Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (930)

Search Parameters:
Keywords = moisture damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3155 KB  
Article
Influence of Coarse Aggregate Geometry and Mineral Composition on the Durability of Asphalt Concrete
by Hussein K. Mohammad, Amjad H. Albayati and Mazen J. Al-Kheetan
Infrastructures 2025, 10(10), 263; https://doi.org/10.3390/infrastructures10100263 (registering DOI) - 4 Oct 2025
Abstract
The durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and [...] Read more.
The durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and elongated particle ratios and angularity, as well as mineral composition (quartz versus calcite), on asphalt mixture durability. The durability of mixtures was evaluated through Marshall properties as well as moisture susceptibility indicators, including the tensile strength ratio (TSR) and index of retained strength (IRS). Statistical analyses (ANOVA and t-tests) were also conducted to confirm the significance of the observed effects. Results showed that mixtures containing higher proportions of flat and elongated particles exhibited greater void content, reduced stability, and weaker moisture resistance, with the 1:5 flat-to-elongated ratio showing the most adverse impact (TSR 73.9%, IRS 69.2%). Conversely, increasing coarse aggregate angularity (CAA) enhanced mixture performance, with TSR values rising from 63.5% at 0% angularity to 81.2% at 100% angularity, accompanied by corresponding improvements in IRS. Mineral composition analysis further demonstrated that calcite-based aggregates achieved stronger bonding with asphalt binder and superior resistance to stripping compared to quartz-based ones. These findings confirm that aggregate geometry and mineralogy exert a decisive influence on asphalt mixture durability. They also highlight the need to revise current specifications that permit the use of uncrushed coarse aggregate in asphalt base courses, particularly when such layers may serve as surface courses in suburban or low-volume roads, where long-term resistance to moisture damage is critical. Full article
14 pages, 4934 KB  
Article
Thermal Regulation and Moisture Accumulation in Embankments with Insulation–Waterproof Geotextile in Seasonal Frost Regions
by Kun Zhang, Doudou Jin, Ze Zhang, Yuncheng Mao and Guoyu Li
Appl. Sci. 2025, 15(19), 10681; https://doi.org/10.3390/app151910681 - 2 Oct 2025
Abstract
As an effective engineering countermeasure against frost heave damage in seasonally frozen regions, thermal insulation boards (TIBs) were employed in embankments. This study established a test section featuring a thermal insulation–waterproof geotextile embankment in Dingxi, Gansu Province. Temperature and water content at various [...] Read more.
As an effective engineering countermeasure against frost heave damage in seasonally frozen regions, thermal insulation boards (TIBs) were employed in embankments. This study established a test section featuring a thermal insulation–waterproof geotextile embankment in Dingxi, Gansu Province. Temperature and water content at various positions and depths within both the thermal insulation embankment (TIE) and an ordinary embankment (OE) were monitored and compared to analyze the effectiveness of the TIB. Following the installation of the insulation layer, the temperature distribution within the embankment became more uniform. The TIB effectively impeded downward heat transfer (cold energy influx) during the winter and upward heat transfer (heat energy flux) during the warm season. However, the water content within the TIE was observed to be higher than that in the OE, with water accumulation notably occurring at the embankment toe. While the TIB successfully mitigated slope damage and superficial soil frost heave, the waterproof geotextile concurrently induced moisture accumulation at the embankment toe. Consequently, implementing complementary drainage measures is essential. In seasonally frozen areas characterized by dry weather and relatively high winter temperatures, the potential damage caused by concentrated rainfall events to embankments requires particular attention. Full article
(This article belongs to the Section Civil Engineering)
17 pages, 1731 KB  
Article
