Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = master equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 452 KB  
Article
Two Dynamical Scenarios for Binned Master Sample Interpretation
by Giovanni Montani, Elisa Fazzari, Nakia Carlevaro and Maria Giovanna Dainotti
Entropy 2025, 27(9), 895; https://doi.org/10.3390/e27090895 - 24 Aug 2025
Viewed by 364
Abstract
We analyze two different scenarios for the late universe dynamics, resulting in Hubble parameters deviating from the ΛCDM, mainly for the presence of an additional free parameter, which is the dark energy parameter. The first model consists of a pure evolutionary dark [...] Read more.
We analyze two different scenarios for the late universe dynamics, resulting in Hubble parameters deviating from the ΛCDM, mainly for the presence of an additional free parameter, which is the dark energy parameter. The first model consists of a pure evolutionary dark energy paradigm as a result of its creation by the gravitational field of the expanding universe. The second model also considers an interaction of the evolutionary dark energy with the matter component, postulated via the conservation of the sum of their ideal energy–momentum tensors. These two models are then compared via the diagnostic tool of the effective running Hubble constant, with the binned data of the so-called “Master sample” for the Type Ia Supernovae. The comparison procedures, based on a standard MCMC analysis, lead to a clear preference of data for the dark energy–matter interaction model, which is associated with a phantom matter equation of state parameter (very close to −1) when, being left free by data (it has a flat posterior), it is fixed in order to reproduce the decreasing power-law behavior of the effective running Hubble constant, already discussed in the literature. Full article
Show Figures

Figure 1

14 pages, 2144 KB  
Article
Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process
by Yutaka Hirose
Nanomaterials 2025, 15(17), 1297; https://doi.org/10.3390/nano15171297 - 22 Aug 2025
Viewed by 361
Abstract
The soft-reset process, or a sequence of charge emissions from a floating storage node through a transistor biased in a subthreshold bias condition, is modeled by a master (Kolmogorov–Bateman) equation. The Coulomb interaction energy after each one-charge emission leads to a stepwise potential [...] Read more.
The soft-reset process, or a sequence of charge emissions from a floating storage node through a transistor biased in a subthreshold bias condition, is modeled by a master (Kolmogorov–Bateman) equation. The Coulomb interaction energy after each one-charge emission leads to a stepwise potential increase, giving correlated emission rates represented by Boltzmann factors. The governing probability distribution function is a hypoexponential type, and its cumulants describe characteristics of the single-charge Coulomb interaction at room temperature on a mesoscopic scale. The cumulants are further extended into a complex domain. Starting from three fundamental assumptions, i.e., the generation of non-degenerated states due to single-charge Coulomb energy, the Markovian property of each emission event, and the independence of each state, a moment function is identified as a product of mutually prime elements (algebraically termed as prime ideals) comprising the eigenvalues or the lifetimes of the emission states. Then, the algebraic structure of the moment function is found to be highly analogous to that of an integer uniquely factored into prime numbers. Treating the lifetimes as analogs of the prime numbers, two types of zeta functions are constructed. Standard analyses of the zeta functions analogous to the prime number problem or the Riemann Hypothesis are performed. For the zeta functions, the analyticity and poles are specified, and the functional equations are derived. Also, the zeta functions are found to be equivalent to the analytic extension of the cumulants. Finally, between the number of emitted charges and the lifetime, a logarithmic relation analogous to the prime number theorem is derived. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

