Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = millimeter wave propagation measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6378 KB  
Article
Regular Wave Effects on the Hydrodynamic Performance of Fine-Mesh Nettings in Sampling Nets
by Zhiqiang Liu, Fuxiang Hu, Rong Wan, Shaojian Guo, Yucheng Wang and Cheng Zhou
Appl. Sci. 2025, 15(13), 7229; https://doi.org/10.3390/app15137229 - 27 Jun 2025
Cited by 1 | Viewed by 452
Abstract
Fine-mesh netting, with mesh dimensions of the order of a few millimeters, is widely used in sampling nets for the collection of larval and juvenile fishes. The wave force characteristics of fine-mesh netting significantly affect the operational performance of these nets. This study [...] Read more.
Fine-mesh netting, with mesh dimensions of the order of a few millimeters, is widely used in sampling nets for the collection of larval and juvenile fishes. The wave force characteristics of fine-mesh netting significantly affect the operational performance of these nets. This study employed both wave tank experiments and numerical simulations to analyze the hydrodynamic performance of fine-mesh netting under varying wave conditions. A series of numerical simulations and particle image velocimetry (PIV) experiments were conducted to investigate the damping effects of fine-mesh netting on wave propagation. The results revealed that horizontal wave forces increased with both the wave period and wave height. When the wave period was held constant, the drag and inertial coefficients of the netting generally decreased as the Reynolds number and the Keulegan–Carpenter (KC) number increased. The wave transmission coefficients of the netting decreased as the wave height increased for the same wave period. However, at a constant wave height, the transmission coefficients initially increased and then decreased with the increasing wave period. The water particle velocity was significantly affected by the netting, with a notable reduction in velocity downstream of the netting at both the wave crest and trough phases. The simulation results and PIV measurements of the water particle velocity field distribution were in good agreement. This study provides important insights for the design and optimization of sampling nets. Full article
Show Figures

Figure 1

11 pages, 4024 KB  
Article
Launch Experiment of Microwave Rocket Equipped with Six-Staged Reed Valve Air-Breathing System
by Kosuke Irie, Ayuto Manabe, Tomonori Nakatani, Tatsuki Kinoshita, Toshinobu Nomura, Matthias Weiand, Kimiya Komurasaki, Takahiro Shinya, Ryosuke Ikeda, Keito Ishita, Taku Nakai, Ken Kajiwara and Yasuhisa Oda
Aerospace 2025, 12(7), 577; https://doi.org/10.3390/aerospace12070577 - 25 Jun 2025
Viewed by 596
Abstract
Millimeter-wave-supported detonation (MSD) is a unique detonation phenomenon driven by a supersonically propagating ionization front, sustained by intense millimeter-wave beams. Microwave Rocket, which utilizes MSD to generate thrust from atmospheric air in a pulse detonation engine (PDE) cycle, is a promising low-cost alternative [...] Read more.
Millimeter-wave-supported detonation (MSD) is a unique detonation phenomenon driven by a supersonically propagating ionization front, sustained by intense millimeter-wave beams. Microwave Rocket, which utilizes MSD to generate thrust from atmospheric air in a pulse detonation engine (PDE) cycle, is a promising low-cost alternative to conventional chemical propulsion systems for space transportation. However, insufficient air intake during repetitive PDE cycles has limited achievable thrust performance. To address this issue, a model equipped with a six-stage reed valve system (36 valves in total) was developed to ensure sufficient air intake, which measured 500 mm in length, 28 mm in radius, and 539 g in weight. Launch demonstration experiments were conducted using a 170 GHz, 550 kW gyrotron developed at the National Institutes for Quantum Science and Technology (QST). Continuous thrust was successfully generated by irradiating up to 50 pulses per experiment at each frequency between 75 and 150 Hz, in 25 Hz increments, corresponding duty cycles ranging from 0.09 to 0.18. A maximum thrust of 9.56 N and a momentum coupling coefficient Cm of 116 N/MW were obtained. These values represent a fourfold increase compared to previous launch experiments without reed valves, thereby demonstrating the effectiveness of the reed valve configuration in enhancing thrust performance. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion (2nd Edition))
Show Figures

