Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = magmatic–hydrothermal evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3509 KB  
Review
Advances in Distribution Pattern and Enrichment Mechanism of Associated Cobalt Resources in Skarn-Type Deposits, China
by Rongfang Zhang, Chong Cao, Yanbo Zhang, Shuzhi Wang, Yang Zhang, Zhaokang Yuan, Boxiao Dong, Qing Cao, Wenzhe Zuo and Zhihua Guo
Minerals 2025, 15(9), 913; https://doi.org/10.3390/min15090913 - 28 Aug 2025
Viewed by 434
Abstract
Although skarn-type deposits represent significant hosts for Co resources, the distribution patterns and enrichment mechanisms of associated Co resources within these deposits have not been systematically investigated. This study summarizes relevant data on Co resources from representative skarn-type deposits in China to comparatively [...] Read more.
Although skarn-type deposits represent significant hosts for Co resources, the distribution patterns and enrichment mechanisms of associated Co resources within these deposits have not been systematically investigated. This study summarizes relevant data on Co resources from representative skarn-type deposits in China to comparatively reveal the grade and reserve characteristics, spatiotemporal distribution patterns, and coupled enrichment mechanisms of Co across three principal skarn mineralization subtypes: iron-, copper-, and lead–zinc polymetallic-dominated deposits. Studies demonstrate that Fe-dominated skarn-type cobalt deposits exhibit widespread distribution, high Co grades (100–2000 ppm), and abundant Co reserves (4000–32,000 t), demonstrating significantly superior Co resource potential compared to Cu-dominated (Co grades: 20–200 ppm, Co reserves: 3000–10,000 t) and Pb-Zn polymetallic-dominated (Co grades: 140–853 ppm, Co reserves: approximately 3000 t) subtypes. In these skarn-type cobalt deposits, cobalt is mainly hosted in sulfide minerals. Influenced by tectonic settings, magmatic activity, and hydrothermal fluid evolution, associated Co resources in these skarn-type deposits exhibit both regional zonation and stage-specific differential enrichment patterns. In the formation of skarn-type cobalt deposits, mantle-derived magmas play a critical role in the pre-enrichment of Co. The injection of mafic magmas, assimilation of evaporite sequences, and the dissolution–reprecipitation mechanism of hydrothermal fluids collectively promote the re-enrichment of Co during magmatic evolution. These findings provide a theoretical foundation for targeted exploration, sustainable development, and comprehensive utilization of associated Co resources in skarn-type deposits. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

14 pages, 4683 KB  
Article
Geochemical Characteristics and Genetic Significance of Garnet in the Dulong Sn-Polymetallic Deposit, Yunnan Province, Southwestern China
by Tong Liu, Shao-Yong Jiang, Dong-Fang Li, Suo-Fei Xiong, Wei Wang and Shugang Xiao
Minerals 2025, 15(9), 911; https://doi.org/10.3390/min15090911 - 27 Aug 2025
Viewed by 283
Abstract
The Dulong Sn-polymetallic deposit in Yunnan Province of southwestern China serves as a unique case study for unraveling the evolution of skarn systems and tin mineralization. Four distinct garnet types (Grt I to Grt IV) were classified based on petrographic observations. Compositional analysis [...] Read more.
The Dulong Sn-polymetallic deposit in Yunnan Province of southwestern China serves as a unique case study for unraveling the evolution of skarn systems and tin mineralization. Four distinct garnet types (Grt I to Grt IV) were classified based on petrographic observations. Compositional analysis reveals a progression from Grt I to Grt III, marked by increasing andradite components, and elevated tin concentrations, peaking at 5039 ppm. These trends suggest crystallization from Sn-enriched magmatic-hydrothermal fluids. In contrast, Grt IV garnet exhibits dominant almandine components and minimal tin content (<2 ppm). Its association with surrounding rocks (schist) further implies its metamorphic origin, distinct from the magmatic origin of the other garnet types. Combined with previously published sulfur and lead isotopic data, as well as trace element compositions of garnet, our study suggests that Laojunshan granites supply substantial ore-forming elements such as S, Pb, W, Sn, In, and Ga. In contrast, elements such as Sc, Y, and Ge are inferred to be predominantly derived from, or buffered by, the surrounding rocks. The geochemical evolution of the garnets highlights the critical role of redox fluctuations and fluid chemistry in controlling tin mineralization. Under neutral-pH fluid conditions, early-stage garnets incorporated significant tin. As the oxygen fugacity of the ore-forming fluid declined, cassiterite precipitation was triggered, leading to tin mineralization. This study reveals the interplay between fluid redox dynamics, garnet compositional changes, and mineral paragenesis in skarn-type tin deposits. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Graphical abstract

