Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = multi-compartment exposure system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2371 KB  
Article
Meta-Reinforced-Model-Based Planning and Fault-Tolerant Control for a Saturation Diving Decontamination Decompression Chamber
by Nan Zhang, Qijing Lin and Zhuangde Jiang
Sensors 2025, 25(11), 3534; https://doi.org/10.3390/s25113534 - 4 Jun 2025
Viewed by 695
Abstract
Saturation diving is the only viable method that enables divers to withstand prolonged exposure to high-pressure environments, and it is increasingly used in underwater rescue and marine resource development. This study presents the control system design for a specialized saturation diving decontamination decompression [...] Read more.
Saturation diving is the only viable method that enables divers to withstand prolonged exposure to high-pressure environments, and it is increasingly used in underwater rescue and marine resource development. This study presents the control system design for a specialized saturation diving decontamination decompression chamber. As a multi-compartment structure, the system requires precise inter-cabin pressure differentials to ensure safe decontamination and ventilation control under dynamic conditions, particularly in the presence of potential faults, such as valve offset, actuator malfunction, and chamber leakage. To overcome these challenges, we propose a novel model-based planning and fault-tolerant control framework that enables adaptive responses and maintains resilient system performance. Specifically, we introduce a trajectory-planning algorithm guided by policy networks to improve planning efficiency and robustness under system uncertainty. Additionally, a meta-learning-based fault-tolerant control strategy is proposed to address system disturbances and faults. The experimental results demonstrate that the proposed approach achieves higher cumulative rewards, faster convergence, and improved robustness compared to conventional methods. This work provides an effective and adaptive control solution for human-occupied hyperbaric systems operating in safety-critical environments requiring fail-operational performance. Full article
(This article belongs to the Special Issue Fault Diagnosis Based on Sensing and Control Systems)
Show Figures

Figure 1

24 pages, 2627 KB  
Article
Anti-Inflammatory Action of Resveratrol in the Central Nervous System in Relation to Glucose Concentration—An In Vitro Study on a Blood–Brain Barrier Model
by Justyna Komorowska, Mateusz Wątroba, Małgorzata Bednarzak, Anna D. Grabowska and Dariusz Szukiewicz
Int. J. Mol. Sci. 2024, 25(6), 3110; https://doi.org/10.3390/ijms25063110 - 7 Mar 2024
Cited by 12 | Viewed by 3170
Abstract
Unbalanced blood glucose levels may cause inflammation within the central nervous system (CNS). This effect can be reversed by the action of a natural neuroprotective compound, resveratrol (RSV). The study aimed to investigate the anti-inflammatory effect of RSV on astrocyte cytokine profiles within [...] Read more.
Unbalanced blood glucose levels may cause inflammation within the central nervous system (CNS). This effect can be reversed by the action of a natural neuroprotective compound, resveratrol (RSV). The study aimed to investigate the anti-inflammatory effect of RSV on astrocyte cytokine profiles within an in vitro model of the blood–brain barrier (BBB) under varying glucose concentrations (2.2, 5.0, and 25.0 mmol/L), corresponding to hypo-, normo-, and hyperglycemia. The model included co-cultures of astrocytes (brain compartment, BC) and endothelial cells (microvascular compartment, MC), separated by 0.4 µm wide pores. Subsequent exposure to 0.2 μM LPS in the brain compartment (BC) and 50 μM RSV in the microvascular compartment (MC) of each well was carried out. Cytokine levels (IL-1 α, IL-1 β, IL-2, IL-4, IL-6, IL-8) in the BC were assessed using a Multi-Analyte ELISArray Kit before and after the addition of LPS and RSV. Statistical analysis was performed to determine significance levels. The results demonstrated that RSV reduced the concentration of all studied cytokines in the BC, regardless of glucose levels, with the most substantial decrease observed under normoglycemic conditions. Additionally, the concentration of RSV in the BC was highest under normoglycemic conditions compared to hypo- and hyperglycemia. These findings confirm that administration of RSV in the MC exerts anti-inflammatory effects within the BC, particularly under normoglycemia-simulating conditions. Further in vivo studies, including animal and human research, are warranted to elucidate the bioavailability of RSV within the central nervous system (CNS). Full article
(This article belongs to the Special Issue Activation of the Blood–Brain Barrier and Neurological Dysfunction)
Show Figures