30 pages, 1941 KB  
Article
Robust Operation of Electric–Heat–Gas Integrated Energy Systems Considering Multiple Uncertainties and Hydrogen Energy System Heat Recovery
by Ge Lan, Ruijing Shi and Xiaochao Fan
Processes 2025, 13(8), 2609; https://doi.org/10.3390/pr13082609 - 18 Aug 2025
Viewed by 320
Abstract
Due to the high cost of hydrogen utilization and the uncertainties in renewable energy generation and load demand, significant challenges are posed for the operation optimization of hydrogen-containing integrated energy systems (IESs). In this study, a robust operational model for an electric–heat–gas IES [...] Read more.
Due to the high cost of hydrogen utilization and the uncertainties in renewable energy generation and load demand, significant challenges are posed for the operation optimization of hydrogen-containing integrated energy systems (IESs). In this study, a robust operational model for an electric–heat–gas IES (EHG-IES) is proposed, considering the hydrogen energy system heat recovery (HESHR) and multiple uncertainties. Firstly, a heat recovery model for the hydrogen system is established based on thermodynamic equations and reaction principles; secondly, through the constructed adjustable robust optimization (ARO) model, the optimal solution of the system under the worst-case scenario is obtained; lastly, the original problem is decomposed based on the column and constraint generation method and strong duality theory, resulting in the formulation of a master problem and subproblem with mixed-integer linear characteristics. These problems are solved through alternating iterations, ultimately obtaining the corresponding optimal scheduling scheme. The simulation results demonstrate that our model and method can effectively reduce the operation and maintenance costs of HESHR-EHG-IES while being resilient to uncertainties on both the supply and demand sides. In summary, this study provides a novel approach for the diversified utilization and flexible operation of energy in HESHR-EHG-IES, contributing to the safe, controllable, and economically efficient development of the energy market. It holds significant value for engineering practice. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 405 KB  
Article
Quantum Coherence and Purity in Dissipative Hydrogen Atoms: Insights from the Lindblad Master Equation
by Kamal Berrada and Smail Bougouffa
Entropy 2025, 27(8), 848; https://doi.org/10.3390/e27080848 - 10 Aug 2025
Viewed by 518
Abstract
In this work, we investigate the quantum coherence and purity in hydrogen atoms under dissipative dynamics, with a focus on the hyperfine structure states arising from the electron–proton spin interaction. Using the Lindblad master equation, we model the time evolution of the density [...] Read more.
In this work, we investigate the quantum coherence and purity in hydrogen atoms under dissipative dynamics, with a focus on the hyperfine structure states arising from the electron–proton spin interaction. Using the Lindblad master equation, we model the time evolution of the density matrix of the system, incorporating both the unitary dynamics driven by the hyperfine Hamiltonian and the dissipative effects due to environmental interactions. Quantum coherence is quantified using the L1 norm and relative entropy measures, while purity is assessed via von Neumann entropy, for initial states, including a maximally entangled Bell state and a separable state. Our results reveal distinct dynamics: for the Bell states, both coherence and purity decay exponentially with a rate proportional to the dissipation parameter, whereas for a kind of separable state, coherence exhibits oscillatory behavior modulated via the hyperfine coupling constant, superimposed on an exponential decay, and accompanied by a steady increase in entropy. Higher dissipation rates accelerate the loss of coherence and the growth of von Neumann entropy, underscoring the environment’s role in suppressing quantum superposition and driving the system towards mixed states. These findings enhance our understanding of coherence and purity preservation in atomic systems and offer insights for quantum information applications where robustness against dissipation is critical. Full article
(This article belongs to the Special Issue Entropy in Classical and Quantum Information Theory with Applications)
Show Figures