Hygrothermal Performance of Thermal Plaster Used as Interior Insulation: Identification of the Most Impactful Design Conditions
by Eleonora Leonardi, Marco Larcher, Alexandra Troi, Anna Stefani, Gianni Nerobutto and Daniel Herrera-Avellanosa
Buildings 2025, 15(19), 3559; https://doi.org/10.3390/buildings15193559 - 2 Oct 2025
Abstract
Internal insulation plasters enable historic building renovation without altering the external appearance of the wall. However, the use of internal insulation must be verified case-by-case through dynamic hygrothermal simulation, and the influence of input parameters on the results is not always clear. This [...] Read more.
Internal insulation plasters enable historic building renovation without altering the external appearance of the wall. However, the use of internal insulation must be verified case-by-case through dynamic hygrothermal simulation, and the influence of input parameters on the results is not always clear. This paper aims to (i) characterize a new lime-based insulating plaster with expanded recycled glass and aerogel through laboratory measurements, (ii) assess the damage criteria of the plaster under different boundary conditions through dynamic simulations, and (iii) identify the most impactful design conditions on the relative humidity behind insulation. This innovative plaster combines highly insulating properties (thermal conductivity of 0.0463 W/mK) with good capillary activity while also integrating recycled components without compromising performance. The relative humidity behind insulation remains below 95% in most simulated scenarios, with cases above this threshold found only in cold climates, particularly under high internal moisture loads. The parametric study shows that (i) in the analyzed stones, the thermal conductivity variation of the existing wall has a greater effect on the relative humidity behind insulation than the variation of the vapor resistance factor, (ii) the effect of insulation thickness on the relative humidity behind insulation depends on the difference in thermal resistance of the insulation and existing masonry layers, and (iii) internal moisture load and external climate directly impact the relative humidity behind insulation. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 5858 KB  
Article
Research on Deformation Behavior and Mechanisms of Concrete Under Hygrothermal Coupling Effects
by Mingyu Li, Chunxiao Zhang, Aiguo Dang, Xiang He, Jingbiao Liu and Xiaonan Liu
Buildings 2025, 15(19), 3514; https://doi.org/10.3390/buildings15193514 - 29 Sep 2025
Abstract
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were [...] Read more.
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were performed using a uniaxial compression test machine with synchronized multi-scale damage monitoring that integrated digital image correlation (DIC), acoustic emission (AE), and infrared thermography. The results demonstrated that hygrothermal coupling reduced concrete ductility significantly, in which the peak strain decreased from 0.36% (ambient) to 0.25% for both the 100 °C and 200 °C groups, while compressive strength declined to 42.8 MPa (−2.9%) and 40.3 MPa (−8.6%), respectively, with elevated elastic modulus. DIC analysis revealed the temperature-dependent failure mode reconstruction: progressive end cracking (max strain 0.48%) at ambient temperature transitioned to coordinated dual-end cracking with jump-type damage (abrupt principal strain to 0.1%) at 100 °C and degenerated to brittle fracture oriented along a singular path (principal strain band 0.015%) at 200 °C. AE monitoring indicated drastically reduced micro-damage energy barriers at 200 °C, where cumulative energy (4000 mV·ms) plummeted to merely 2% of the ambient group (200,000 mV·ms). Infrared thermography showed that energy aggregation shifted from “centralized” (ambient) to “edge-to-center migration” (200 °C), with intensified thermal shock effects in fracture zones (ΔT ≈ −7.2 °C). The study established that hygrothermal coupling weakens the aggregate-paste interfacial transition zone (ITZ) by concentrating the strain energy along singular weak paths and inducing brittle failure mode degeneration, which thereby provides theoretical foundations for fire-resistant design and catastrophic failure warning systems in concrete structures exposed to coupled environmental stressors. Full article
Show Figures