Figure 1

10 pages, 3292 KB  
Article
Application of Highly Spatially Resolved Area Array Velocity Measurement in the Cracking Behavior of Materials
by Long Chen, Longhuang Tang, Heli Ma, Wei Gu, Cangli Liu, Xing Jia, Tianjiong Tao, Shenggang Liu, Yongchao Chen, Xiang Wang, Jian Wu, Chengjun Li and Jidong Weng
Electronics 2025, 14(9), 1732; https://doi.org/10.3390/electronics14091732 - 24 Apr 2025
Cited by 1 | Viewed by 482
Abstract
Understanding microscale dynamic behavior in heterogeneous materials (e.g., polycrystalline or semiconductor systems) under impact loading requires diagnostics capable of resolving ~100 μm features. This study introduces a 19-core fiber-optic array probe with 100 μm spatial resolution, integrated with DISAR velocimetry on a light [...] Read more.
Understanding microscale dynamic behavior in heterogeneous materials (e.g., polycrystalline or semiconductor systems) under impact loading requires diagnostics capable of resolving ~100 μm features. This study introduces a 19-core fiber-optic array probe with 100 μm spatial resolution, integrated with DISAR velocimetry on a light gas gun platform, enabling two-dimensional continuous measurement of free-surface velocity. The system overcomes limitations of conventional single-point methods (e.g., VISAR’s millimeter-scale resolution and reflectivity constraints) by achieving nanosecond temporal resolution and sub-nanometer displacement sensitivity. Under ~8 GPa impact loading, the probe captures spatiotemporal velocity heterogeneity in polycrystalline materials, including localized pull-back signals and periodic oscillations caused by shock wave reflections at microstructural interfaces. These observations reveal dynamic processes such as damage initiation and evolution, directly linking velocity profiles to microscale material response. The results provide experimental evidence of how grain-scale defects influence shock propagation and energy dissipation, advancing predictive models for extreme-condition material performance. This high-resolution, multi-channel approach offers a paradigm shift in diagnosing heterogeneous material behavior under high-strain-rate loading. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Sensing Technology)
Show Figures

Figure 1

16 pages, 2965 KB  
Article
Symmetry Breaking as a Basis for Characterization of Dielectric Materials
by Dubravko Tomić and Zvonimir Šipuš
Sensors 2025, 25(2), 532; https://doi.org/10.3390/s25020532 - 17 Jan 2025
Viewed by 942
Abstract
This paper introduces a novel method for measuring the dielectric permittivity of materials within the microwave and millimeter wave frequency ranges. The proposed approach, classified as a guided wave transmission system, employs a periodic transmission line structure characterized by mirror/glide symmetry. The dielectric [...] Read more.
This paper introduces a novel method for measuring the dielectric permittivity of materials within the microwave and millimeter wave frequency ranges. The proposed approach, classified as a guided wave transmission system, employs a periodic transmission line structure characterized by mirror/glide symmetry. The dielectric permittivity is deduced by measuring the transmission properties of such structure when presence of the dielectric material breaks the inherent symmetry of the structure and consequently introduce a stopband in propagation characteristic. To explore the influence of symmetry breaking on propagation properties, an analytical dispersion equation, for both symmetries, is formulated using the Rigorous Coupled Wave Analysis (RCWA) combined with the matrix transverse resonance condition. Based on the analytical equation, an optimization procedure and linearized model for a sensing structure is obtained, specifically for X-band characterization of FR4 substrates. The theoretical results of the model are validated with full wave simulations and experimentally. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