Figure 1

6 pages, 198 KB  
Opinion
Relation Between Diffusion Equations and Boundary Conditions in Bounded Systems
by Fabio Sattin and Dominique Franck Escande
Foundations 2025, 5(3), 26; https://doi.org/10.3390/foundations5030026 - 31 Jul 2025
Viewed by 239
Abstract
Differential equations need boundary conditions (BCs) for their solution. It is widely acknowledged that differential equations and BCs are representative of independent physical processes, and no correlations between them are required. Two recent studies by Hilhorst, Chung et al. argue instead that, in [...] Read more.
Differential equations need boundary conditions (BCs) for their solution. It is widely acknowledged that differential equations and BCs are representative of independent physical processes, and no correlations between them are required. Two recent studies by Hilhorst, Chung et al. argue instead that, in the specific case of diffusion equations (DEs) in bounded systems, BCs are uniquely constrained by the form of transport coefficients. In this paper, we revisit how DEs emerge as fluid limits out of a picture of stochastic transport. We point out their limits of validity and argue that, in most physical systems, BCs and DEs are actually uncorrelated by virtue of the failure of diffusive approximation near the system’s boundaries. When, instead, the diffusive approximation holds everywhere, we show that the correct chain of reasoning goes in the direction opposite to that conjectured by Hilhorst and Chung: it is the choice of the BCs that determines the form of the DE in the surroundings of the boundary. Full article
(This article belongs to the Section Physical Sciences)
25 pages, 1500 KB  
Article
The Role of Sequencing Economics in Agglomeration: A Contrast with Tinbergen’s Rule
by Akifumi Kuchiki
Economies 2025, 13(7), 204; https://doi.org/10.3390/economies13070204 - 17 Jul 2025
Viewed by 445
Abstract
In this paper, we present the concept of “sequencing economics”, consisting of (A) segmentation, (B) construction sequencing, and (C) functions. An agglomeration is organized into segments, and sequencing economics examines the sequential process of efficiently building such segments. The functions (C) of the [...] Read more.
In this paper, we present the concept of “sequencing economics”, consisting of (A) segmentation, (B) construction sequencing, and (C) functions. An agglomeration is organized into segments, and sequencing economics examines the sequential process of efficiently building such segments. The functions (C) of the segments act as a master switch, an accelerator, a brake, etc. in the implementation of agglomeration policy. In this paper, we identify a master switch and an accelerator in scientific city agglomeration policy and draw two conclusions. First, in agglomeration policy, the construction of the master switch lowers “transport costs”, as derived from the monocentric city model of spatial economics by Fujita and Krugman. Second, the accelerator segment represents the activities of the service sector that have the highest forward-linkage effect in an input–output relationship. Regarding science city agglomeration policy, it can be concluded that the master switch is high-speed rail and the accelerator is research and education activities. In this paper, the new scientific urban agglomeration that emerges from monocentric cities is referred to as railroad-driven agglomeration (RDA), which is a type of transit-oriented development (TOD). This paper demonstrates that the Tsukuba Express, as a case study of RDA, caused the agglomeration of Tsukuba Science City. This paper establishes the concept of sequencing economics, a policy implementation rule that differs from Tinbergen’s rule. The latter is based on the concept of simultaneous equations, whereas the rule of sequencing economics is based on sequential equations. RDA enables middle-income countries to surpass their middle-income status. Full article
Show Figures

Figure 1

12 pages, 1661 KB  
Article
Creep Compliance of Carbon Black-Filled Rubber Converted from Storage Modulus by Use of Collocation Method: Numerical and Experimental Validation
by Bo Zhou, Bin Zhao, Wei Tang, Rongyong Wang and Boyuan Yin
Polymers 2025, 17(13), 1809; https://doi.org/10.3390/polym17131809 - 28 Jun 2025
Viewed by 416
Abstract
Carbon black (CB)-filled rubber has been widely used in engineering. However, its time-dependent behavior, such as creep, is undesirable during the service process. In addition, the long-term creep test is time- and cost-consuming. To this end, the objective of this paper aims to [...] Read more.
Carbon black (CB)-filled rubber has been widely used in engineering. However, its time-dependent behavior, such as creep, is undesirable during the service process. In addition, the long-term creep test is time- and cost-consuming. To this end, the objective of this paper aims to predict the creep behavior from the short-term storage modulus by use of the collocation method. First, the master curve of storage modulus was constructed based on the time–temperature superposition principle (TTSP), and the validation of shift factors was verified by use of the Williams–Landel–Ferry (WLF) equation. Second, the generalized Kelvin model was used to describe the master curve of storage modulus by use of the collocation method, and the corresponding parameters were obtained. Compared with the existing works, the collocation method had the advantages of avoiding the occurrence of waviness of the fitting curve. Lastly, the creep compliance of CB-filled rubber was calculated by substituting the fitting parameters into the creep compliance expression. In order to verify the reliability of the calculation result, the creep tests were carried out. It was obvious that the calculation result is in good agreement with the experimental one with a RMSE value of 0.0055, which means that the calculation result is reliable. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