Figure 1

28 pages, 9915 KB  
Article
Mechanism of Herbaceous Plant Root Disturbance on Yongning Fortress Rammed Earth Heritage: A Case Study
by Xudong Chu, Xinliang Ji and Weicheng Han
Buildings 2025, 15(19), 3491; https://doi.org/10.3390/buildings15193491 - 27 Sep 2025
Abstract
This study investigated the Yongning Fortress ruins in Taiyuan through a comprehensive analytical approach employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), laser particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and ion chromatography (IC). The research focused on elucidating [...] Read more.
This study investigated the Yongning Fortress ruins in Taiyuan through a comprehensive analytical approach employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), laser particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and ion chromatography (IC). The research focused on elucidating the disturbance mechanisms and environmental impacts induced by the root systems of five representative herbaceous species on rammed earth structures. The results demonstrated distinct, species-specific disturbance patterns. Melica roots created three-dimensional network damage, Artemisia capillaris primarily caused deep root penetration, Fallopia aubertii exhibited coupled physical–chemical effects, Convolvulus arvensis induced shallow horizontal expansion damage, while Cirsium formed a heterogeneous structure characterized by dense taproots and loose lateral roots. Environmental conditions, particularly moisture content, significantly influenced disturbance intensity. All root activities led to common deterioration processes, including particle rounding, gradation degradation, and formation of organic–mineral composites. Notably, vegetation markedly altered soluble salt distribution patterns, with Cirsium increasing total salt content to 3.7 times that of undisturbed rammed earth (0.48%), while sulfate ion concentration (1.16 × 10−3) approached hazardous thresholds. The study established a theoretical framework linking plant traits, disturbance mechanisms, and environmental response, and proposed risk-based zoning strategies for preservation. These outcomes provide significant theoretical foundations and practical guidance for the scientific conservation of rammed earth heritage sites. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3029 KB  
Article
Polarization and Depolarization Current Characteristics of Cables at Different Water Immersion Stages
by Yuyang Jiao, Jingjiang Qu, Yingqiang Shang, Jingyue Ma, Jiren Chen, Jun Xiong and Zepeng Lv
Energies 2025, 18(19), 5094; https://doi.org/10.3390/en18195094 - 25 Sep 2025
Abstract
To address the insulation degradation caused by moisture intrusion due to damage to the outer sheath of power cables, this study systematically analyzed the charge transport characteristics of XLPE cables at different water immersion stages using polarization/depolarization current (PDC) measurements. An evaluation method [...] Read more.
To address the insulation degradation caused by moisture intrusion due to damage to the outer sheath of power cables, this study systematically analyzed the charge transport characteristics of XLPE cables at different water immersion stages using polarization/depolarization current (PDC) measurements. An evaluation method for assessing water immersion levels was proposed based on conductivity, charge density, and charge mobility. Experiments were conducted on commercial 10 kV XLPE cable samples subjected to accelerated water immersion for durations ranging from 0 to 30 days. PDC data were collected via a custom-built three-electrode measurement platform. The results indicated that with increasing immersion time, the decay rate of polarization/depolarization currents slowed, the steady-state current amplitude rose significantly, and the DC conductivity increased from 1.86 × 10−17 S/m to 2.70 × 10−15 S/m—a nearly two-order-of-magnitude increase. The Pearson correlation coefficient between charge mobility and immersion time reached 0.96, indicating a strong positive correlation. Additional tests on XLPE insulation slices showed a rapid rise in conductivity during early immersion, a decrease in breakdown voltage from 93.64 kV to 66.70 kV, and enhanced space charge accumulation under prolonged immersion and higher electric fields. The proposed dual-parameter criterion (conductivity and charge mobility) effectively distinguishes between early and advanced stages of cable water immersion, offering a practical approach for non-destructive assessment of insulation conditions and early detection of moisture intrusion, with significant potential for application in predictive maintenance and insulation diagnostics. Full article
Show Figures