14 pages, 7591 KB  
Article
Acoustic Signal Reconstruction Across Water–Air Interface Through Millimeter-Wave Radar Micro-Vibration Detection
by Yuchen Du, Xiaolong Cao, Yiguang Yang, Tongchang Zhang, Jiaqi Yuan, Tengyuan Cui and Jianquan Yao
J. Mar. Sci. Eng. 2024, 12(11), 1989; https://doi.org/10.3390/jmse12111989 - 4 Nov 2024
Viewed by 1571
Abstract
Water surface micro-amplitude waves (WSMWs) of identical frequency are elicited as acoustic waves propagating through water. This displacement can be translated into an intermediate frequency (IF) phase shift through transmitting a frequency modulated continuous wave (FMCW) towards the water surface by a millimeter-wave [...] Read more.
Water surface micro-amplitude waves (WSMWs) of identical frequency are elicited as acoustic waves propagating through water. This displacement can be translated into an intermediate frequency (IF) phase shift through transmitting a frequency modulated continuous wave (FMCW) towards the water surface by a millimeter-wave radar, and information transmission across the water–air interface is achieved via the signal reconstruction method. In this paper, a novel mathematical model based on energy conversion from underwater acoustic to vibration (ECUAV) is presented. This method was able to obtain WSMW vibration information directly by measuring the sound source level (SL). An acoustic electromagnetic wave-based information transmission (AEIT) system was integrated within the water tank environment. The measured distribution of SL within the frequency range of 100 Hz to 300 Hz exhibited the same amplitude variation trend as predicted by the ECUAV model. Thus, the WSMW formation process at 135 Hz was simulated, and the phase information was extracted. The initial vibration information was retrieved through a combination of phase unwinding and Butterworth digital filtering. Fourier transform was applied to the vibrational data to accurately reproduce the acoustic frequency of underwater nodes. Finally, the dual-band binary frequency shift keying (BFSK) modulated underwater encoding acoustic signal was effectively recognized and reconstructed by the AEIT system. Full article
Show Figures

Figure 1

19 pages, 3745 KB  
Article
A Three-Dimensional Fully Polarized Millimeter-Wave Hybrid Propagation Channel Model for Urban Microcellular Environments
by Chunzhi Hou, Qingliang Li, Jinpeng Zhang, Zhensen Wu, Yushi Zhang, Lixin Guo, Xiuqin Zhu and Pengbo Du
Electronics 2024, 13(18), 3629; https://doi.org/10.3390/electronics13183629 - 12 Sep 2024
Viewed by 838
Abstract
Millimeter-wave channel modeling is the basis of fifth-generation (5G) communication network design and applications. In urban microcellular environments, the roughness of wall surfaces can be comparable to the wavelengths of millimeter waves, resulting in walls that cannot be considered as smooth surfaces. Therefore, [...] Read more.
Millimeter-wave channel modeling is the basis of fifth-generation (5G) communication network design and applications. In urban microcellular environments, the roughness of wall surfaces can be comparable to the wavelengths of millimeter waves, resulting in walls that cannot be considered as smooth surfaces. Therefore, channel modeling methods based on only traditional three-dimensional ray tracing (RT) or the three-dimensional parabolic equation (PE) result in the limited computational accuracy of millimeter-wave channel models for urban environments. Based on the scattering theory of a rough surface and the typical scattering characteristics of a millimeter wave, the end field of the three-dimensional vector PE is regarded as the initial field of three-dimensional RT. Moreover, the number of scattered rays and scattering angles are introduced. Finally, a three-dimensional fully polarized millimeter-wave hybrid propagation channel model (3DFPHPCM) is proposed. The proposed model improves the computational accuracy of a single deterministic model. Millimeter-wave channel measurements in non-line-of-sight (NLOS) environments were carried out to verify and optimize the proposed 3DFPHPCM. The results show that the root mean square error (RMSE) and mean absolute error (MAE) of the proposed 3DFPHPCM are both minimized when compared to three-dimensional RT or the three-dimensional PE, which indicates that the proposed 3DFPHPCM has higher computational accuracy. Moreover, its runtime is the shortest among the methods. The results presented herein provide technical support for the layout of base stations. Full article
Show Figures