11 pages, 334 KB  
Article
Why Is the Universe Not Frozen by the Quantum Zeno Effect?
by Antoine Soulas
Entropy 2025, 27(6), 652; https://doi.org/10.3390/e27060652 - 18 Jun 2025
Viewed by 492
Abstract
We built a discrete model that simulates the ubiquitous competition between the free internal evolution of a two-level system and the decoherence induced by the interaction with its surrounding environment. It is aimed at being as universal as possible, so that no specific [...] Read more.
We built a discrete model that simulates the ubiquitous competition between the free internal evolution of a two-level system and the decoherence induced by the interaction with its surrounding environment. It is aimed at being as universal as possible, so that no specific Hamiltonian is assumed. This leads to an analytic criterion, depending on the level of short time decoherence, allowing one to determine whether the system will freeze due to the Zeno effect. We checked this criterion on several classes of functions which correspond to different physical situations. In the most generic case, the free evolution wins over decoherence, thereby explaining why the universe is indeed not frozen. We finally make a quantitative comparison with the continuous model of Presilla, Onofrio and Tambini, based on a Lindblad’s master equation, a find good agreement at least in the low coupling regime. Full article
(This article belongs to the Section Astrophysics, Cosmology, and Black Holes)
Show Figures

Figure 1

27 pages, 454 KB  
Article
Evaluating the Uptake of the Canadian Standards Association (CSA) B701:17 (R2021) Carer-Inclusive and Accommodating Organizations Standard Across Canada
by Brooke Chmiel and Allison Williams
Int. J. Environ. Res. Public Health 2025, 22(6), 907; https://doi.org/10.3390/ijerph22060907 - 6 Jun 2025
Viewed by 423
Abstract
In Canada, 67% of unpaid caregivers are simultaneously balancing paid employment with unpaid care, equating to over 5.2 million Canadian Carer-Employees (CEs). This balancing act often incurs negative impacts on CEs’ health and well-being, including burnout, resulting in adverse effects on their labour [...] Read more.
In Canada, 67% of unpaid caregivers are simultaneously balancing paid employment with unpaid care, equating to over 5.2 million Canadian Carer-Employees (CEs). This balancing act often incurs negative impacts on CEs’ health and well-being, including burnout, resulting in adverse effects on their labour force participation. To mitigate these social and economic impacts, McMaster University partnered with the Canadian Standards Association (CSA) to develop the CSA B701:17 (R2021) Carer-inclusive and accommodating organizations standard and accompanying handbook B701-18HB Helping worker-carers in your organization. Since publication in 2017, there has been minimal uptake of the Standard across Canadian workplaces, with just 1062 complimentary downloads total. To determine the level of uptake across workplaces in Canada, the present mixed-methods study used purposive sampling to collect survey (n = 71) and semi-structured interview data (n = 11). The survey data was analyzed for descriptive statistics and logistic regression modelling. The interview data were thematically analyzed for common CFWPs and barriers to Standard uptake. It was found that only 24% of workplaces have implemented the Standard into their workplace practices, with full implementation and current supports as strong predictors of formal uptake. Prominent themes around barriers to uptake and existing organizational policies highlight the critical importance of workplace culture in facilitating CFWPs. Full article
Show Figures