15 pages, 7780 KB  
Article
Geochronological Constraints on the Genesis of the Changshitougounao Gold Deposit, Qinling Orogen
by Xian-Fa Xue, Sheng-Xiang Lu, Shou-Xu Wang, Da-Hu Yuan, Zheng-Wang Zeng, Jin-Hong Qiu and Jie Wang
Minerals 2025, 15(9), 903; https://doi.org/10.3390/min15090903 - 26 Aug 2025
Viewed by 613
Abstract
The Western Qinling Orogenic Belt, China’s second-largest Au-metallogenic province, hosts numerous polymetallic deposits, with gold resources particularly concentrated in the northwestern Xiahe–Hezuo area. The Changshitougounao gold deposit, located south of the Xiahe Fault, comprises disseminated ores controlled by near E–W-trending faults and is [...] Read more.
The Western Qinling Orogenic Belt, China’s second-largest Au-metallogenic province, hosts numerous polymetallic deposits, with gold resources particularly concentrated in the northwestern Xiahe–Hezuo area. The Changshitougounao gold deposit, located south of the Xiahe Fault, comprises disseminated ores controlled by near E–W-trending faults and is primarily hosted in quartz diorite and the Lower Triassic Longwuhe Formation. Zircon LA–ICP–MS U–Pb dating of fresh quartz diorite yields an age of 241.8 ± 2.6 Ma. Two generations of monazite were identified: type I magmatic monazite and type II hydrothermal monazite. Type I monazite is intergrown with feldspar, quartz, and biotite, and in situ LA–ICP–MS U–Pb analysis gives an age of 239.2 ± 2.2 Ma. Type II monazite occurs as irregular granular aggregates associated with Au-bearing sulfides and hydrothermal sericite, with an in situ U–Pb age of 230 ± 3.5 Ma. Apatite, also coeval with Au-bearing sulfides and type II monazite, yields an LA–ICP–MS U–Pb age of 230.9 ± 2.5 Ma and 230.7 ± 3.0 Ma. Zircon and type I monazite thus constrain the emplacement of the ore-bearing quartz diorite to ca. 240 Ma, whereas hydrothermal type II monazite and apatite constrain the timing of mineralization to ca. 230 Ma. The ~10 Ma interval between magmatism and mineralization indicates that goldmineralization in the Changshitougounao deposit is decoupled from Early Triassic magmatic activity. Integrating previous studies of the West Qinling geodynamic evolution, we infer that the Changshitougounao deposit formed during collisional orogenesis, in response to the closure of the Paleo-Tethys Ocean. Consequently, the Changshitougounao gold deposit is best classified as an orogenic gold system. Pyrite–arsenopyrite and sericite alteration serve as effective exploration vectors, and the contact zone between quartz diorite veins and slate represents a favorable structural setting for ore prospecting. Full article
(This article belongs to the Special Issue Gold–Polymetallic Deposits in Convergent Margins)
Show Figures