Figure 1

24 pages, 14435 KB  
Article
Propagation Modeling of Unmanned Aerial Vehicle (UAV) 5G Wireless Networks in Rural Mountainous Regions Using Ray Tracing
by Shujat Ali, Asma Abu-Samah, Nor Fadzilah Abdullah and Nadhiya Liyana Mohd Kamal
Drones 2024, 8(7), 334; https://doi.org/10.3390/drones8070334 - 19 Jul 2024
Cited by 10 | Viewed by 3779
Abstract
Deploying 5G networks in mountainous rural regions can be challenging due to its unique and challenging characteristics. Attaching a transmitter to a UAV to enable connectivity requires a selection of suitable propagation models in such conditions. This research paper comprehensively investigates the signal [...] Read more.
Deploying 5G networks in mountainous rural regions can be challenging due to its unique and challenging characteristics. Attaching a transmitter to a UAV to enable connectivity requires a selection of suitable propagation models in such conditions. This research paper comprehensively investigates the signal propagation and performance under multiple frequencies, from mid-band to mmWaves range (3.5, 6, 28, and 60 GHz). The study focuses on rural mountainous regions, which were empirically simulated based on the Skardu, Pakistan, region. A complex 3D ray tracing method carefully figures out the propagation paths using the geometry of a 3D environment and looks at the effects in line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. The analysis considers critical parameters such as path loss, received power, weather loss, foliage loss, and the impact of varying UAV heights. Based on the analysis and regression modeling techniques, quadratic polynomials were found to accurately model the signal behavior, enabling signal strength predictions as a function of distances between the user and an elevated drone. Results were analyzed and compared with suburban areas with no mountains but more compact buildings surrounding the Universiti Kebangsaan Malaysia (UKM) campus. The findings highlight the need to identify the optimal height for the UAV as a base station, characterize radio channels accurately, and predict coverage to optimize network design and deployment with UAVs as additional sources. The research offers valuable insights for optimizing signal transmission and network planning and resolving spectrum-management difficulties in mountainous areas to enhance wireless communication system performance. The study emphasizes the significance of visualizations, statistical analysis, and outlier detection for understanding signal behavior in diverse environments. Full article
Show Figures

Figure 1

18 pages, 906 KB  
Article
CRT-Based Clock Synchronization for Millimeter-Wave Communication with Asymmetric Propagation Delays
by Shufeng Tan, Qifei Wang, Ziwei Wan and Fei Luo
Electronics 2024, 13(13), 2441; https://doi.org/10.3390/electronics13132441 - 21 Jun 2024
Cited by 2 | Viewed by 1165
Abstract
The rapid advancement of millimeter-wave communication technology has presented new challenges for time synchronization, driven by the need for high-speed and low-latency data transmission. Ethernet synchronization technologies, such as Precise Time Protocol (PTP), have emerged to overcome the limitations of point-to-point architecture and [...] Read more.
The rapid advancement of millimeter-wave communication technology has presented new challenges for time synchronization, driven by the need for high-speed and low-latency data transmission. Ethernet synchronization technologies, such as Precise Time Protocol (PTP), have emerged to overcome the limitations of point-to-point architecture and enable precise synchronization across multiple devices. A key drawback of conventional PTP is its reliance on symmetric packet exchange delays, which may not hold in real-world scenarios where there is relative mobility between master and slave nodes, leading to asymmetric propagation delays and clock offset errors. To address this issue, a novel clock synchronization protocol that integrates Chinese Remainder Theory (CRT) has been proposed. This protocol enhances conventional PTP by incorporating distance estimation based on CRT using multi-carrier phase measurement. By combining a coarse estimation of one-way propagation delay from conventional PTP with a fine estimation of remainder distance from CRT, the protocol accurately determines the distance between master and slave nodes, reducing motion errors and enhancing clock synchronization accuracy. Simulation results indicate that the Root Mean Square Error (RMSE) of distance estimation remains below 105 m, with a corresponding motion time error of approximately 0.01 picosecond. Full article
Show Figures