Figure 1

28 pages, 1799 KB  
Review
A Rapid Review of Hygrothermal Performance Metrics for Innovative Materials in Building Envelope Retrofits
by Robin Hilbrecht, Cynthia A. Cruickshank, Christopher Baldwin and Nicholas Scharf
Energies 2025, 18(18), 5016; https://doi.org/10.3390/en18185016 - 21 Sep 2025
Viewed by 179
Abstract
With government, industry, and public pressure to decarbonize the building sector through reducing embodied and operational emissions, there have been a wide range of innovative materials used in building envelope retrofits. Although these innovative materials, such as super insulating materials, bio-based insulation, and [...] Read more.
With government, industry, and public pressure to decarbonize the building sector through reducing embodied and operational emissions, there have been a wide range of innovative materials used in building envelope retrofits. Although these innovative materials, such as super insulating materials, bio-based insulation, and many others, are assessed on thermal performance and code requirements before use in retrofits, there is no unified standard assessment metric for hygrothermal performance of innovative materials in building envelope retrofits. This paper performs a rapid review of the available literature from January 2013 to March 2025 on hygrothermal performance assessment metrics used in retrofits. Using rapid review methods to search for records in Scopus, Web of Science, and Google Scholar, fifty-nine publications were selected for bibliometric and qualitative analysis. Most selected publications include discussions and analysis of relative humidity in the wall assembly post retrofit, moisture content, and mould index within the envelope. There is a research gap in publications considering hygrothermal damage functions such as freeze–thaw index, relative humidity and temperature (RHT) index, or condensation prediction. There is also a research gap in country and climate studies and analyses of in situ retrofits with innovative materials, and occupant comfort post retrofit. Full article
Show Figures

Figure 1

19 pages, 2333 KB  
Article
Quantifying Moisture Susceptibility in Asphalt Mixtures Using Dynamic Mechanical Analysis
by Yanzhu Wang, Wanguo Zhang, Jincheng Wei, Yuanshun Xiong, Yuanhui Qiao and Xudong Wang
Coatings 2025, 15(9), 1109; https://doi.org/10.3390/coatings15091109 - 21 Sep 2025
Viewed by 224
Abstract
Moisture damage remains a primary distress mechanism in asphalt pavements, leading to reduced service life and viscoelastic property loss due to weakened asphalt–aggregate adhesion. This study evaluated moisture susceptibility in eight asphalt mixtures combining two aggregates (limestone/granite) and four binders (two neat, two [...] Read more.
Moisture damage remains a primary distress mechanism in asphalt pavements, leading to reduced service life and viscoelastic property loss due to weakened asphalt–aggregate adhesion. This study evaluated moisture susceptibility in eight asphalt mixtures combining two aggregates (limestone/granite) and four binders (two neat, two SBS-modified) using dynamic mechanical analysis (DMA). Thin-section specimens underwent DMA temperature sweeps under dry and water-immersed conditions to characterize shifts in viscoelastic properties. Results demonstrated that moisture exposure significantly reduced complex modulus values and shifted characteristic temperatures (T0, T1, T2, Tg) toward lower ranges, indicating compromised performance. Specifically, granite mixtures showed average reductions in T0, T1, and Tg of 2.9 °C, 1.8 °C, and 3.7 °C, respectively, compared to 2.1 °C, 1.5 °C, and 1.7 °C for limestone mixtures. The magnitude of these changes—quantified by residual modulus (RM) ratios and characteristic temperature differentials—effectively ranked mixture susceptibility, with granite mixtures and specific binders (A1, B1) showing higher sensitivity. Notably, minimum residual modulus (RMmin) values ranged from 28.2% to 65.8%, and its critical temperature (TRM) identified the most severe moisture damage conditions (approximately 40 °C for neat asphalt; 60 °C for modified asphalt). The DMA-derived indices correlated with surface free energy-based adhesion work, confirming the method’s reliability for rapid moisture sensitivity assessment. This approach provides an efficient basis for selecting moisture-resistant materials tailored to operational temperature environments. Full article
Show Figures