Figure 1

23 pages, 11454 KB  
Article
Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea
by Song Ouyang, Xiaojia Jiang, Xianquan Lei, Baoquan Wan, Zhenlong Quan and Yizhao Li
Minerals 2025, 15(8), 851; https://doi.org/10.3390/min15080851 - 11 Aug 2025
Viewed by 341
Abstract
The metallogenic process of gold deposits is typically characterized by multi-stage mineralization and complex tectonic evolution. Precise determination of metallogenic age is thus critical yet challenging for establishing ore-forming models and tectonic evolutionary frameworks. The Koka gold deposit in Eritrea represents the largest [...] Read more.
The metallogenic process of gold deposits is typically characterized by multi-stage mineralization and complex tectonic evolution. Precise determination of metallogenic age is thus critical yet challenging for establishing ore-forming models and tectonic evolutionary frameworks. The Koka gold deposit in Eritrea represents the largest gold discovery to date in the area, though its metallogenic age and tectonic evolution remain debated. This study employs in situ micro-analysis techniques to investigate major/trace elements and U-Pb geochronology of hydrothermal monazite coexisting with gold mineralization, providing new constraints on the metallogenic timeline and tectonic setting. Petrographic observations reveal well-crystallized monazite with structural associations to pyrite and native gold, indicating near-contemporaneous formation. Trace element geochemistry shows peak formation temperatures of 270–340 °C for monazite, consistent with fluid inclusion data. Genetic diagrams confirm a hydrothermal origin, enabling metallogenic age determination. Monazite Tera–Wasserburg lower intercept ages and weighted mean 208Pb/233Th ages yield 586 ± 8.7 Ma and 589 ± 2.3 Ma, respectively, overlapping error ranges with published sericite 40Ar/39Ar ages. This confirms Ediacaran gold mineralization, unrelated to the Koka granite (851 ± 2 Ma). Statistical analysis of reliable age data reveals a three-stage tectonic evolution model: (1) 1000–875 Ma, Rodinia supercontinental rifting, with depleted mantle-derived mafic oceanic crust formation and Mozambique Ocean spreading; (2) 875–630 Ma, subduction-driven crustal accretion and Koka granite emplacement; and (3) 630–570 Ma, post-collision crustal/lithospheric remelting, with mixed metamorphic–magmatic fluids and meteoric water input driving gold precipitation. Full article
(This article belongs to the Special Issue Role of Granitic Magmas in Porphyry, Epithermal, and Skarn Deposits)
Show Figures

Figure 1

39 pages, 8119 KB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 584
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

20 pages, 9353 KB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 327
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

32 pages, 7693 KB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 457
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

44 pages, 10740 KB  
Article
Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton
by Duttanjali Rout, Jayanta K. Pati, Terrence P. Mernagh and Mruganka K. Panigrahi
Minerals 2025, 15(6), 579; https://doi.org/10.3390/min15060579 - 29 May 2025
Viewed by 620
Abstract
The Bundelkhand granite (BG) constitutes the bulk of the granitoid complex in the Bundelkhand Craton and preserves imprints of its evolution from the magmatic to a protracted hydrothermal stage as deduced from the petrography. In order to reconstruct such a path of evolution [...] Read more.
The Bundelkhand granite (BG) constitutes the bulk of the granitoid complex in the Bundelkhand Craton and preserves imprints of its evolution from the magmatic to a protracted hydrothermal stage as deduced from the petrography. In order to reconstruct such a path of evolution in this study, thermobarometric calculations were attempted on the mineral chemistry of the major (hornblende, plagioclase, biotite) and minor (epidote, apatite) magmatic phases. They yielded magmatic temperatures and pressures (in excess of 700 °C and ~5 kbar), although not consistently, and indicate mid-crustal conditions at the onset of crystallization. Temperatures in the hydrothermal regime within the BG are better constrained by the chemistry of the chlorite and epidote minerals (340 to 160 °C) that conform with the ranges of homogenization temperatures of aqueous–biphase inclusions in matrix quartz in the BG and subordinate quartz veins. These reconstructions indicate that fluid within the BG evolved down to lower temperatures and towards the deposition of quartz and, more importantly, bears a striking similarity to the temperature–salinity characteristics of fluid in the giant quartz reef system. Scanty mixed aqueous–carbonic inclusions in the BG are indicative of the CO2-poor nature of the BG magma and the exsolution of CO2 at lower pressure (~2.6 kbar). The dominant mechanism of fluid evolution in the BG appears to be the incursion of meteoric fluid, which caused fluid dilution. Laser Raman microspectrometry reveals many types of solid phases in aqueous–carbonic inclusions in the BG domain. The occurrence of unusual, effervescent-type inclusions, though infrequent, bears a striking similarity to that reported in the giant quartz reef domain. Thus, the highlight of the present work is the convincing fluid inclusion evidence that genetically links the BG with the giant quartz reef system, although many cited discrepancies arise from the radiometric dates. We visualize the episodic release of silica-transporting fluid to the major fracture system (now occupied by the giant reef) from the BG, thus making the fluid in the two domains virtually indistinguishable. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

