, which position AI as an enabler of autonomous infrastructure management. This survey defines the key challenges and opportunities to guide future research and standardization in intelligent railway maintenance ecosystems. Full article
Show Figures

Figure 1

50 pages, 2821 KB  
Systematic Review
Remote Sensing of Woody Plant Encroachment: A Global Systematic Review of Drivers, Ecological Impacts, Methods, and Emerging Innovations
by Abdullah Toqeer, Andrew Hall, Ana Horta and Skye Wassens
Remote Sens. 2026, 18(3), 390; https://doi.org/10.3390/rs18030390 - 23 Jan 2026
Viewed by 339
Abstract
Globally, grasslands, savannas, and wetlands are degrading rapidly and increasingly being replaced by woody vegetation. Woody Plant Encroachment (WPE) disrupts natural landscapes and has significant consequences for biodiversity, ecosystem functioning, and key ecosystem services. This review synthesizes findings from 159 peer-reviewed studies identified [...] Read more.
Globally, grasslands, savannas, and wetlands are degrading rapidly and increasingly being replaced by woody vegetation. Woody Plant Encroachment (WPE) disrupts natural landscapes and has significant consequences for biodiversity, ecosystem functioning, and key ecosystem services. This review synthesizes findings from 159 peer-reviewed studies identified through a PRISMA-guided systematic literature review to evaluate the drivers of WPE, its ecological impacts, and the remote sensing (RS) approaches used to monitor it. The drivers of WPE are multifaceted, involving interactions among climate variability, topographic and edaphic conditions, hydrological change, land use transitions, and altered fire and grazing regimes, while its impacts are similarly diverse, influencing land cover structure, water and nutrient cycles, carbon and nitrogen dynamics, and broader implications for ecosystem resilience. Over the past two decades, RS has become central to WPE monitoring, with studies employing classification techniques, spectral mixture analysis, object-based image analysis, change detection, thresholding, landscape pattern and fragmentation metrics, and increasingly, machine learning and deep learning methods. Looking forward, emerging advances such as multi-sensor fusion (optical– synthetic aperture radar (SAR), Light Detection and Ranging (LiDAR)–hyperspectral), cloud-based platforms including Google Earth Engine, Microsoft Planetary Computer, and Digital Earth, and geospatial foundation models offer new opportunities for scalable, automated, and long-term monitoring. Despite these innovations, challenges remain in detecting early-stage encroachment, subcanopy woody growth, and species-specific patterns across heterogeneous landscapes. Key knowledge gaps highlighted in this review include the need for long-term monitoring frameworks, improved socio-ecological integration, species- and ecosystem-specific RS approaches, better utilization of SAR, and broader adoption of analysis-ready data and open-source platforms. Addressing these gaps will enable more effective, context-specific strategies to monitor, manage, and mitigate WPE in rapidly changing environments. Full article
Show Figures

Graphical abstract

36 pages, 39268 KB  
Article
Spectral Feature Integration and Ensemble Learning Optimization for Regional-Scale Landslide Susceptibility Mapping in Mountainous Areas
by Yun Tian, Taorui Zeng, Linfeng Wang, Gang Chen, Sihang Yang, Hao Chen and Ligang Wang
Remote Sens. 2026, 18(3), 382; https://doi.org/10.3390/rs18030382 - 23 Jan 2026
Viewed by 292
Abstract
Current research on landslide susceptibility modeling is often constrained by reliance on conventional topographic and geological features, potentially overlooking the discriminative power of surface material properties derived from multi-source remote sensing. This study aims to enhance the accuracy and reliability of susceptibility assessment [...] Read more.
Current research on landslide susceptibility modeling is often constrained by reliance on conventional topographic and geological features, potentially overlooking the discriminative power of surface material properties derived from multi-source remote sensing. This study aims to enhance the accuracy and reliability of susceptibility assessment by innovatively integrating spectral information and advanced machine learning techniques. Focusing on Chongqing, a landslide-prone mountainous region in China, this work conducted three innovative investigations: it (i) introduced 12 spectral features into the feature set; (ii) systematically evaluated spectral features contribution, redundancy, and set completeness through feature engineering; and (iii) implemented a comprehensive Stacking ensemble framework with multiple meta-learners and enhancement strategies (Bagging and Cross-Training) to identify the optimal integration scheme. The key results show that spectral features provided a significant positive impact, boosting the AUC of tree-based ensemble models by up to 4.52%. The optimal model, a Stacking ensemble with Bagging_XGBoost as the meta-learner, achieved a superior test AUC of 0.8611, outperforming all individual base learners. Furthermore, the spatial analysis revealed a concentration of high and very high susceptibility areas in Engineering Geological Zone I, which represents approximately 38% of such areas. This study provides a replicable framework for enhancing landslide susceptibility mapping through the integration of spectral features and ensemble learning, offering a scientific basis for targeted risk management and mitigation planning in complex mountainous terrains. Full article
Show Figures

