Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (279)

Search Parameters:
Keywords = micro-drilling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9364 KB  
Article
Experimental Study on Mechanical Properties of Rock Formations After Water Injection and Optimization of High-Efficiency PDC Bit Sequences
by Yusheng Yang, Qingli Zhu, Jingguang Sun, Dong Sui, Shuan Meng and Changhao Wang
Processes 2025, 13(10), 3204; https://doi.org/10.3390/pr13103204 - 9 Oct 2025
Abstract
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism [...] Read more.
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism of water injection on reservoir rocks. Based on an analysis of mechanical experimental characteristics, this study proposes a multi-scale collaborative optimization method: establish a single tooth–rock interaction model at the micro-scale through finite element simulation to optimize geometric cutting parameters; at the macro scale, adopt a differential bit design scheme. By comparing and analyzing the rock-breaking energy consumption characteristics of four-blade and five-blade bits, the most efficient rock-breaking configuration can be optimized. Based on Fluent simulation on the flow field scale, the nozzle configuration can be optimized to improve the bottom hole flow field. The research results provide important theoretical guidance and technical support for the personalized design of drill bits in the later stage of water injection development. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

17 pages, 2845 KB  
Article
Quantitative Mechanisms of Long-Term Drilling-Fluid–Coal Interaction and Strength Deterioration in Deep CBM Formations
by Qiang Miao, Hongtao Liu, Yubin Wang, Wei Wang, Shichao Li, Wenbao Zhai and Kai Wei
Processes 2025, 13(10), 3183; https://doi.org/10.3390/pr13103183 - 7 Oct 2025
Viewed by 193
Abstract
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula [...] Read more.
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula drilling fluid at 60 °C and 10.5 MPa for 0–30 days, followed by uniaxial and triaxial compression tests under confining pressures of 0/5/10/20 MPa. The fracture evolution was tracked using micro-indentation (µ-indentation), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), establishing a relationship between water absorption and strength. The results indicate a sharp decline in mechanical parameters within the first 5 days, after which they stabilized. Uniaxial compressive strength decreased from 36.85 MPa to 22.0 MPa (−40%), elastic modulus from 1.93 GPa to 1.07 GPa (−44%), cohesion from 14.5 MPa to 5.9 MPa (−59%), and internal friction angle from 24.9° to 19.8° (−20%). Even under 20 MPa confining pressure after 30 days, the strength loss reached 43%. Water absorption increased from 6.1% to 7.9%, showing a linear negative correlation with strength, with the slope increasing from −171 MPa/% (no confining pressure) to −808 MPa/% (20 MPa confining pressure). The matrix elastic modulus remained stable at 3.5–3.9 GPa, and mineral composition remained unchanged, confirming that the degradation was due to hydraulic wedging and lubrication of fractures rather than matrix damage. These quantitative thresholds provide direct evidence for predicting wellbore stability in deep CBM drilling. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

21 pages, 5385 KB  
Article
Research on the Mechanism and Process of Water-Jet-Guided Laser Annular Cutting for Hole Making in Inconel 718
by Qian Liu, Guoyong Zhao, Yugang Zhao, Shuo Yu and Guiguan Zhang
Micromachines 2025, 16(10), 1090; https://doi.org/10.3390/mi16101090 - 26 Sep 2025
Viewed by 370
Abstract
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable [...] Read more.
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable potential in the realm of gas film hole fabrication; however, its engineering application is hindered by the lack of synergy between processing quality and efficiency. To tackle this issue, this study achieves efficient coupling between a 1064 nm high-power laser and a stable water jet, leveraging a multi-focal water–light coupling mode. Furthermore, an “inside-to-outside” multi-pass ring-cutting drilling strategy is introduced, and the controlled variable method is employed to investigate the influence of laser single-pulse energy, scanning speed, and pulse frequency on the surface morphology and geometric accuracy of micro-holes. Building upon this foundation, micro-holes fabricated using optimized process parameters are analyzed and validated using scanning electron microscopy and energy-dispersive spectroscopy. The findings reveal that single-pulse energy is a pivotal parameter for achieving micro-hole penetration. By moderately increasing the scanning speed and pulse frequency, melt deposition and thermal accumulation effects can be effectively mitigated, thereby enhancing the surface morphology and machining precision of micro-holes. Specifically, when the single-pulse energy is set at 0.8 mJ, the scanning speed at 25 mm/s, and the pulse frequency at 300 kHz, high-quality micro-holes with an entrance diameter of 820 μm and a taper angle of 0.32° can be fabricated in approximately 60 s. The micro-morphology and element distribution of the micro-holes affirm that water-jet-guided laser processing exhibits exceptional performance in minimizing recast layers, narrowing the heat-affected zone, and preserving the smoothness of the hole wall. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