53 pages, 7076 KB  
Article
The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition
by Ingrid W. Hadlich, Artur C. Bastos Neto, Vitor P. Pereira, Harald G. Dill and Nilson F. Botelho
Minerals 2025, 15(6), 559; https://doi.org/10.3390/min15060559 - 23 May 2025
Viewed by 1067
Abstract
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched [...] Read more.
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched granite, miarolitic pegmatite, and pegmatite veins. The host rock itself has served as the source for the fluids that gave rise to all these pegmatites. Their mineral assemblages mirror the rare-metal-rich paragenesis of the host rock, including pyrochlore, cassiterite, riebeckite, polylithionite, zircon, thorite, xenotime, gagarinite-(Y), genthelvite, and cryolite. These pegmatites formed at the same crustal level as the host granite and record a progressive magmatic–hydrothermal evolution driven by various physicochemical processes, including tectonic decompressing, extreme fractionation, melt–melt immiscibility, and internal fluid exsolution. Border pegmatites crystallized early from a F-poor, K-Ca-Sr-Zr-Y-HREE-rich fluid exsolved during solidification of the pluton’s border and were emplaced in contraction fractures between the pluton and country rocks. Continued crystallization toward the pluton’s core produced a highly fractionated melt enriched in Sn, Nb, Ta, Rb, HREE, U, Th, and other HFSE, forming pegmatitic albite-enriched granite within centimetric fractures. A subsequent pressure quench—likely induced by reverse faulting—triggered the separation of a supercritical melt, further enriched in rare metals, which migrated into fractures and cavities to form amphibole-rich pegmatite veins and miarolitic pegmatites. A key process in this evolution was melt–melt immiscibility, which led to the partitioning of alkalis between two phases: a K-F-rich aluminosilicate melt (low in H2O), enriched in Y, Li, Be, and Zn; and a Na-F-rich aqueous melt (low in SiO2). These immiscible melts crystallized polylithionite-rich and cryolite-rich pegmatite veins, respectively. The magmatic–hydrothermal transition occurred independently in each pegmatite body upon H2O saturation, with the hydrothermal fluid composition controlled by the local degree of melt fractionation. These highly F-rich exsolved fluids caused intense autometasomatic alteration and secondary mineralization. The exceptional F content (up to 35 wt.% F in pegmatite veins), played a central role in concentrating strategic and critical metals such as Nb, Ta, REEs (notably HREE), Li, and Be. These findings establish the Madeira system as a reference for rare-metal magmatic–hydrothermal evolution in peralkaline granites. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