Figure 1

46 pages, 4076 KB  
Review
A Review of AI-Driven Engineering Modelling and Optimization: Methodologies, Applications and Future Directions
by Jian-Ping Li, Nereida Polovina and Savas Konur
Algorithms 2026, 19(2), 93; https://doi.org/10.3390/a19020093 - 23 Jan 2026
Viewed by 313
Abstract
Engineering is suffering a significant change driven by the integration of artificial intelligence (AI) into engineering optimization in design, analysis, and operational efficiency across numerous disciplines. This review synthesizes the current landscape of AI-driven optimization methodologies and their impacts on engineering applications. In [...] Read more.
Engineering is suffering a significant change driven by the integration of artificial intelligence (AI) into engineering optimization in design, analysis, and operational efficiency across numerous disciplines. This review synthesizes the current landscape of AI-driven optimization methodologies and their impacts on engineering applications. In the literature, several frameworks for AI-based engineering optimization have been identified: (1) machine learning models are trained as objective and constraint functions for optimization problems; (2) machine learning techniques are used to improve the efficiency of optimization algorithms; (3) neural networks approximate complex simulation models such as finite element analysis (FEA) and computational fluid dynamics (CFD) and this makes it possible to optimize complex engineering systems; and (4) machine learning predicts design parameters/initial solutions that are subsequently optimized. Fundamental AI technologies, such as artificial neural networks and deep learning, are examined in this paper, along with commonly used AI-assisted optimization strategies. Representative applications of AI-driven engineering optimization have been surveyed in this paper across multiple fields, including mechanical and aerospace engineering, civil engineering, electrical and computer engineering, chemical and materials engineering, energy and management. These studies demonstrate how AI enables significant improvements in computational modelling, predictive analytics, and generative design while effectively handling complex multi-objective constraints. Despite these advancements, challenges remain in areas such as data quality, model interpretability, and computational cost, particularly in real-time environments. Through a systematic analysis of recent case studies and emerging trends, this paper provides a critical assessment of the state of the art and identifies promising research directions, including physics-informed neural networks, digital twins, and human–AI collaborative optimization frameworks. The findings highlight AI’s potential to redefine engineering optimization paradigms, while emphasizing the need for robust, scalable, and ethically aligned implementations. Full article
(This article belongs to the Special Issue AI-Driven Engineering Optimization)
Show Figures

Figure 1

22 pages, 9985 KB  
Article
A Comparative Analysis of Multi-Spectral and RGB-Acquired UAV Data for Cropland Mapping in Smallholder Farms
by Evania Chetty, Maqsooda Mahomed and Shaeden Gokool
Drones 2026, 10(1), 72; https://doi.org/10.3390/drones10010072 - 21 Jan 2026
Viewed by 205
Abstract
Accurate cropland classification within smallholder farming systems is essential for effective land management, efficient resource allocation, and informed agricultural decision-making. This study evaluates cropland classification performance using Red, Green, Blue (RGB) and multi-spectral (blue, green, red, red-edge, near-infrared) unmanned aerial vehicle (UAV) imagery. [...] Read more.
Accurate cropland classification within smallholder farming systems is essential for effective land management, efficient resource allocation, and informed agricultural decision-making. This study evaluates cropland classification performance using Red, Green, Blue (RGB) and multi-spectral (blue, green, red, red-edge, near-infrared) unmanned aerial vehicle (UAV) imagery. Both datasets were derived from imagery acquired using a MicaSense Altum sensor mounted on a DJI Matrice 300 UAV. Cropland classification was performed using machine learning algorithms implemented within the Google Earth Engine (GEE) platform, applying both a non-binary classification of five land cover classes and a binary classification within a probabilistic framework to distinguishing cropland from non-cropland areas. The results indicate that multi-spectral imagery achieved higher classification accuracy than RGB imagery for non-binary classification, with overall accuracies of 75% and 68%, respectively. For binary cropland classification, RGB imagery achieved an area under the receiver operating characteristic curve (AUC–ROC) of 0.75, compared to 0.77 for multi-spectral imagery. These findings suggest that, while multi-spectral data provides improved classification performance, RGB imagery can achieve comparable accuracy for fundamental cropland delineation. This study contributes baseline evidence on the relative performance of RGB and multi-spectral UAV imagery for cropland mapping in heterogeneous smallholder farming landscapes and supports further investigation of RGB-based approaches in resource-constrained agricultural contexts. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