15 pages, 7089 KB  
Article
Investigation on the Effect of Dynamic Focus Feeding and Widening Path in Nanosecond Laser Drilling
by Jianke Di and Jian Li
Micromachines 2025, 16(10), 1081; https://doi.org/10.3390/mi16101081 - 25 Sep 2025
Viewed by 265
Abstract
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous [...] Read more.
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous drilled trench. Dynamic focus feeding and widening path can be employed to lessen the occlusion effect and both of them are always employed in laser helical drilling. However, Widening the trench needs to remove more volume of material and may bring certain negative effects such as lowering the recoil pressure as well as less splashing melt due to the limited constraint of trench wall. The effects of dynamic feeding the focal plane and widening the scanning path on the quality and efficiency in the nanosecond laser drilling process were investigated through laser drilling holes with diameter of 500 μm on a 300 μm thick GH4169 plate. Results show that dynamic focus feeding is beneficial in both drilling efficiency and drilling quality. Through laser helical drilling with dynamic focus feeding, micro through-hole can be fabricated in 5 s, and both smaller tilting angle of 0.073 rad and smaller heat-affected zone of 0.63 mm in radius can be obtained. Widening scanning path is helpful to perforating rapidly but leads to much more recast layer coating. the quality of the micro through-holes depends not only on the utilization efficiency of the laser energy, but also on high temperature spatter deposition, which is the source of the difference between different drilling strategies. Due to the low cost in equipment and the better hole quality, the laser drilling, especially laser helical drilling, has potential applications ranging from aerospace fields to normal fields such as the agricultural machinery industry. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

30 pages, 48007 KB  
Article
Advantages of Femtosecond Laser Microdrilling PDMS Membranes over Conventional Methods for Organ-on-a-Chip
by Chahinez Berrah, Daniel Sanchez-Garcia, Javier Rodriguez Vazquez Aldana and Andres Sanz-Garcia
J. Manuf. Mater. Process. 2025, 9(9), 300; https://doi.org/10.3390/jmmp9090300 - 1 Sep 2025
Viewed by 655
Abstract
Organ-on-a-chip (OoC) technology aims to replicate the functions of human organs and tissues. This study evaluates femtosecond laser micromachining (FLM) for producing PDMS membranes with controlled porosity as an alternative approach to conventional microfabrication for OoCs. Membranes of varying thicknesses were microdrilled, and [...] Read more.
Organ-on-a-chip (OoC) technology aims to replicate the functions of human organs and tissues. This study evaluates femtosecond laser micromachining (FLM) for producing PDMS membranes with controlled porosity as an alternative approach to conventional microfabrication for OoCs. Membranes of varying thicknesses were microdrilled, and the influence of laser parameters on microhole geometry was assessed, showing that pulse energy strongly affected hole diameter, whereas exposure time had a lesser impact. The heat-affected zone (HAZ) and taper angle, key indicators of microhole geometric quality, were also analyzed and found to be strongly dependent on membrane thickness. Prediction models were developed to guide parameter selection for future laser-based ablation processes. A numerical model that predicts plasma shielding effects provided further insight into the physics of PDMS laser ablation, revealing that higher pulse energies led to a marked increase in crater diameter. The fabricated membranes were integrated into an OoC device, onto which human mesenchymal stem cells were seeded. The results demonstrated strong cell adhesion, the rapid formation of a homogeneous monolayer, and no evidence of cytotoxicity. These findings confirm that FLM is a versatile and flexible technique for microdrilling PDMS membranes, enabling their effective integration into OoC. Full article
Show Figures