28 pages, 12692 KB  
Article
Genesis of the Aït Abdellah Copper Deposit, Bou Azzer-El Graara Inlier, Anti-Atlas, Morocco
by Marieme Jabbour, Said Ilmen, Moha Ikenne, Basem Zoheir, Mustapha Souhassou, Ismail Bouskri, Ali El-Masoudy, Ilya Prokopyev, Mohamed Oulhaj, Mohamed Ait Addi and Lhou Maacha
Minerals 2025, 15(5), 545; https://doi.org/10.3390/min15050545 - 20 May 2025
Viewed by 1153
Abstract
The Aït Abdellah copper deposit in the Bou Azzer-El Graara inlier of the Moroccan Anti-Atlas provides key insights into structurally and lithologically controlled mineralization in Precambrian terranes. The deposit is hosted in feldspathic sandstones of the Tiddiline Group, which unconformably overlie the Bou [...] Read more.
The Aït Abdellah copper deposit in the Bou Azzer-El Graara inlier of the Moroccan Anti-Atlas provides key insights into structurally and lithologically controlled mineralization in Precambrian terranes. The deposit is hosted in feldspathic sandstones of the Tiddiline Group, which unconformably overlie the Bou Azzer ophiolite, and is spatially associated with a NE–SW-trending shear zone. This zone is characterized by mylonitic fabrics, calcite veining, and an extensive network of fractures, reflecting a two-stage deformation history involving early ductile shearing followed by brittle faulting and brecciation. These structural features enhanced rock permeability, enabling fluid flow and metal precipitation. Copper mineralization includes primary sulfides such as chalcopyrite, bornite, pyrite, chalcocite, digenite, and covellite, as well as supergene minerals like malachite, azurite, and chrysocolla. Sulfur isotope values (δ³⁴S = +5.9% to +22.8%) indicate a mixed sulfur source, likely derived from both ophiolitic rocks and volcano-sedimentary sequences. Carbon and oxygen isotope data suggest fluid interaction with marine carbonates and meteoric waters, potentially linked to post-Snowball Earth deglaciation processes. Fluid inclusion studies reveal homogenization temperatures ranging from 195 °C to 310 °C and salinities between 5.7 and 23.2 wt.% NaCl equivalent, supporting a model of fluid mixing between magmatic-hydrothermal and volcano-sedimentary sources. The paragenetic evolution of the deposit comprises three stages: (1) early hydrothermal precipitation of quartz, dolomite, sericite, pyrite, and early chalcopyrite and bornite; (2) a main mineralizing stage characterized by fracturing and deposition of bornite, chalcopyrite, and Ag-bearing sulfosalts; and (3) a late supergene phase with oxidation and secondary enrichment. The Aït Abdellah deposit is best classified as a shear zone-hosted copper system with a complex, multistage mineralization history. The integrated analysis of structural features, mineral assemblages, isotopic signatures, and fluid inclusion data reveals a dynamic interplay between deformation processes, hydrothermal alteration, and evolving fluid sources. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