Figure 1

28 pages, 9916 KB  
Article
Understanding Surface Water Dynamics in Post-Mining Area Through Multi-Source Remote Sensing and Spatial Regression Analysis
by Anna Buczyńska, Dariusz Głąbicki, Anna Kopeć and Paulina Modlińska
Remote Sens. 2025, 17(18), 3218; https://doi.org/10.3390/rs17183218 - 17 Sep 2025
Viewed by 379
Abstract
Despite successful land reclamation efforts, post-mining areas are still prone to secondary effects of mineral extraction. These effects include surface deformations, damage to infrastructure and buildings, and periodic or permanent changes to surface water resources. This study focused on analyzing a former copper [...] Read more.
Despite successful land reclamation efforts, post-mining areas are still prone to secondary effects of mineral extraction. These effects include surface deformations, damage to infrastructure and buildings, and periodic or permanent changes to surface water resources. This study focused on analyzing a former copper mine in southwest Poland in terms of surface water changes, which may be caused by the restoration of groundwater conditions in the region after mine closure. The main objective of the study was to detect areas with statistically significant changes in surface water between 2015 and 2024, as well as to identify the main factors influencing the observed changes. The methodology integrated open remote sensing datasets from Landsat and Sentinel-1 missions for deriving spectral indices—Modified Normalized Difference Water Index (MNDWI) and Normalized Difference Moisture Index (NDMI), as well as Surface Soil Moisture index (SSM); spatial statistics methods, including Emerging Hot Spot analysis; and regression models—Random Forest Regression (RFR) and Geographically Weighted Regression (GWR). The results obtained indicated a general increase in vegetation water content, a reduction in the extent of surface water, and minor soil moisture changes during the analyzed period. The Emerging Hot Spot analysis revealed a number of new hot spots, indicating regions with statistically significant increases in surface water content in the study area. Out of the investigated regression models, global regression (RFR) outperformed local (GWR) models, with R2 ranging between 74.7% and 87.3% for the studied dependent variables. The most important factors in terms of influence were the distance from groundwater wells, surface topography, vegetation conditions and distance from active mining areas, while surface geology conditions and permeability had the least importance in the regression models. Overall, this study offers a comprehensive framework for integrating multi-source data to support the analysis of environmental changes in post-mining regions. Full article
Show Figures

Figure 1

13 pages, 2379 KB  
Article
A Novel In Vitro Dry Skin Model Using Minipig and Human Cadaver Skin for Evaluating Moisturizer Efficacy
by Ji-Woo Choe, Bae-Gon Kang, Jeong-hyun Hong, Kwanghyeon Liu and Kyung-Min Lim
Cosmetics 2025, 12(5), 203; https://doi.org/10.3390/cosmetics12050203 - 16 Sep 2025
Viewed by 456
Abstract
Moisturizers are key components of skincare products, and reliable test methods are essential for evaluating their barrier-repairing and hydrating efficacy. However, the viscous and waxy nature of many cosmetic moisturizers limits the applicability of conventional cell-based in vitro assays. In this study, we [...] Read more.
Moisturizers are key components of skincare products, and reliable test methods are essential for evaluating their barrier-repairing and hydrating efficacy. However, the viscous and waxy nature of many cosmetic moisturizers limits the applicability of conventional cell-based in vitro assays. In this study, we developed a novel in vitro dry skin model using epidermal sheets from minipig and human cadaver skin—models widely accepted in skin absorption research. To simulate dry skin conditions, various stimuli were applied, including the lipid-extracting solvent tert-butyl methyl ether (MTBE; 100%), 50/50 MTBE/Acetone solution (M/A), the irritant surfactant sodium dodecyl sulfate (SDS; 1%), ultraviolet B (UVB) irradiation (30 mJ/cm2), and tape stripping. Skin barrier disruption and stratum corneum damage were evaluated by assessing epidermal lipid integrity, histological alterations, transepidermal water loss (TEWL), and FITC-dextran permeation. All treatments induced significant dry skin conditions, as evidenced by disrupted lipid architecture, histological damage, and increased TEWL and FITC-dextran flux. Among them, M/A applied for 5 min produced the most consistent and reproducible changes across parameters. This protocol also yielded comparable results in human cadaver skin, supporting its applicability for evaluating the skin barrier-protective effects of cosmetic ingredients. Full article
Show Figures