Figure 1

21 pages, 7226 KB  
Article
Machine Learning-Enhanced Nanoindentation for Characterizing Micromechanical Properties and Mineral Control Mechanisms of Conglomerate
by Yong Guo, Wenbo Zhang, Pengfei Li, Yuxuan Zhao, Zongjie Mu and Zhehua Yang
Appl. Sci. 2025, 15(17), 9541; https://doi.org/10.3390/app15179541 - 29 Aug 2025
Viewed by 445
Abstract
Conglomerate reservoirs present significant technical challenges during drilling operations due to their complex mineral composition and heterogeneous characteristics, yet the quantitative relationships between mineral composition and microscopic mechanical behavior remain poorly understood. To elucidate the variation patterns of conglomerate micromechanical properties and their [...] Read more.
Conglomerate reservoirs present significant technical challenges during drilling operations due to their complex mineral composition and heterogeneous characteristics, yet the quantitative relationships between mineral composition and microscopic mechanical behavior remain poorly understood. To elucidate the variation patterns of conglomerate micromechanical properties and their mineralogical control mechanisms, this study develops a novel multi-scale characterization methodology. This approach uniquely couples nanoindentation technology, micro-zone X-ray diffraction analysis, and machine learning algorithms to systematically investigate micromechanical properties of conglomerate samples from different regions. Hierarchical clustering algorithms successfully classified conglomerate micro-regions into three lithofacies categories with distinct mechanical differences: hard (elastic modulus: 81.90 GPa, hardness: 7.83 GPa), medium-hard (elastic modulus: 54.97 GPa, hardness: 3.87 GPa), and soft lithofacies (elastic modulus: 25.21 GPa, hardness: 1.15 GPa). Correlation analysis reveals that quartz (SiO2) content shows significant positive correlation with elastic modulus (r = 0.52) and hardness (r = 0.51), while clay minerals (r = −0.37) and plagioclase content (r = −0.48) exhibit negative correlations with elastic modulus. Mineral phase spatial distribution patterns control the heterogeneous characteristics of conglomerate micromechanical properties. Additionally, a random forest regression model successfully predicts mineral content based on hardness and elastic modulus measurements with high accuracy. These findings bridge the gap between microscopic mineral properties and macroscopic drilling performance, enabling real-time formation strength assessment and providing scientific foundation for optimizing drilling strategies in heterogeneous conglomerate formations. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

16 pages, 12855 KB  
Article
The Influence of Seafloor Gradient on Turbidity Current Flow Dynamics and Depositional Response: A Case Study from the Lower Gas-Bearing Interval of Huangliu Formation II, Yinggehai Basin
by Yong Xu, Lei Li, Guohua Zhang, Wei Zhou, Zhongpo Zhang, Jiaying Wei and Xing Zhao
J. Mar. Sci. Eng. 2025, 13(9), 1616; https://doi.org/10.3390/jmse13091616 - 24 Aug 2025
Viewed by 546
Abstract
The Huangliu Formation, Section I, Gas Group II, at the eastern X gas field of the Yinggehai Basin, hosts thick, irregularly deposited sandstone bodies. The genesis of these sedimentary sand bodies has remained unclear. Utilizing drilling logs, core samples, and 3D seismic data [...] Read more.
The Huangliu Formation, Section I, Gas Group II, at the eastern X gas field of the Yinggehai Basin, hosts thick, irregularly deposited sandstone bodies. The genesis of these sedimentary sand bodies has remained unclear. Utilizing drilling logs, core samples, and 3D seismic data from this field, this study integrates seismic geomorphology analysis, paleo-hydrodynamic reconstruction, and sedimentary numerical simulation to investigate the spatiotemporal evolution of the depositional system under micro-paleotopographic conditions during Gas Zone II sedimentation. Key conclusions include the development of seven morphologically diverse isolated sand bodies in the Lower II Gas Zone, covering areas of 1.4–13.4 km2 with thicknesses ranging from 8.0 to 42.0 m. These sand bodies consist predominantly of massive fine-grained sandstone, characterized by box-shaped gamma-ray (GR) log responses and U- or V-shaped seismic reflection configurations. Reconstruction of paleo-turbidity current hydrodynamics for the Lower II depositional period was achieved through analysis of topographic slope gradients and the dimensional constraints (width/depth) of confined channels. Critically, slope gradients within the intraslope basin prompted a transition from supercritical to subcritical flow states within turbidity currents. This hydraulic transformation drove alternating erosion and deposition along the seafloor topography, ultimately generating the observed irregular, isolated turbidite sand bodies. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