22 pages, 13090 KB  
Article
Petrological, Textural, Compositional, and Economic Potential of Carbonatites from the Peshawar Plain Alkaline Igneous Province, Northwestern Himalaya
by Mehboob ur Rashid and Hafiz U. Rehman
Minerals 2025, 15(5), 439; https://doi.org/10.3390/min15050439 - 23 Apr 2025
Viewed by 738
Abstract
Carbonatites, which are rare mantle-derived igneous rocks that are mainly enriched in carbonate minerals and host relatively higher amounts of rare earth element (REE)-bearing phases, remain subjects of extensive geological research due to their enigmatic origin and potential economic importance. This study aims [...] Read more.
Carbonatites, which are rare mantle-derived igneous rocks that are mainly enriched in carbonate minerals and host relatively higher amounts of rare earth element (REE)-bearing phases, remain subjects of extensive geological research due to their enigmatic origin and potential economic importance. This study aims to describe the petrographic, mineralogical, and some rare-earth element (REE) abundances of four carbonatite bodies (known as Sillai Patti, Loe Shilman, Warsak, and Jambil) exposed in the Peshawar Plain Alkaline Igneous Province (PPAIP), northwestern Himalaya, Pakistan, to identify their economic potential. The observed petrographic, textural features, and chemical compositions of the constituent minerals of the carbonatites were utilized to elucidate the evolutionary processes through which the rocks evolved. The results indicate distinct mineralogical assemblages dominated by calcite, dolomite, apatite, pyroxene, biotite, and feldspar, with accessory opaque and REE-bearing phases, such as pyrochlore, monazite, and britholite. The apatite grains display compositional zoning reflecting their growth under magmatic conditions. The petrographic features of apatite in some carbonatite samples, exhibiting preferred orientation in a particular direction and spongy or murky textures, indicate that the studied rocks underwent post-magmatic deformation or hydrothermal alteration. Calcite and dolomite, coexisting in some carbonatite samples, exhibit significant Mg-Fe variation, which is possibly related to magmatic differentiation. The pyroxene compositions vary from a low-calcium enstatite–ferrosilite series to high-calcium diopside, suggesting variable crystallization environments among the carbonatite bodies studied. The abundance of REE-bearing phases in the studied carbonatites emphasizes their high economic potential. These findings indicate that the PPAIP carbonatites originated from mantle-derived magmas and subsequently experienced metamorphic/metasomatic overprinting during their tectonic evolution. The abundance of REE-rich phases such as apatite, pyrochlore, monazite, and britholite underscores their high economic potential. Full article
(This article belongs to the Special Issue Geochemistry and Geochronology of High-Grade Metamorphic Rocks)
Show Figures

Graphical abstract

36 pages, 5338 KB  
Article
Fluid and Solid Inclusions from Accessory Host Minerals of Permian Pegmatites of the Eastern Alps (Austria)—Tracing Permian Fluid, Its Entrapment Process and Its Role During Crustal Anatexis
by Kurt Krenn and Martina Husar
Minerals 2025, 15(4), 423; https://doi.org/10.3390/min15040423 - 18 Apr 2025
Viewed by 370
Abstract
To understand the fluid evolution of Permian pegmatites, three pegmatite fields of the Austroalpine basement units located in the Rappold Complex at St. Radegund, the Millstatt Complex, and the Polinik Complex were investigated. To achieve this goal, fluid inclusions trapped in the magmatic [...] Read more.
To understand the fluid evolution of Permian pegmatites, three pegmatite fields of the Austroalpine basement units located in the Rappold Complex at St. Radegund, the Millstatt Complex, and the Polinik Complex were investigated. To achieve this goal, fluid inclusions trapped in the magmatic accessories of garnet, tourmaline, spodumene, and beryl were studied using host mineral chemistry combined with fluid inclusion microthermometry and Raman spectrometry. Taking into account the previous work by the authors on pegmatite fields in the Koralpe and Texel Mountains, Permian fluid was determined to have evolved from two stages: Stage 1 is characterized by the homogeneous entrapment of two cogenetic immiscible fluid assemblages, a CO2-N2 ± CH4-rich and a low-saline H2O-rich fluid. Both fluids are restricted to inclusions in the early-magmatic-garnet-core domains of the Koralpe Mountains. Stage 2 is linked with the CO2-N2-CH4-H2O-NaCl-CaCl2 ± MgCl2 fluid preserved as an inclusion in all the pegmatite accessories of the KWNS. It represents the mechanical mixture of the stage 1 fluid caused by compositional changes along the solvus, which is typical for a hydrothermal vein environment process. Increasing XCH4±N2 proportions from the eastern toward the western pegmatite fields of the KWNS results in a tectonic model that includes magmatic redox-controlled fluid flow along deep crustal normal faults during the anatexis of metasediments in Permian asymmetric graben structures. Because of a high number of solids within the inclusions as well as their irregular shapes, post-entrapment modifications have caused density changes that have to be considered with caution. However, the conditions in the range of 6–8 kbar at >670 °C for stage 1 and ca. 4 kbar at <670 °C for stage 2 represent the best approximations to explain the uprise of a two-stage Permian fluid associated with accessory mineral crystallization in close relation to fractionating melt. Full article
Show Figures