Figure 1

11 pages, 2465 KB  
Article
Behind the Door: Practical Parameterization of Propagation Parameters for IEEE 802.11ad Use Cases
by Luciano Ahumada, Erick Carreño, Albert Anglès, Diego Dujovne and Pablo Palacios Játiva
Technologies 2024, 12(6), 85; https://doi.org/10.3390/technologies12060085 - 7 Jun 2024
Cited by 2 | Viewed by 1853
Abstract
The integration of the 60 GHz band into the IEEE 802.11 standard has revolutionized indoor wireless services. However, this band presents unique challenges to indoor wireless communication infrastructure, originally designed to handle data traffic in residential and office environments. Estimating 60 GHz signal [...] Read more.
The integration of the 60 GHz band into the IEEE 802.11 standard has revolutionized indoor wireless services. However, this band presents unique challenges to indoor wireless communication infrastructure, originally designed to handle data traffic in residential and office environments. Estimating 60 GHz signal propagation in indoor settings is particularly complicated due to dynamic contextual factors, making it essential to ensure adequate coverage for all connected devices. Consequently, empirical channel modeling plays a pivotal role in understanding real-world behavior, which is characterized by a complex interplay of stationary and mobile elements. Given the highly directional nature of 60 GHz propagation, this study addresses a seemingly simple but important question: what is the impact of employing highly directive antennas when deviating from the line of sight? To address this question, we conducted an empirical measurement campaign of wireless channels within an office environment. Our assessment focused on power losses and distribution within an angular range while an indoor base station served indoor users, simulating the operation of an IEEE 802.11ad high-speed WLAN at 60 GHz. Additionally, we explored scenarios with and without pedestrian movement in the vicinity of wireless terminals. Our observations reveal the presence of significant antenna lobes even in obstructed links, indicating potential opportunities to use angular combiners or beamformers to enhance link availability and the data rate. This empirical study provides valuable information and channel parameters to simulate 60 GHz millimeter wave (mm-wave) links in indoor environments, paving the way for more efficient and robust wireless communication systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

30 pages, 8167 KB  
Article
Performance Evaluation and Analysis of Urban-Suburban 5G Cellular Networks
by Aymen I. Zreikat and Shinu Mathew
Computers 2024, 13(4), 108; https://doi.org/10.3390/computers13040108 - 22 Apr 2024
Cited by 9 | Viewed by 6051
Abstract
5G is the fifth-generation technology standard for the new generation of cellular networks. Combining 5G and millimeter waves (mmWave) gives tremendous capacity and even lower latency, allowing you to fully enjoy the 5G experience. 5G is the successor to the fourth generation (4G) [...] Read more.
5G is the fifth-generation technology standard for the new generation of cellular networks. Combining 5G and millimeter waves (mmWave) gives tremendous capacity and even lower latency, allowing you to fully enjoy the 5G experience. 5G is the successor to the fourth generation (4G) which provides high-speed networks to support traffic capacity, higher throughput, and network efficiency as well as supporting massive applications, especially internet-of-things (IoT) and machine-to-machine areas. Therefore, performance evaluation and analysis of such systems is a critical research task that needs to be conducted by researchers. In this paper, a new model structure of an urban-suburban environment in a 5G network formed of seven cells with a central urban cell (Hot spot) surrounded by six suburban cells is introduced. With the proposed model, the end-user can have continuous connectivity under different propagation environments. Based on the suggested model, the related capacity bounds are derived and the performance of 5G network is studied via a simulation considering different parameters that affect the performance such as the non-orthogonality factor, the load concentration in both urban and suburban areas, the height of the mobile, the height of the base station, the radius, and the distance between base stations. Blocking probability and bandwidth utilization are the main two performance measures that are studied, however, the effect of the above parameters on the system capacity is also introduced. The provided numerical results that are based on a network-level call admission control algorithm reveal the fact that the investigated parameters have a major influence on the network performance. Therefore, the outcome of this research can be a very useful tool to be considered by mobile operators in the network planning of 5G. Full article
Show Figures