Figure 1

13 pages, 1457 KB  
Article
A New Method for Environmental Risk Assessment of Pollutants Based on Multi-Dimensional Risk Factors
by Le Li, Yuying Dong, Yuting Chen, Jian Jiao and Xuejun Zou
Toxics 2022, 10(11), 659; https://doi.org/10.3390/toxics10110659 - 30 Oct 2022
Cited by 8 | Viewed by 3413
Abstract
Pollutant discharge causing the deterioration of the watershed environment has seriously threatened human health and ecosystem function. The importance of improving the risk warning system is becoming more and more prominent. Traditional chemical risk assessment methods focused on toxicity and the exposure of [...] Read more.
Pollutant discharge causing the deterioration of the watershed environment has seriously threatened human health and ecosystem function. The importance of improving the risk warning system is becoming more and more prominent. Traditional chemical risk assessment methods focused on toxicity and the exposure of pollutants without considering the impact of persistent pollutants in different environmental media. In this study, a new approach was proposed to reflect multi-dimensional evaluation with a synthetic risk factor (SRF) of pollutants. The integrating parameters of SRF include toxicity endpoint values, environmental exposure level, persistent properties, and compartment features. Selected pesticides, perfluorinated compounds, organophosphate esters and endocrine disruptors were analyzed by the proposed and traditional methods. The results showed a higher risk outcome using SRF analysis for PFOS, imazalil, testosterone, androstenedione and bisphenol A, which were different from those obtained by the traditional method, which were consistent with existing risk management. The study demonstrated that the SRF method improved the risk assessment of various pollutants in different environmental media in a more robust fashion, and also provided a more accurate decision basis for ecological environment protection. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

12 pages, 1258 KB  
Review
Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles
by M. Antonella Alcívar, Marta Sendra, Daniel C. V. R. Silva, Enrique González-Ortegón, Julián Blasco, Ignacio Moreno-Garrido and Cristiano V. M. Araújo
Toxics 2021, 9(11), 301; https://doi.org/10.3390/toxics9110301 - 11 Nov 2021
Cited by 17 | Viewed by 2963
Abstract
The use of non-forced multi-compartmented exposure systems has gained importance in the assessment of the contamination-driven spatial avoidance response. This new paradigm of exposure makes it possible to assess how contaminants fragment habitats, interfering in the spatial distribution and species’ habitat selection processes. [...] Read more.
The use of non-forced multi-compartmented exposure systems has gained importance in the assessment of the contamination-driven spatial avoidance response. This new paradigm of exposure makes it possible to assess how contaminants fragment habitats, interfering in the spatial distribution and species’ habitat selection processes. In this approach, organisms are exposed to a chemically heterogeneous scenario (a gradient or patches of contamination) and the response is focused on identifying the contamination levels considered aversive for organisms. Despite the interesting results that have been recently published, the use of this approach in ecotoxicological risk studies is still incipient. The current review aims to show the sensitivity of spatial avoidance in non-forced exposure systems in comparison with the traditional endpoints used in ecotoxicology under forced exposure. To do this, we have used the sensitivity profile by biological groups (SPBG) to offer an overview of the highly sensitive biological groups and the species sensitive distribution (SSD) to estimate the hazard concentration for 5% of the species (HC5). Three chemically different compounds were selected for this review: copper, glyphosate, and Ag-NPs. The results show that contamination-driven spatial avoidance is a very sensitive endpoint that could be integrated as a complementary tool to ecotoxicological studies in order to provide an overview of the level of repellence of contaminants. This repellence is a clear example of how contamination might fragment ecosystems, prevent connectivity among populations and condition the distribution of biodiversity. Full article
Show Figures

Figure 1

17 pages, 2294 KB  
Article
Assessment of Advanced Oxidation Processes Using Zebrafish in a Non-Forced Exposure System: A Proof of Concept
by Tamia Cabascango, Karol Ortiz, Christian Sandoval Pauker, Isabel Espinoza Pavón, Anuradha Ramoji, Jürgen Popp, Jady Pérez, C. Miguel Pinto, José Luis Rivera-Parra, Florinella Muñoz-Bisesti, María Belén Aldás, Cristiano V. M. Araújo and Paul Vargas Jentzsch
Processes 2021, 9(5), 734; https://doi.org/10.3390/pr9050734 - 22 Apr 2021
Cited by 3 | Viewed by 3409
Abstract
Water bodies and aquatic ecosystems are threatened by discharges of industrial waters. Ecotoxicological effects of components occurring in untreated and treated wastewaters are often not considered. The use of a linear, multi-compartmented, non-forced, static system constructed with PET bottles is proposed for the [...] Read more.
Water bodies and aquatic ecosystems are threatened by discharges of industrial waters. Ecotoxicological effects of components occurring in untreated and treated wastewaters are often not considered. The use of a linear, multi-compartmented, non-forced, static system constructed with PET bottles is proposed for the quality assessment of treated waters, to deal with such limitations. Two synthetic waters, one simulating wastewater from the textile industry and the other one simulating wastewater from the cassava starch industry, were prepared and treated by homogeneous Fenton process and heterogeneous photocatalysis, respectively. Untreated and treated synthetic waters and their dilutions were placed into compartments of the non-forced exposure system, in which zebrafish (Danio rerio), the indicator organism, could select the environment of its preference. Basic physical–chemical and chemical parameters of untreated and treated synthetic waters were measured. The preference and avoidance responses allowed verification of whether or not the quality of the water was improved due to the treatment. The results of these assays can be a complement to conventional parameters of water quality. Full article
(This article belongs to the Special Issue Environmental Risk Assessment Processes and Ecotoxicology)
Show Figures