Figure 1

6 pages, 1569 KB  
Proceeding Paper
The Extreme Storm over the Cyclades on 31 March 2025: The Role of Warmer Sea Surface Temperatures in the Intensification of the Event
by Theodoros H. Kondilis and Sotirios T. Arsenis
Environ. Earth Sci. Proc. 2025, 35(1), 27; https://doi.org/10.3390/eesp2025035027 - 12 Sep 2025
Viewed by 365
Abstract
On 31 March 2025, a severe thunderstorm system affected the Cyclades region, causing extensive flash floods on the islands of Paros and Mykonos and leading to significant material damage. This study investigates the meteorological characteristics of the event and focuses on the potential [...] Read more.
On 31 March 2025, a severe thunderstorm system affected the Cyclades region, causing extensive flash floods on the islands of Paros and Mykonos and leading to significant material damage. This study investigates the meteorological characteristics of the event and focuses on the potential role of elevated sea surface temperatures (SSTs) in intensifying the storm’s severity. The analysis is centered on the broader Aegean region (geographic extent: 41.25° N, 21.83° E to 34.30° N, 28.51° E), utilizing ERA5 reanalysis data from ECMWF. These data provide high-resolution information on the atmospheric and ocean surface conditions during the event. The primary research objective is to explore how warmer SSTs may have contributed to enhanced moisture in the lower troposphere and increased energy availability for convective storm development. The theoretical background and a preliminary data exploration suggest that elevated SSTs likely favored increased evaporation, enhanced low-level moisture transport, and greater atmospheric instability, leading to the development of deep convective clouds. This, in turn, may have intensified precipitation rates and elevated the flood risk. This study aims to contribute to a better understanding of the mechanisms behind such extreme weather events, particularly in island environments, and to explore the sea’s potential catalytic role under a changing climate. Full article
Show Figures

Figure 1

18 pages, 1899 KB  
Review
Comparative Review of Marshall and Superpave Mix Designs: Enhancing Asphalt Performance with Polymers
by Gulzar Hussain Jatoi, Giuseppe Loprencipe and Laura Moretti
Materials 2025, 18(18), 4273; https://doi.org/10.3390/ma18184273 - 12 Sep 2025
Viewed by 338
Abstract
The durability of asphalt pavements is crucial for sustainable road infrastructures. This systematic review compares the Marshall and Superpave asphalt mix design protocols, with a particular focus on the integration of polymer-modified bitumen (PMB) and rejuvenators. Although the Marshall method remains widely used [...] Read more.
The durability of asphalt pavements is crucial for sustainable road infrastructures. This systematic review compares the Marshall and Superpave asphalt mix design protocols, with a particular focus on the integration of polymer-modified bitumen (PMB) and rejuvenators. Although the Marshall method remains widely used for its simplicity and cost-efficiency, its empirical basis limits its effectiveness to meet modern pavement performance demands. In contrast, the Superpave system offers improved resistance to rutting, longer fatigue life, and better mitigation of moisture damage. The review traces the evolution of asphalt mix design, identifies current challenges, and emphasizes the need for transitioning toward performance-based frameworks. Special attention is given to the incorporation of polymers such as Styrene–Butadiene–Styrene (SBS), Styrene–Butadiene–Rubber (SBR), and Polyethylene (PE), which significantly enhance the mechanical properties of asphalt mixtures. The role of rejuvenators in restoring aged binders and enabling pavement recycling is also examined. Finally, the manuscript provides strategic recommendations for adopting Superpave to enhance pavement durability and reduce lifecycle maintenance costs. Overall, this comprehensive review advances knowledge on asphalt mix design, fostering innovation and sustainability while promoting long-term resilience in road pavement infrastructures. Full article
Show Figures