17 pages, 759 KB  
Article
Unsupervised Detection of SOC Spoofing in OCPP 2.0.1 EV Charging Communication Protocol Using One-Class SVM
by Aisha B. Rahman, Md Sadman Siraj, Eirini Eleni Tsiropoulou, Georgios Fragkos, Ryan Sullivant, Yung Ryn Choe, Jhaell Jimenez, Junghwan Rhee and Kyu Hyung Lee
Future Internet 2026, 18(1), 60; https://doi.org/10.3390/fi18010060 - 21 Jan 2026
Viewed by 196
Abstract
The electric vehicles (EVs) market keeps growing globally; thus, it is critical to secure the EV charging communication protocols in order to guarantee reliable and fair charging operations among the customers. The Open Charge Point Protocol (OCPP) 2.0.1 supports the communication between the [...] Read more.
The electric vehicles (EVs) market keeps growing globally; thus, it is critical to secure the EV charging communication protocols in order to guarantee reliable and fair charging operations among the customers. The Open Charge Point Protocol (OCPP) 2.0.1 supports the communication between the Electric Vehicle Supply Equipment (EVSE) and Charging Station Management Systems (CSMSs); therefore, it becomes vulnerable to several types of attacks, which aim to jeopardize smart charging, billing, and energy management. Specifically, OCPP 2.0.1 allows the self-reporting of the State of Charge (SOC) values, which makes it vulnerable to spoofing-based cyberattacks, which target manipulating the scheduling priorities, distorting the load forecasts, and extending the charging sessions in an unfair manner. In this paper, we try to address this type of attack by providing a comprehensive analysis of the SOC spoofing attacks and introducing a novel unsupervised detection framework based on the One-Class Support Vector Machine (OCSVM) algorithm. Specifically, two types of attack scenarios are analyzed (i.e., priority manipulation and session extension) by deriving engineered features that capture the nonlinear relationships under normal charging behavior. Detailed simulation-based results are derived by utilizing the DESL-EPFL Level 3 EV charging dataset. Our results demonstrate high F1-score and recall in identifying spoofed SOC values and that the proposed OCSVM model demonstrates superior performance compared to alternative clustering and deep-learning based detectors. Full article
Show Figures