Figure 1

18 pages, 335 KB  
Article
Anomalous Diffusion Models Involving Regularized General Fractional Derivatives with Sonin Kernels
by Maryam Alkandari, Dimitri Loutchko and Yuri Luchko
Fractal Fract. 2025, 9(6), 363; https://doi.org/10.3390/fractalfract9060363 - 1 Jun 2025
Viewed by 664
Abstract
In this paper, we introduce a general fractional master equation involving regularized general fractional derivatives with Sonin kernels, and we discuss its physical characteristics and mathematical properties. First, we show that this master equation can be embedded into the framework of continuous time [...] Read more.
In this paper, we introduce a general fractional master equation involving regularized general fractional derivatives with Sonin kernels, and we discuss its physical characteristics and mathematical properties. First, we show that this master equation can be embedded into the framework of continuous time random walks, and we derive an explicit formula for the waiting time probability density function of the continuous time random walk model in form of a convolution series generated by the Sonin kernel associated with the kernel of the regularized general fractional derivative. Next, we derive a fractional diffusion equation involving regularized general fractional derivatives with Sonin kernels from the continuous time random walk model in the asymptotical sense of long times and large distances. Another important result presented in this paper is a concise formula for the mean squared displacement of the particles governed by this fractional diffusion equation. Finally, we discuss several mathematical aspects of the fractional diffusion equation involving regularized general fractional derivatives with Sonin kernels, including the non-negativity of its fundamental solution and the validity of an appropriately formulated maximum principle for its solutions on the bounded domains. Full article
(This article belongs to the Special Issue Fractional Mathematical Modelling: Theory, Methods and Applications)
10 pages, 464 KB  
Article
Optimizing Parameter Estimation Precision in Open Quantum Systems
by Kamal Berrada
Axioms 2025, 14(5), 368; https://doi.org/10.3390/axioms14050368 - 13 May 2025
Viewed by 418
Abstract
In the present manuscript, we demonstrate the potential to control and enhance the accuracy of parameter estimation (P-E) in a two-level atom (TLA) immersed in a cavity field that interacts with another cavity. We investigate the dynamics of quantum Fisher information (FI), considering [...] Read more.
In the present manuscript, we demonstrate the potential to control and enhance the accuracy of parameter estimation (P-E) in a two-level atom (TLA) immersed in a cavity field that interacts with another cavity. We investigate the dynamics of quantum Fisher information (FI), considering the influence of coupling strength between the two cavities and the detuning parameter. Our findings reveal that, in the case of a perfect cavity, a high quantum FI value can be maintained during the dynamics concerning the detuning and coupling strength parameters. The results indicate that with a proper choice of quantum model parameters, long-term protection of the FI can be achieved without being affected by decoherence. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

25 pages, 7829 KB  
Article
Consider Demand Response and Power-Sharing Source-Storage-Load Three-Level Game Models
by Fuyi Zou, Hui He, Xiang Liao, Ke Liu, Shuo Ouyang, Li Mo and Wei Huang
Sustainability 2025, 17(10), 4270; https://doi.org/10.3390/su17104270 - 8 May 2025
Viewed by 477
Abstract
With the increasing connection between integrated natural gas, thermal energy, and electric power systems, the integrated energy system (IES) needs to coordinate the internal unit scheduling and meet the different load demands of customers. However, when the energy subjects involved in scheduling are [...] Read more.
With the increasing connection between integrated natural gas, thermal energy, and electric power systems, the integrated energy system (IES) needs to coordinate the internal unit scheduling and meet the different load demands of customers. However, when the energy subjects involved in scheduling are engaged in conflicts of interest, aspects such as hierarchical status relationships and cooperative and competitive relationships must be considered. Therefore, this paper studies the problem of achieving optimal energy scheduling for multiple subjects of source, storage, and load under the same distribution network while ensuring that their benefits are not impaired. First, this paper establishes a dual master-slave game model with a shared energy storage system (SESS), IES, and the alliance of prosumers (APs) as the main subjects. Second, based on the Nash negotiation theory and considering the sharing of electric energy among prosumers, the APs model is equated into two sub-problems of coalition cost minimization and cooperative benefit distribution to ensure that the coalition members distribute the cooperative benefits equitably. Further, the Stackelberg-Stackelberg-Nash three-layer game model is established, and the dichotomous distributed optimization algorithm combined with the alternating direction multiplier method (ADMM) is used to solve this three-layer game model. Finally, in the simulation results of the arithmetic example, the natural gas consumption is reduced by 9.32%, the economic efficiency of IES is improved by 3.95%, and the comprehensive energy purchase cost of APs is reduced by 12.16%, the proposed model verifies the sustainability co-optimization and mutual benefits of source, storage and load multi-interested subjects. Full article
Show Figures