30 pages, 2129 KB  
Article
Theoretical and Simulation Study of CO2 Laser Pulse Coupled with Composite Mechanical Drill Bit for Rock-Breaking Technology
by Lei Tao, Hailu Li, Liangzhu Yan and Zhiyuan Zhou
Processes 2025, 13(8), 2619; https://doi.org/10.3390/pr13082619 - 19 Aug 2025
Viewed by 756
Abstract
Facing challenges of low efficiency and severe wear in deep hard formations with conventional drilling bits, this study investigates the synergistic rock-breaking technology combining a pulsed CO2 laser with mechanical bits. The background highlights the need for novel methods to enhance drilling [...] Read more.
Facing challenges of low efficiency and severe wear in deep hard formations with conventional drilling bits, this study investigates the synergistic rock-breaking technology combining a pulsed CO2 laser with mechanical bits. The background highlights the need for novel methods to enhance drilling speed in high-strength, abrasive strata where traditional bits struggle. The theoretical analysis explores the thermo-mechanical coupling mechanism, where pulsed laser irradiation rapidly heats the rock surface, inducing thermal stress cracks, micro-spallation, and strength reduction through mechanisms like mineral thermal expansion mismatch and pore fluid vaporization. This pre-damage layer facilitates subsequent mechanical fragmentation. The research employs finite element numerical simulations (using COMSOL Multiphysics with an HJC constitutive model and damage evolution criteria) to model the coupled laser–mechanical–rock interaction, capturing temperature fields, stress distribution, crack propagation, and assessing efficiency. The results demonstrate that laser pre-conditioning significantly achieves 90–120% higher penetration rates compared to mechanical-only drilling. The dominant spallation mechanism proves energy-efficient. Conclusions affirm the feasibility and significant potential of CO2 laser-assisted drilling for deep formations, contingent on optimized laser parameters, composite bit design (incorporating laser transmission, multi-head layout, and environmental protection), and addressing challenges, like high in-situ stress and drilling fluid interference through techniques like gas drilling. Future work should focus on high-power laser downhole transmission, adaptive control, and rigorous field validation. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

32 pages, 2285 KB  
Article
Bridging the Construction Productivity Gap—A Hierarchical Framework for the Age of Automation, Robotics, and AI
by Michael Max Bühler, Konrad Nübel, Thorsten Jelinek, Lothar Köhler and Pia Hollenbach
Buildings 2025, 15(16), 2899; https://doi.org/10.3390/buildings15162899 - 15 Aug 2025
Viewed by 1452
Abstract
The construction sector, facing a persistent productivity gap compared to other industries, is hindered by fragmented value streams, inconsistent performance metrics, and the limited scalability of process improvements. We introduce a pioneering, four-tiered hierarchical productivity framework to respond to these challenges. This innovative [...] Read more.
The construction sector, facing a persistent productivity gap compared to other industries, is hindered by fragmented value streams, inconsistent performance metrics, and the limited scalability of process improvements. We introduce a pioneering, four-tiered hierarchical productivity framework to respond to these challenges. This innovative approach integrates operational, tactical, strategic, and normative layers. At its core, the framework applies standardised, repeatable process steps—mapped using Value Stream Mapping (VSM)—to capture key indicators such as input efficiency, output effectiveness, and First-Time Quality (FTQ). These are then aggregated through takt time compliance, schedule reliability, and workload balance to evaluate trade synchronisation and flow stability. Higher-level metrics—flow efficiency, multi-resource utilisation, and ESG-linked performance—are integrated into an Overall Productivity Index (OPI). Building on a modular production model, the proposed framework supports real-time sensing, AI-driven monitoring, and intelligent process control, as demonstrated through an empirical case study of continuous process monitoring for Kelly drilling operations. This validation illustrates how sensor-equipped machinery and machine learning algorithms can automate data capture, map observed activities to standardised process steps, and detect productivity deviations in situ. This paper contributes to a multi-scalar measurement architecture that links micro-level execution with macro-level decision-making. It provides a foundation for real-time monitoring, performance-based coordination, and data-driven innovation. The framework is applicable across modular construction, digital twins, and platform-based delivery models, offering benefits beyond specialised foundation work to all construction trades. Grounded in over a century of productivity research, the approach demonstrates how emerging technologies can deliver measurable and scalable improvements. Framing productivity as an integrative, actionable metric enables sector-wide performance gains. The framework supports construction firms, technology providers, and policymakers in advancing robust, outcome-oriented innovation strategies. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