Figure 1

20 pages, 9535 KB  
Article
Hydrothermal Retrogradation from Chlorite to Tosudite: Effect on the Optical Properties
by Zahra Ahmadi, Fernando Nieto, Farhad Khormali, Nicolás Velilla, Morteza Einali, Abbas Maghsoudi and Arash Amini
Minerals 2025, 15(3), 326; https://doi.org/10.3390/min15030326 - 20 Mar 2025
Viewed by 632
Abstract
In the argillic alteration zone of the SinAbad area of the Urumieh–Dokhtar magmatic belt (Iran), Mg-rich, Fe-poor chlorites, which crystallised at temperatures between 160 °C and 260 °C, were affected by extensive alteration to smectite mixed-layering at the micro- and nano-scales during the [...] Read more.
In the argillic alteration zone of the SinAbad area of the Urumieh–Dokhtar magmatic belt (Iran), Mg-rich, Fe-poor chlorites, which crystallised at temperatures between 160 °C and 260 °C, were affected by extensive alteration to smectite mixed-layering at the micro- and nano-scales during the retrograde evolution of the hydrothermal system. Chlorites retain their usual optical aspect and properties, except for the index of refraction perpendicular to the (001) layers, which becomes lower than those parallel to the layers, producing an increase in birefringence and change in the optic and elongation signs, in comparison to the ordinary ones for Mg chlorites. Scanning electron microscopy (SEM) maps and compositions, and electron microprobe (EMP) analyses indicate minor but ubiquitous Ca (and K) content. X-ray diffraction (XRD) of chloritic concentrates allowed the identification of chlorite and tosudite. High-resolution transmission electron microscopy (HRTEM) images show major 14 Å (chlorite), with the frequent presence of 24 Å (contracted tosudite) individual layers and small packets up to five layers thick. Lateral change from 14 Å to 24 Å individual layers has been visualised. High-resolution chemical maps obtained in high-angle annular dark-field (HAADF) mode confirm the existence of areas preferentially dominated by chlorite or tosudite. The overall chemical compositions obtained by SEM, EMP, and transmission electron microscopy (TEM) align from the chlorite to the tosudite end-members, whose pure compositions could be determined from extreme analytical electron microscopy (AEM) analyses. The described intergrowths and interlayers, under the optical resolution, could provide a clue to explain changes in the normal optic properties of chlorite, which are mentioned, but not explained, in the literature. Full article
Show Figures

Figure 1

27 pages, 46975 KB  
Article
A Study of the Geochemical Characteristics of Tourmaline-Supergroup Minerals from the Bozhushan Composite Granite Body in Southeastern Yunnan
by Xianchao Chen, Liurunxuan Chen, Shitao Zhang, Xuelong Liu, Qiuyun Song, Linlong Sun, Ruohan Zuo, Bode Lu and Jiehu Zhou
Minerals 2025, 15(3), 316; https://doi.org/10.3390/min15030316 - 19 Mar 2025
Viewed by 879
Abstract
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs [...] Read more.
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs an integrated analytical approach combining EPMA, LA-ICP-MS, and boron isotope geochemistry, supplemented by detailed field geological investigations and petrographic observations of tourmaline textural characteristics. This study aims to elucidate the genetic relationships between distinct tourmaline varieties, establish temporal correlations between mineral crystallization stages and magmatic–hydrothermal evolution processes, and evaluate the petrogenetic significance of tourmaline geochemical signatures for regional mineralization events. This study analyzes tourmaline-supergroup minerals in granitic pegmatites and aplites, which occur as nodular, radial, and columnar aggregates. Most tourmaline crystals exhibit well-defined rhythmic zoning patterns, which are clearly observable under cross-polarized light microscopy. Chemical composition analysis has identified two tourmaline species: schorl and dravite. The formation of tourmaline is primarily of magmatic origin and is characterized by a magmatic–hydrothermal transition. It predominantly belongs to the alkali subgroup and is formed in Li-poor granitoids and associated pegmatites and aplites, Ca-poor metapelites, metapsammites, and quartz-tourmaline rocks. The inter-ionic substitution mechanism in this system is predominantly governed by Fe2+Mg−1 and (XvacAl)(NaR2+)−1 exchange equilibria. Additionally, geochemical evidence indicates that the primary ore-forming fluids originate from granitic magmas, which are likely sourced from the partial melting of metasedimentary rocks. During the late Yanshan period, the upwelling of granitic magma in the Bozhushan area introduced a substantial heat source and mineralizing fluids, which interacted with the Cambrian units to form tungsten–tin mineralization. The geochemical data on tourmaline indicate that the Bozhushan granite body has considerable potential for ore mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