Graphical abstract

22 pages, 4982 KB  
Article
Real-Time Analysis of Concrete Placement Progress Using Semantic Segmentation
by Zifan Ye, Linpeng Zhang, Yu Hu, Fengxu Hou, Rui Ma, Danni Luo and Wenqian Geng
Buildings 2026, 16(2), 434; https://doi.org/10.3390/buildings16020434 - 20 Jan 2026
Viewed by 137
Abstract
Concrete arch dams represent a predominant dam type in water conservancy and hydropower projects in China. The control of concrete placement progress during construction directly impacts project quality and construction efficiency. Traditional manual monitoring methods, characterized by delayed response and strong subjectivity, struggle [...] Read more.
Concrete arch dams represent a predominant dam type in water conservancy and hydropower projects in China. The control of concrete placement progress during construction directly impacts project quality and construction efficiency. Traditional manual monitoring methods, characterized by delayed response and strong subjectivity, struggle to meet the demands of modern intelligent construction management. This study introduces machine vision technology to monitor the concrete placement process and establishes an intelligent analysis system for construction scenes based on deep learning. By comparing the performance of U-Net and DeepLabV3+ semantic segmentation models in complex construction environments, the U-Net model, achieving an IoU of 89%, was selected to identify vibrated and non-vibrated concrete areas, thereby optimizing the concrete image segmentation algorithm. A comprehensive real-time analysis method for placement progress was developed, enabling automatic ternary classification and progress calculation for key construction stages, including concrete unloading, spreading, and vibration. In a continuous placement case study of Monolith No. 3 at a project site, the model’s segmentation results showed only an 8.2% error compared with manual annotations, confirming the method’s real-time capability and reliability. The research outcomes provide robust data support for intelligent construction management and hold significant practical value for enhancing the quality and efficiency of hydraulic engineering construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 5137 KB  
Article
A Cross-Ethnicity Validated Machine Learning Model for the Progression of Chronic Kidney Disease in Individuals over 50 Years Old
by Langkun Wang, Wei Zhang, Xin Zhong, Peng Dou, Yuwei Wu, Xiaonan Zheng and Peng Zhang
J. Clin. Med. 2026, 15(2), 825; https://doi.org/10.3390/jcm15020825 - 20 Jan 2026
Viewed by 257
Abstract
Background/Objectives: Chronic Kidney Disease (CKD) is a global public health burden with a rising prevalence driven by population aging. Existing prediction models, such as the Kidney Failure Risk Equation (KFRE), often lack generalizability across ethnicities and comprehensive systemic indicators. This study aimed [...] Read more.
Background/Objectives: Chronic Kidney Disease (CKD) is a global public health burden with a rising prevalence driven by population aging. Existing prediction models, such as the Kidney Failure Risk Equation (KFRE), often lack generalizability across ethnicities and comprehensive systemic indicators. This study aimed to develop and validate a machine learning model for predicting CKD progression by integrating traditional risk factors with novel composite indicators reflecting systemic health. Methods: Data from the China Health and Retirement Longitudinal Study (CHARLS, n = 2500) was used for model training. External validation was performed using independent cohorts from the English Longitudinal Study of Ageing (ELSA, n = 1200) and the Health and Retirement Study (HRS, n = 1500). Multiple machine learning algorithms, including XGBoost, were employed. Feature engineering incorporated composite indicators such as the frailty index (FI), triglyceride–glucose (TyG) index, and aggregate index of systemic inflammation (AISI). Results: The XGBoost model achieved an area under the curve (AUC) of 0.892 in the training set and maintained robust performance in external validation (AUC 0.867 in ELSA, 0.871 in HRS), outperforming the KFRE (AUC 0.745). SHAP analysis identified the FI as the most influential predictor. Decision curve analysis confirmed the model’s clinical utility. Conclusions: This machine learning model demonstrates high accuracy and cross-ethnicity validity, offering a practical tool for early intervention and personalized CKD management. Future work should address limitations such as the retrospective design and expand validation to underrepresented regions. Full article
Show Figures