Figure 1

16 pages, 541 KB  
Article
Strategies That Transform: Self-Regulation and Volitional Control as Keys to Academic Achievement
by Abílio Lourenço, Maria Olímpia Paiva and Sabina Valente
Soc. Sci. 2025, 14(5), 285; https://doi.org/10.3390/socsci14050285 - 5 May 2025
Viewed by 1836
Abstract
In recent years, research has highlighted a concerning lack of commitment and motivation among students on a global scale, leading to persistently low levels of competence across various areas of study. This phenomenon and its social consequences reveal a growing unease and an [...] Read more.
In recent years, research has highlighted a concerning lack of commitment and motivation among students on a global scale, leading to persistently low levels of competence across various areas of study. This phenomenon and its social consequences reveal a growing unease and an urgent need for sustainable solutions. Within the educational context, social cognitive theory explores self-regulated learning processes as the ability to manage and master a set of crucial factors for high-quality learning and academic excellence. Managing volitional control strategies is also essential in achieving academic success. The study aimed to analyze, through structural equation modeling, how self-regulated learning processes influence students’ academic performance. It also investigated how the volitional control strategies adopted by students might mediate between self-regulated learning and academic performance. The sample included 647 students (Mage = 12.9) from the primary education cycle in Portuguese schools. The results showed that students with higher levels of self-regulated learning achieve better academic outcomes and more frequently employ volitional control strategies. Consequently, students who apply more volitional control strategies obtain superior academic performance, confirming the mediating role of these strategies. Some educational implications are discussed. Full article
Show Figures

Figure 1

22 pages, 335 KB  
Article
Non-Minimal Einstein–Dirac-Axion Theory: Spinorization of the Early Universe Induced by Curvature
by Alexander B. Balakin and Anna O. Efremova
Symmetry 2025, 17(5), 663; https://doi.org/10.3390/sym17050663 - 27 Apr 2025
Viewed by 455
Abstract
A new non-minimal version of the Einstein–Dirac-axion theory is established. This version of the non-minimal theory describing the interaction of gravitational, spinor, and axion fields is of the second order in derivatives in the context of the Effective Field Theory and is of [...] Read more.
A new non-minimal version of the Einstein–Dirac-axion theory is established. This version of the non-minimal theory describing the interaction of gravitational, spinor, and axion fields is of the second order in derivatives in the context of the Effective Field Theory and is of the first order in the spinor particle number density. The model Lagrangian contains four parameters of non-minimal coupling and includes, in addition to the Riemann tensor, Ricci tensor, and Ricci scalar, as well as left-dual and right-dual curvature tensors. The pseudoscalar field appears in the Lagrangian in terms of trigonometric functions providing the discrete symmetry associated with axions, which is supported. The coupled system of extended master equations for the gravitational, spinor, and axion fields is derived; the structure of new non-minimal sources that appear in these master equations is discussed. Application of the established theory to the isotropic homogeneous cosmological model is considered; new exact solutions are presented for a few model sets of guiding non-minimal parameters. A special solution is presented, which describes an exponential growth of the spinor number density; this solution shows that spinor particles (massive fermions and massless neutrinos) can be born in the early Universe due to the non-minimal interaction with the spacetime curvature. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2025)
9 pages, 8350 KB  
Communication
Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation
by Xiaokai Hou, Yuewei Wang, Jun He and Junmin Wang
Photonics 2025, 12(5), 412; https://doi.org/10.3390/photonics12050412 - 24 Apr 2025
Viewed by 680
Abstract
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) [...] Read more.
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) atoms confined in a magneto-optical trap (MOT) with single-step Rydberg excitation using a 319-nm ultraviolet (UV) laser. A V-type three-level system involving the ground state 6S1/2 (F = 4), excited state 6P3/2 (F = 5), and Rydberg state (nP3/2 (mJ = +3/2)) is theoretically modeled to analyze the nonlinear dependence of the AT doublet’s asymmetry and interval on the cooling laser’s detuning. Experiments reveal that as the cooling laser detuning Δ1 decreases from −15 MHz to −10 MHz, the AT doublet exhibits increasing symmetry, while its interval shows a nonlinear decrease. Theoretical simulations based on the density matrix equation and Lindblad master equation align closely with experimental data, confirming the model’s validity. This study provides insights into quantum interference dynamics in multi-level systems and offers a systematic approach for optimizing precision measurements in cold atom spectroscopy. Full article
Show Figures

Figure 1

Back to TopTop