35 pages, 12886 KB  
Article
From Source to Sink: U-Pb Geochronology and Lithochemistry Unraveling the Missing Link Between Mesoarchean Anatexis and Magmatism in the Carajás Province, Brazil
by Marco Antônio Delinardo-Silva, Lena Virgínia Soares Monteiro, Carolina Penteado Natividade Moreto, Jackeline Faustinoni, Ticiano José Saraiva Santos, Soraya Damasceno Sousa and Roberto Perez Xavier
Minerals 2025, 15(3), 265; https://doi.org/10.3390/min15030265 - 3 Mar 2025
Viewed by 1013
Abstract
The connection between crustal anatexis and magmatism is key to understanding the mechanisms that drive the evolution of the continental crust. Isotope geology and lithochemistry are important tools for reconstructing links between these processes, as field evidence of their connection is often obliterated [...] Read more.
The connection between crustal anatexis and magmatism is key to understanding the mechanisms that drive the evolution of the continental crust. Isotope geology and lithochemistry are important tools for reconstructing links between these processes, as field evidence of their connection is often obliterated by deformation in high-grade terrains. Thus, this study proposes new insights into the connection between the Mesoarchean regional metamorphism, crustal anatexis, and plutonism in the northern sector of the Carajás Province (i.e., Carajás Domain), in the Amazonian Craton, around 2.89 to 2.83 Ga. The widespread crustal anatexis in the Carajás Domain involved the water-fluxed melting of banded orthogneisses of the Xingu Complex and Xicrim-Cateté Orthogranulite (crystallization age at ca. 3.06–2.93 Ga), producing metatexites and diatexites with stromatic, net, schollen, and schlieren morphologies and coeval syntectonic leucosomes with composition similar to tonalites, trondhjemites, and granites. These leucosomes yielded crystallization ages of 2853 ± 5 Ma (MSWD: 0.61), 2862 ± 13 Ma (MSWD: 0.1), and 2867 ± 7 Ma (MSWD: 1.3). Their lithochemical data are similar to those of several diachronous Mesoarchean granitoids of the Carajás Domain in terms of major, minor, and trace elements and magmatic affinity. In addition, binary log–log vector diagrams (e.g., La vs. Yb; Rb vs. Yb), Sr/Y vs. Y, and Eu/Eu* vs. Yb plots indicate that plagioclase fractionation preceded melt extraction, establishing evolving source-to-sink trends between leucosomes and granites. These results show that the interplay between high-grade metamorphism, crustal anatexis, and magmatism may have shaped the evolution of the Mesoarchean continental crust in the Carajás Province, developing a petrotectonic assemblage associated with collisional orogens. The Mesoarchean geodynamic setting played a critical role in the development of coeval ca. 2.89 Ga magmatic–hydrothermal copper deposits in the Carajás Province, as well as Neoarchean world-class iron oxide–copper–gold deposits linked to post-orogenic extensional rebound. Full article
(This article belongs to the Special Issue Geochemistry and Geochronology of High-Grade Metamorphic Rocks)
Show Figures

Figure 1

Back to TopTop