Figure 1

29 pages, 15635 KB  
Article
Flood Susceptibility and Risk Assessment in Myanmar Using Multi-Source Remote Sensing and Interpretable Ensemble Machine Learning Model
by Zhixiang Lu, Zongshun Tian, Hanwei Zhang, Yuefeng Lu and Xiuchun Chen
ISPRS Int. J. Geo-Inf. 2026, 15(1), 45; https://doi.org/10.3390/ijgi15010045 - 19 Jan 2026
Viewed by 392
Abstract
This observation-based and explainable approach demonstrates the applicability of multi-source remote sensing for flood assessment in data-scarce regions, offering a robust scientific basis for flood management and spatial planning in monsoon-affected areas. Floods are among the most frequent and devastating natural hazards, particularly [...] Read more.
This observation-based and explainable approach demonstrates the applicability of multi-source remote sensing for flood assessment in data-scarce regions, offering a robust scientific basis for flood management and spatial planning in monsoon-affected areas. Floods are among the most frequent and devastating natural hazards, particularly in developing countries such as Myanmar, where monsoon-driven rainfall and inadequate flood-control infrastructure exacerbate disaster impacts. This study presents a satellite-driven and interpretable framework for high-resolution flood susceptibility and risk assessment by integrating multi-source remote sensing and geospatial data with ensemble machine-learning models—Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM)—implemented on the Google Earth Engine (GEE) platform. Eleven satellite- and GIS-derived predictors were used, including the Digital Elevation Model (DEM), slope, curvature, precipitation frequency, the Normalized Difference Vegetation Index (NDVI), land-use type, and distance to rivers, to develop flood susceptibility models. The Jenks natural breaks method was applied to classify flood susceptibility into five categories across Myanmar. Both models achieved excellent predictive performance, with area under the receiver operating characteristic curve (AUC) values of 0.943 for XGBoost and 0.936 for LightGBM, effectively distinguishing flood-prone from non-prone areas. XGBoost estimated that 26.1% of Myanmar’s territory falls within medium- to high-susceptibility zones, while LightGBM yielded a similar estimate of 25.3%. High-susceptibility regions were concentrated in the Ayeyarwady Delta, Rakhine coastal plains, and the Yangon region. SHapley Additive exPlanations (SHAP) analysis identified precipitation frequency, NDVI, and DEM as dominant factors, highlighting the ability of satellite-observed environmental indicators to capture flood-relevant surface processes. To incorporate exposure, population density and nighttime-light intensity were integrated with the susceptibility results to construct a natural–social flood risk framework. This observation-based and explainable approach demonstrates the applicability of multi-source remote sensing for flood assessment in data-scarce regions, offering a robust scientific basis for flood management and spatial planning in monsoon-affected areas. Full article
Show Figures

Figure 1

28 pages, 435 KB  
Review
Advances in Audio Classification and Artificial Intelligence for Respiratory Health and Welfare Monitoring in Swine
by Md Sharifuzzaman, Hong-Seok Mun, Eddiemar B. Lagua, Md Kamrul Hasan, Jin-Gu Kang, Young-Hwa Kim, Ahsan Mehtab, Hae-Rang Park and Chul-Ju Yang
Biology 2026, 15(2), 177; https://doi.org/10.3390/biology15020177 - 18 Jan 2026
Viewed by 397
Abstract
Respiratory diseases remain one of the most significant health challenges in modern swine production, leading to substantial economic losses, compromised animal welfare, and increased antimicrobial use. In recent years, advances in artificial intelligence (AI), particularly machine learning and deep learning, have enabled the [...] Read more.
Respiratory diseases remain one of the most significant health challenges in modern swine production, leading to substantial economic losses, compromised animal welfare, and increased antimicrobial use. In recent years, advances in artificial intelligence (AI), particularly machine learning and deep learning, have enabled the development of non-invasive, continuous monitoring systems based on pig vocalizations. Among these, audio-based technologies have emerged as especially promising tools for early detection and monitoring of respiratory disorders under real farm conditions. This review provides a comprehensive synthesis of AI-driven audio classification approaches applied to pig farming, with focus on respiratory health and welfare monitoring. First, the biological and acoustic foundations of pig vocalizations and their relevance to health and welfare assessment are outlined. The review then systematically examines sound acquisition technologies, feature engineering strategies, machine learning and deep learning models, and evaluation methodologies reported in the literature. Commercially available systems and recent advances in real-time, edge, and on-farm deployment are also discussed. Finally, key challenges related to data scarcity, generalization, environmental noise, and practical deployment are identified, and emerging opportunities for future research including multimodal sensing, standardized datasets, and explainable AI are highlighted. This review aims to provide researchers, engineers, and industry stakeholders with a consolidated reference to guide the development and adoption of robust AI-based acoustic monitoring systems for respiratory health management in swine. Full article
(This article belongs to the Section Zoology)
45 pages, 2207 KB  
Article
Integrating the Contrasting Perspectives Between the Constrained Disorder Principle and Deterministic Optical Nanoscopy: Enhancing Information Extraction from Imaging of Complex Systems
by Yaron Ilan
Bioengineering 2026, 13(1), 103; https://doi.org/10.3390/bioengineering13010103 - 15 Jan 2026
Viewed by 288
Abstract
This paper examines the contrasting yet complementary approaches of the Constrained Disorder Principle (CDP) and Stefan Hell’s deterministic optical nanoscopy for managing noise in complex systems. The CDP suggests that controlled disorder within dynamic boundaries is crucial for optimal system function, particularly in [...] Read more.
This paper examines the contrasting yet complementary approaches of the Constrained Disorder Principle (CDP) and Stefan Hell’s deterministic optical nanoscopy for managing noise in complex systems. The CDP suggests that controlled disorder within dynamic boundaries is crucial for optimal system function, particularly in biological contexts, where variability acts as an adaptive mechanism rather than being merely a measurement error. In contrast, Hell’s recent breakthrough in nanoscopy demonstrates that engineered diffraction minima can achieve sub-nanometer resolution without relying on stochastic (random) molecular switching, thereby replacing randomness with deterministic measurement precision. Philosophically, these two approaches are distinct: the CDP views noise as functionally necessary, while Hell’s method seeks to overcome noise limitations. However, both frameworks address complementary aspects of information extraction. The primary goal of microscopy is to provide information about structures, thereby facilitating a better understanding of their functionality. Noise is inherent to biological structures and functions and is part of the information in complex systems. This manuscript achieves integration through three specific contributions: (1) a mathematical framework combining CDP variability bounds with Hell’s precision measurements, validated through Monte Carlo simulations showing 15–30% precision improvements; (2) computational demonstrations with N = 10,000 trials quantifying performance under varying biological noise regimes; and (3) practical protocols for experimental implementation, including calibration procedures and real-time parameter optimization. The CDP provides a theoretical understanding of variability patterns at the system level, while Hell’s technique offers precision tools at the molecular level for validation. Integrating these approaches enables multi-scale analysis, allowing for deterministic measurements to accurately quantify the functional variability that the CDP theory predicts is vital for system health. This synthesis opens up new possibilities for adaptive imaging systems that maintain biologically meaningful noise while achieving unprecedented measurement precision. Specific applications include cancer diagnostics through chromosomal organization variability, neurodegenerative disease monitoring via protein aggregation disorder patterns, and drug screening by assessing cellular response heterogeneity. The framework comprises machine learning integration pathways for automated recognition of variability patterns and adaptive acquisition strategies. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