23 pages, 9592 KB  
Article
Study on Laser Drilling of Micro-Holes Using a Breakthrough Detection Method
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Materials 2025, 18(16), 3764; https://doi.org/10.3390/ma18163764 - 11 Aug 2025
Viewed by 601
Abstract
Achieving high efficiency and quality in millisecond pulsed laser drilling of metallic through-holes is contingent on precise process control. This study introduces a penetration detection-based method to determine the pulse count threshold, effectively overcoming the limitations of conventional approaches. We systematically investigated the [...] Read more.
Achieving high efficiency and quality in millisecond pulsed laser drilling of metallic through-holes is contingent on precise process control. This study introduces a penetration detection-based method to determine the pulse count threshold, effectively overcoming the limitations of conventional approaches. We systematically investigated the effects of pulse energy, defocus, and beam expansion ratio on the drilling of 3 mm thick 304 stainless steel and TC4 titanium alloy. The experiments revealed that for stainless steel 304, the minimum taper angle was achieved at a pulse energy of 2.2 J, a defocus amount of −0.5 mm, and a beam expansion ratio of 2.5. Additionally, relatively high drilling efficiency was observed when the pulse energy ranged from 2.6 to 2.8 J, the defocus amount was −1 to 0 mm, and the beam expansion ratio was 3 to 4. For titanium alloy TC4, the minimum taper angle was achieved at a pulse energy of 2.6 J, a defocus amount of −0.5 mm, and a beam expansion ratio of 3.5. High drilling efficiency was recorded when the pulse energy was 2.8 J, the defocus amount was −0.5 mm, and the beam expansion ratio ranged from 2.5 to 3. When stainless steel 304 and titanium alloy TC4 were processed using the same laser parameters, the drilling efficiency of stainless steel 304 was higher than that of titanium alloy TC4 under the same conditions. This work provides a practical process control strategy and a valuable parameter database for high-quality, efficient laser drilling of these industrially important metals. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Figure 1

13 pages, 8245 KB  
Article
Numerical Simulation and Experimental Study of Millisecond Percussion Drilling in Titanium Alloy
by Liang Wang, Long Xu, Changjian Wu, Yefei Rong and Kaibo Xia
Materials 2025, 18(15), 3719; https://doi.org/10.3390/ma18153719 - 7 Aug 2025
Viewed by 477
Abstract
This study addresses the challenge of drilling film-cooling holes in the turbine blades of aircraft engines. Titanium alloy TC4 was selected as the experimental material. The laser-drilling process was simulated with ANSYS to determine optimal parameters, which were subsequently applied in machining trials. [...] Read more.
This study addresses the challenge of drilling film-cooling holes in the turbine blades of aircraft engines. Titanium alloy TC4 was selected as the experimental material. The laser-drilling process was simulated with ANSYS to determine optimal parameters, which were subsequently applied in machining trials. An impact-drilling method was then used to evaluate how pulse width, pulse energy, and pulse count affect micro-hole entrance and exit diameters, taper, and roundness. Simulations revealed that pulse energy and pulse count predominantly govern entrance and exit diameters, whereas pulse count and pulse width exert a stronger influence on taper. Experiments confirmed that entrance and exit diameters increased as pulse energy rose from 2.0 J to 2.8 J; taper increased as pulse width widened from 0.6 ms to 1.4 ms; and entrance diameter, exit diameter, and taper all grew as pulse count rose from 40 to 60. Pulse width and pulse count also significantly affected hole roundness. Full article
Show Figures

Figure 1

23 pages, 3106 KB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 532
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