Figure 1

22 pages, 1136 KB  
Review
Not Only Toxic but Repellent: What Can Organisms’ Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment?
by Cristiano V. M. Araújo, Abdelmourhit Laissaoui, Daniel C. V. R. Silva, Eloisa Ramos-Rodríguez, Enrique González-Ortegón, Evaldo L. G. Espíndola, Francisco Baldó, Freylan Mena, Gema Parra, Julián Blasco, Julio López-Doval, Marta Sendra, Mohamed Banni, Mohammed Ariful Islam and Ignacio Moreno-Garrido
Toxics 2020, 8(4), 118; https://doi.org/10.3390/toxics8040118 - 12 Dec 2020
Cited by 36 | Viewed by 4869
Abstract
The ability of aquatic organisms to sense the surrounding environment chemically and interpret such signals correctly is crucial for their ecological niche and survival. Although it is an oversimplification of the ecological interactions, we could consider that a significant part of the decisions [...] Read more.
The ability of aquatic organisms to sense the surrounding environment chemically and interpret such signals correctly is crucial for their ecological niche and survival. Although it is an oversimplification of the ecological interactions, we could consider that a significant part of the decisions taken by organisms are, to some extent, chemically driven. Accordingly, chemical contamination might interfere in the way organisms behave and interact with the environment. Just as any environmental factor, contamination can make a habitat less attractive or even unsuitable to accommodate life, conditioning to some degree the decision of organisms to stay in, or move from, an ecosystem. If we consider that contamination is not always spatially homogeneous and that many organisms can avoid it, the ability of contaminants to repel organisms should also be of concern. Thus, in this critical review, we have discussed the dual role of contamination: toxicity (disruption of the physiological and behavioral homeostasis) vs. repellency (contamination-driven changes in spatial distribution/habitat selection). The discussion is centered on methodologies (forced exposure against non-forced multi-compartmented exposure systems) and conceptual improvements (individual stress due to the toxic effects caused by a continuous exposure against contamination-driven spatial distribution). Finally, we propose an approach in which Stress and Landscape Ecology could be integrated with each other to improve our understanding of the threat contaminants represent to aquatic ecosystems. Full article
Show Figures

Figure 1

15 pages, 2823 KB  
Article
Differences among Unique Nanoparticle Protein Corona Constructs: A Case Study Using Data Analytics and Multi-Variant Visualization to Describe Physicochemical Characteristics
by Madison Stewart, Marina R. Mulenos, London R. Steele and Christie M. Sayes
Appl. Sci. 2018, 8(12), 2669; https://doi.org/10.3390/app8122669 - 18 Dec 2018
Cited by 18 | Viewed by 6116
Abstract
Gold nanoparticles (AuNPs) used in pharmaceutical treatments have been shown to effectively deliver a payload, such as an active pharmaceutical ingredient or image contrast agent, to targeted tissues in need of therapy or diagnostics while minimizing exposure, availability, and accumulation to surrounding biological [...] Read more.
Gold nanoparticles (AuNPs) used in pharmaceutical treatments have been shown to effectively deliver a payload, such as an active pharmaceutical ingredient or image contrast agent, to targeted tissues in need of therapy or diagnostics while minimizing exposure, availability, and accumulation to surrounding biological compartments. Data sets collected in this field of study include some toxico- and pharmacodynamic properties (e.g., distribution and metabolism) but many studies lack information about adsorption of biological molecules or absorption into cells. When nanoparticles are suspended in blood serum, a protein corona cloud forms around its surface. The extent of the applications and implications of this formed cloud are unknown. Some researchers have speculated that the successful use of nanoparticles in pharmaceutical treatments relies on a comprehensive understanding of the protein corona composition. The work presented in this paper uses a suite of data analytics and multi-variant visualization techniques to elucidate particle-to-protein interactions at the molecular level. Through mass spectrometry analyses, corona proteins were identified through large and complex datasets. With such high-output analyses, complex datasets pose a challenge when visualizing and communicating nanoparticle-protein interactions. Thus, the creation of a streamlined visualization method is necessary. A series of user-friendly data informatics techniques were used to demonstrate the data flow of protein corona characteristics. Multi-variant heat maps, pie charts, tables, and three-dimensional regression analyses were used to improve results interpretation, facilitate an iterative data transfer process, and emphasize features of the nanoparticle-protein corona system that might be controllable. Data informatics successfully highlights the differences between protein corona compositions and how they relate to nanoparticle surface charge. Full article
(This article belongs to the Special Issue Nanoscale Materials for Drug Delivery and Tissue Engineering)
Show Figures

Figure 1

Back to TopTop