37 pages, 6898 KB  
Article
Tracing the Sociospatial Affordances of Physical Environment: An AI-Based Unified Framework for Modeling Social Behavior in Campus Open Spaces
by Ecem Kara and Barış Dinç
Architecture 2026, 6(1), 10; https://doi.org/10.3390/architecture6010010 - 14 Jan 2026
Viewed by 293
Abstract
In educational settings, it is crucial to comprehend and manage individuals’ social interaction behaviors through the physical environment. However, analyzing social interaction patterns manually is a time-consuming and energy-intensive process. This study aims to reveal the socio-behavioral implications of spatial features, based on [...] Read more.
In educational settings, it is crucial to comprehend and manage individuals’ social interaction behaviors through the physical environment. However, analyzing social interaction patterns manually is a time-consuming and energy-intensive process. This study aims to reveal the socio-behavioral implications of spatial features, based on the Affordance Theory, using artificial intelligence (AI). To this end, the study proposes a unified quantitative methodology that leverages diverse AI approaches. Behavioral data are gathered via systematic observation and analyzed using (1) Deep Learning (DL)-based Human Detection and classified by (2) Machine Learning (ML)-based Interaction Score Prediction approach. The behavioral findings were analyzed in relation to spatial data via (3) Spatial Feature Selection. As the study area, the ATU Faculty of Engineering building complex was selected, and behavioral data from 746 participants were collected in the complex’s open spaces. The results indicated that AI-based approaches provide a high degree of precision in analyzing the relationships between social interaction and spatial features within the addressed context. Also, (1) the existence and (2) the rotation of seating units and (3) shading strategies are identified as the spatial features that contribute to higher interaction scores in the educational settings. The study proposes an integrated and transferable methodology based on diverse AI approaches for determining social interaction and its spatial aspects, leading to a comprehensive and reproducible approach. Full article
(This article belongs to the Special Issue Architecture in the Digital Age)
Show Figures

Figure 1

Back to TopTop