15 pages, 3563 KB  
Article
Process Optimization on Trepanning Drilling in Titanium Alloy Using a Picosecond Laser via an Orthogonal Experiment
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Micromachines 2025, 16(8), 846; https://doi.org/10.3390/mi16080846 - 24 Jul 2025
Cited by 4 | Viewed by 453
Abstract
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing [...] Read more.
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing distance, scanning speed, and the number of scans. An L25 (56) orthogonal array was employed for experimental design. The mean response and range analyses evaluated parameter impacts on micro-hole quality, revealing the influence mechanisms of these variables at different levels. The results indicate the following: (1) the scanning speed and laser power significantly affect entrance and exit micro-hole diameters; (2) the defocusing distance substantially influences micro-hole taper; (3) the laser power most critically impacts inlet roundness; (4) the defocusing distance, scanning speed, and laser power directly correlate with outlet roundness; (5) the number of scans exhibits weaker relationships with inlet/outlet diameters, taper, and roundness. A comprehensive balance method applied to orthogonal test results for process optimization yielded the following optimal parameters: 90% laser power (30 W total), −0.2 mm defocus, a 27 mm/s scanning speed, and 15 scans. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

25 pages, 10123 KB  
Article
Fabrication of Micro-Holes with High Aspect Ratios in Cf/SiC Composites Using Coaxial Waterjet-Assisted Nanosecond Laser Drilling
by Chenhu Yuan, Zenggan Bian, Yue Cao, Yinan Xiao, Bin Wang, Jianting Guo and Liyuan Sheng
Micromachines 2025, 16(7), 811; https://doi.org/10.3390/mi16070811 - 14 Jul 2025
Cited by 1 | Viewed by 568
Abstract
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly [...] Read more.
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly examined. The results reveal that, for the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in the Cf/SiC composite, the increasing of waterjet velocity enhances the material removal rate and micro-hole depth, but reduces the micro-hole diameter and taper angle. The coaxial waterjet isolates the laser-ablated region and cools down the corresponding region rapidly, leading to the formation of a mixture of SiC, SiO2, and Si on the surface. As the coaxial waterjet velocity increases, the morphology of residual surface products changes from a net-like structure to individual spheres. Coaxial waterjet-assisted nanosecond laser drilling, with a waterjet velocity of 9.61 m/s, achieves micro-holes with a good balance between efficiency and quality. For the fabrication of micro-holes with a high aspect ratio in Cf/SiC composites, micro-holes fabricated by nanosecond laser drilling in air exhibit obvious taper features, which should be ascribed to the combined effects of spattering slag, plasma, and energy dissipation. The application of coaxial waterjet-assisted nanosecond laser drilling on micro-holes fabricated by laser drilling in air effectively expands the hole diameter. The fabricated micro-holes have very small taper angles, with clean wall surfaces and almost no reaction products. This approach, combining nanosecond laser drilling in air followed by coaxial waterjet-assisted nanosecond laser drilling, offers a promising technique for fabricating high-quality micro-holes with high aspect ratios in Cf/SiC composites. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

19 pages, 4423 KB  
Review
Laser Active Optical Systems (LAOSs) for Material Processing
by Vladimir Chvykov
Micromachines 2025, 16(7), 792; https://doi.org/10.3390/mi16070792 - 2 Jul 2025
Viewed by 3081
Abstract
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser [...] Read more.
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser beams with tailored energy distribution across the aperture, making them ideal for material processing applications. This concept was first successfully implemented using metal vapor lasers as the gain medium. In these systems, material processing was achieved by using a laser beam that either carried the required energy profile or the image of the object itself. Later, other laser media were utilized for LAOSs, including barium vapor, strontium vapor, excimer XeCl lasers, and solid-state media. Additionally, during the development of these systems, several modifications were introduced. For example, Space-Time Light Modulators (STLMs) and CCD cameras were incorporated, along with the use of multipass amplifiers, disk-shaped or thin-disk (TD) solid-state laser amplifiers, and other advancements. These techniques have significantly expanded the range of power, energy, pulse durations, and operating wavelengths. Currently, TD laser amplifiers and STLMs based on Digital Light Processor (DLP) technology or Digital Micromirror Devices (DMDs) enhance the potential to develop LAOS devices for Subtractive and Additive Technologies (ST, AT), applicable in both macromachining (cutting, welding, drilling) and micro-nano processing. This review presents comparable characteristics and requirements for these various LAOS applications. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

Back to TopTop