Graphical abstract

20 pages, 5799 KB  
Article
Preparation of Curcumin Nanocomposite Drug Delivery System and Its Therapeutic Efficacy on Skin Injury
by Ye Jin, Yuzhou Liu, Ying Wang, Xintong Liu, Qixuan Yu, Da Liu and Ning Cui
Gels 2025, 11(9), 727; https://doi.org/10.3390/gels11090727 - 11 Sep 2025
Viewed by 298
Abstract
Background: Skin injuries, such as chronic wounds and inflammatory skin diseases, often face limitations in treatment efficacy due to the low efficiency of transdermal drug delivery and insufficient local concentrations. Curcumin (CUR), a natural compound with anti-inflammatory and antioxidant properties, has demonstrated potential [...] Read more.
Background: Skin injuries, such as chronic wounds and inflammatory skin diseases, often face limitations in treatment efficacy due to the low efficiency of transdermal drug delivery and insufficient local concentrations. Curcumin (CUR), a natural compound with anti-inflammatory and antioxidant properties, has demonstrated potential in the repair of skin damage; however, its clinical application is hindered by its physicochemical characteristics. This study constructs a novel nanocomposite drug delivery system: CUR-loaded micellar nanocomposite gel (CUR-M-DMNs-Gel). A composite system is used to achieve the efficient solubilization and enhanced transdermal permeation of CUR, thereby providing a novel formulation approach for the treatment of skin diseases. Methods: CUR-loaded micellar (CUR-M) utilizes CUR as the core active ingredient, which possesses multiple pharmacological effects including anti-inflammatory and antioxidant properties. TPGS serves as a micellar carrier that not only enhances the solubility and stability of CUR through its amphiphilic structure but also facilitates drug absorption and transport within the body. In dissolvable microneedles (DMNs), PVP K30 forms a stable three-dimensional network structure through entanglement of polymer chains, ensuring sufficient mechanical strength for effective penetration of the skin barrier. Meanwhile, PVP K90, with its higher molecular weight, enhances the backing’s support and toughness to prevent needle breakage during application. The incorporation of hyaluronic acid (HA) improves both the moisture retention and adhesion properties at the needle tips, ensuring gradual dissolution and release of loaded CUR-M within the skin. In CUR-loaded micellar gel (CUR-M-Gel), PVP K30 increases both adhesive and cohesive forces in the gel through chain entanglement and hydrogen-bonding interactions. Tartaric acid precisely regulates pH levels to adjust crosslinking density; glycerol provides a long-lasting moisturizing environment for the gel; aluminum chloride enhances mechanical stability and controlled drug-release capabilities; NP-700 optimizes dispersion characteristics and compatibility within the system. Results: In vitro experiments demonstrated that the CUR-M-DMNs-Gel composite system exhibited enhanced transdermal penetration, with a cumulative transdermal efficiency significantly surpassing that of single-component formulations. In the mouse skin defect model, CUR-M-DMNs-Gel facilitated collagen deposition and effectively inhibited the expression of inflammatory cytokines (TNF-α, IL-6, and IL-1β). In the mouse skin photoaging model, CUR-M-DMNs-Gel markedly reduced dermal thickness, alleviated damage to elastic fibers, and suppressed inflammatory responses. Conclusions: The CUR-M-DMNs-Gel system can enhance wound healing through subcutaneous localization, achieving long-term sustained efficacy. This innovative approach offers new insights into the treatment of skin injuries. Full article
(This article belongs to the Special Issue Hydrogels, Oleogels and Bigels Used for Drug Delivery)
Show Figures