Figure 1

25 pages, 7776 KB  
Article
Distributed MIMO Measurements for Integrated Communication and Sensing in an Industrial Environment
by Christian Nelson, Xuhong Li, Aleksei Fedorov, Benjamin Deutschmann and Fredrik Tufvesson
Sensors 2024, 24(5), 1385; https://doi.org/10.3390/s24051385 - 21 Feb 2024
Cited by 4 | Viewed by 2405
Abstract
Many concepts for future generations of wireless communication systems use coherent processing of signals from many distributed antennas. The aim is to improve communication reliability, capacity, and energy efficiency and provide possibilities for new applications through integrated communication and sensing. The large bandwidths [...] Read more.
Many concepts for future generations of wireless communication systems use coherent processing of signals from many distributed antennas. The aim is to improve communication reliability, capacity, and energy efficiency and provide possibilities for new applications through integrated communication and sensing. The large bandwidths available in the higher bands have inspired much work regarding sensing in the millimeter-wave (mmWave) and sub-THz bands; however, the sub-6 GHz cellular bands will still be the main provider of wide cellular coverage due to the more favorable propagation conditions. In this paper, we present a measurement system and results of sub-6 GHz distributed multiple-input-multiple-output (MIMO) measurements performed in an industrial environment. From the measurements, we evaluated the diversity for both large-scale and small-scale fading and characterized the link reliability. We also analyzed the possibility of multistatic sensing and positioning of users in the environment, with the initial results showing a mean-square error below 20 cm on the estimated position. Further, the results clearly showed that new channel models are needed that are spatially consistent and deal with the nonstationary channel properties among the antennas. Full article
(This article belongs to the Special Issue Sensing Technologies and Wireless Communications for Industrial IoT)
Show Figures

Figure 1

9 pages, 3670 KB  
Communication
Time Domain Simulated Characterization of the Coplanar Waveguide in an On-Chip System for Millimeter Waveform Metrology
by Kejia Zhao, He Chen, Xiangjun Li, Jie Sun, Bo Li, Dexian Yan and Lanlan Li
Electronics 2024, 13(1), 145; https://doi.org/10.3390/electronics13010145 - 28 Dec 2023
Cited by 1 | Viewed by 1398
Abstract
We investigate the time domain characterization of a coplanar waveguide (CPW) based on an on-chip electro-optic sampling (EOS) system for millimeter waveform metrology. The CPW is fabricated on a thin layer of low-temperature gallium arsenide (LT-GaAs), and the substrate material is GaAs. A [...] Read more.
We investigate the time domain characterization of a coplanar waveguide (CPW) based on an on-chip electro-optic sampling (EOS) system for millimeter waveform metrology. The CPW is fabricated on a thin layer of low-temperature gallium arsenide (LT-GaAs), and the substrate material is GaAs. A femtosecond laser generates and detects ultrashort pulses on the CPW. The forward propagating pulses are simulated using a simplified current source for the femtosecond laser at different positions on the CPW for the first time. Then, the influences of the CPW geometry parameters on the measured pulses are discussed. The varying slot width has larger influences on the amplitude of millimeter wave pulses than the center conductor width and the pumping gap. Finally, in the frequency range of 10 GHz to 500 GHz, the transfer functions calculated by the time domain pulses are in good agreement with the transfer functions calculated by the frequency domain ports. The above results are important for improving the measurement precision of the millimeter waveform on the CPW for millimeter waveform metrology. Full article
Show Figures

Figure 1

22 pages, 2721 KB  
Article
Injection Compression Molding of LDS-MID for Millimeter Wave Applications
by Marius Wolf, Kai Werum, Wolfgang Eberhardt, Thomas Günther and André Zimmermann
J. Manuf. Mater. Process. 2023, 7(5), 184; https://doi.org/10.3390/jmmp7050184 - 13 Oct 2023
Cited by 2 | Viewed by 2989
Abstract
LDS-MIDs (laser direct structured mechatronic integrated devices) are 3D (three-dimensional) circuit carriers that are used in many applications with a focus on antennas. However, thanks to the rising frequencies of HF (high-frequency) systems in 5G and radar applications up to the mmWave (millimeter [...] Read more.
LDS-MIDs (laser direct structured mechatronic integrated devices) are 3D (three-dimensional) circuit carriers that are used in many applications with a focus on antennas. However, thanks to the rising frequencies of HF (high-frequency) systems in 5G and radar applications up to the mmWave (millimeter wave) region, the requirements regarding the geometrical accuracy and minimal wall thicknesses for proper signal propagation in mmWave circuits became more strict. Additionally, interest in combining those with 3D microstructures like trenches or bumps for optimizing transmission lines and subsequent mounting processes is rising. The change from IM (injection molding) to ICM (injection compression molding) could offer a solution for improving the 3D geometries of LDS-MIDs. To enhance the scientific insight into this process variant, this paper reports on the manufacturing of LDS-MIDs for mmWave applications. Measurements of the warpage, homogeneity of local wall thicknesses, and replication accuracy of different trenches and bumps for mounting purposes are presented. Additionally, the effect of a change in the manufacturing process from IM to ICM regarding the dielectric properties of the used thermoplastics is reported as well as the influence of ICM on the properties of LDS metallization—in particular the metallization roughness and adhesion strength. This paper is then concluded by reporting on the HF performance of CPWs (coplanar waveguides) on LDS-MIDs in comparison to an HF-PCB. Full article
Show Figures

Figure 1

17 pages, 9555 KB  
Article
Dual-Mode Conical Horn Antenna with 2-D Azimuthal Monopulse Pattern for Millimeter-Wave Applications
by Asrin Piroutiniya, Mohamad Hosein Rasekhmanesh, José Luis Masa-Campos, José Luis Calero-Rodríguez and Jorge A. Ruiz-Cruz
Sensors 2023, 23(19), 8157; https://doi.org/10.3390/s23198157 - 28 Sep 2023
Cited by 2 | Viewed by 2803
Abstract
In this paper, a novel concept of a three-dimensional full metal system including a Dual-Mode Converter (DMC) network integrated with a high-gain Conical Horn Antenna (CHA) is presented. This system is designed for 5G millimeter wave applications requiring monopulse operation at K-band ( [...] Read more.
In this paper, a novel concept of a three-dimensional full metal system including a Dual-Mode Converter (DMC) network integrated with a high-gain Conical Horn Antenna (CHA) is presented. This system is designed for 5G millimeter wave applications requiring monopulse operation at K-band (37.539 GHz). The DMC integrates two mode converters. They excite either the TE11cir or the TE01cir modes of the circular waveguide of the CHA. The input of the mode converters is the TE10rec mode of two independent WR-28 standard rectangular waveguide ports. By integrating the DMC with the CHA, the whole system, called a Dual-Mode Conical Horn Antenna (DM-CHA), is formed, radiating the sum (Σ) and difference (Δ) patterns associated to the monopulse operation. To adequately prevent the propagation of higher order modes and mode mutual coupling, this integration procedure is carefully designed and fabricated. To prove the performance of the design, the DMC network was fabricated using subtractive manufacturing by Computer Numerical Control (CNC) technology. The CHA was fabricated using additive manufacturing by Direct Metal Laser Sintering (DLMS) technology. Finally, the simulation and measurement results were exhaustively compared, including return loss, isolation, radiation pattern, and gain of the full DM-CHA structure. It is noteworthy that this system provided up to ±11° per beam in the angular of arrival detection to support the high data rate operation for 5G satellite communications in the millimeter-wave band. Full article
Show Figures

Figure 1

25 pages, 50556 KB  
Article
Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment
by Chunzhi Hou, Qingliang Li, Jinpeng Zhang, Yushi Zhang, Lixin Guo, Xiuqin Zhu, Hanjie Ji and Shuangde Li
Electronics 2023, 12(17), 3546; https://doi.org/10.3390/electronics12173546 - 22 Aug 2023
Cited by 1 | Viewed by 1474
Abstract
At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, [...] Read more.
At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments. Full article
Show Figures

Figure 1

Back to TopTop