Figure 1

18 pages, 7299 KB  
Article
Self-Repairing Polyurethane–Urea Coating for Wind Turbine Blades: Modeling and Analysis
by Yulin Sun, Leon Mishnaevsky, Katharina Koschek and Florian Sayer
Coatings 2025, 15(9), 1059; https://doi.org/10.3390/coatings15091059 - 10 Sep 2025
Viewed by 596
Abstract
This study investigates a UDETA-modified polyurethane–urea (PUU) self-healing coating for wind turbine blades, focusing on its ability to autonomously repair surface erosion damage under realistic environmental conditions. A multiphysics finite element model was developed to couple temperature, moisture, and stress effects on crack [...] Read more.
This study investigates a UDETA-modified polyurethane–urea (PUU) self-healing coating for wind turbine blades, focusing on its ability to autonomously repair surface erosion damage under realistic environmental conditions. A multiphysics finite element model was developed to couple temperature, moisture, and stress effects on crack healing, and a Gaussian process regression (GPR) model was trained on 35 experimental data points to predict the mobile fraction and healing thresholds with high accuracy (R2 = 0.79, MAE = 0.059). The diffusion coefficient of water in the PUU matrix was determined as 11.03 × 10−7 mm2/s, and stress-driven moisture accumulation at crack tips was shown to accelerate crack healing. Erichsen cupping test simulations were conducted to reproduce experimental crack patterns, demonstrating brittle behavior in dehydrated coatings with a Young’s modulus of 50 MPa and critical principal strains of 0.48. An exponential healing function was incorporated into the computational model and validated against experiments, predicting significant crack healing within 24 h of humidity exposure. These findings provide quantitative design criteria for self-healing coatings, enabling the selection of UDETA content, thickness, and curing strategies to extend wind turbine blade service life while reducing maintenance costs. Full article
Show Figures

Figure 1

25 pages, 10618 KB  
Article
Study of the Water Vapor Desublimation Effect on the Camber Morphing Wing Considering Cryogenic Environments
by Yu Zhang, Baobin Hou, Yuchen Li, Yuanjing Wang, Binbin Lv, Guojun Lai and Jingyuan Wang
Machines 2025, 13(9), 834; https://doi.org/10.3390/machines13090834 - 9 Sep 2025
Viewed by 274
Abstract
The variable camber morphing wing has the potential to achieve improved flight performance across different flight conditions by changing its geometry according to changing flight conditions. Evaluating the subtle aerodynamic benefits of variable camber technology necessitates wind tunnel testing under flight Reynolds number [...] Read more.
The variable camber morphing wing has the potential to achieve improved flight performance across different flight conditions by changing its geometry according to changing flight conditions. Evaluating the subtle aerodynamic benefits of variable camber technology necessitates wind tunnel testing under flight Reynolds number conditions. In high Reynolds number wind tunnels, the cryogenic environment readily damages model surface profiles through desublimation and frost, compromising test data accuracy. Consequently, cryogenic wind tunnels must enforce rigorous water vapor control standards. To address potential water vapor effects during cryogenic wind tunnel testing, high-resolution optical measurement techniques were employed to quantify the spatiotemporal evolution of desublimation frost thickness on a typical supercritical airfoil surface. Combined with numerical simulations, the mechanisms governing the frost layer’s influence on aerodynamic characteristics and flow field structures were systematically investigated. The results reveal that the influence of water vapor desublimation on the aerodynamic characteristics under diverse cryogenic working conditions has a commonality, and the difference in aerodynamic parameters shows an increasing tendency as the frost time increases; water vapor desublimation has an obvious influence on the flow structure of the airfoil and its pressure distribution on the surface, which increases flow instability and leads to the backward shift of the shock wave position; larger frost thickness gradients along the flow direction cause more drastic changes in pressure distribution and flow structure; and a larger rate of water vapor desublimation results from a lower temperature and a higher concentration of water vapor in the test environment, which causes frosting to have a more severe impact on the airfoil’s aerodynamic characteristics and flow structure. The findings establish a technical basis for cryogenic wind tunnel moisture control standards and provide a solid foundation for the refined assessment of aerodynamic benefits of the camber morphing wing. Full article
(This article belongs to the Special Issue Smart Structures and Applications in Aerospace Engineering)
Show Figures

Figure 1

Back to TopTop