Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = multilayer packages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4672 KB  
Article
Challenges in Nanofiber Formation from NADES-Based Anthocyanin Extracts: A Physicochemical Perspective
by Paulina Wróbel, Katarzyna Latacz, Jacek Chęcmanowski and Anna Witek-Krowiak
Materials 2025, 18(19), 4502; https://doi.org/10.3390/ma18194502 - 27 Sep 2025
Abstract
This study explores the challenge of using anthocyanin-rich natural deep eutectic solvent (NADES) extracts to produce electrospun nanofibers for biodegradable freshness indicators. Red cabbage was extracted with two choline chloride-based NADESs (with citric or lactic acid), modified with 10–50% ethanol to lower viscosity, [...] Read more.
This study explores the challenge of using anthocyanin-rich natural deep eutectic solvent (NADES) extracts to produce electrospun nanofibers for biodegradable freshness indicators. Red cabbage was extracted with two choline chloride-based NADESs (with citric or lactic acid), modified with 10–50% ethanol to lower viscosity, and compared with a standard 50% ethanol-water solvent. The citric acid NADES with 30% ethanol gave the highest anthocyanin yield (approx. 0.312 mg/mL, more than 20 times higher than the ethanol extract at approx. 0.014 mg/mL). For fiber fabrication, a polymer carrier blend of poly(ethylene oxide) (PEO) and sodium alginate (Alg) was employed, known to form hydrogen-bonded networks that promote chain entanglement and facilitate electrospinning. Despite this, the NADES extracts could not be electrospun into nanofibers, while the ethanol extract produced continuous, smooth fibers with diameters of approximately 100 nm. This highlights a clear trade-off; NADESs improve anthocyanin recovery, but their high viscosity and low volatility prevent fiber formation under standard electrospinning conditions. To leverage the benefits of NADES extracts, future work could focus on hybrid systems, such as multilayer films, core-shell fibers, or microcapsules, where the extracts are stabilized without relying solely on direct electrospinning. In storage tests, ethanol-extract nanofibers acted as effective pH-responsive indicators, showing visible color change from day 4 of meat storage. At the same time, alginate films with NADES extract remained unchanged after 12 days. These results highlight the importance of striking a balance between chemical stability and sensing sensitivity when designing anthocyanin-based smart packaging. Full article
Show Figures

Figure 1

17 pages, 4203 KB  
Article
Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions
by Pavlo Lyshtva, Argo Kuusik and Viktoria Voronova
Sustainability 2025, 17(19), 8657; https://doi.org/10.3390/su17198657 - 26 Sep 2025
Abstract
This study investigated the degradation and disintegration behavior of novel biobased multilayered films composed of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) during controlled composting tests performed at the laboratory scale. The compostability of monolayer PLA and PHBV films, hot-pressed bilayers, and coextruded multilayer [...] Read more.
This study investigated the degradation and disintegration behavior of novel biobased multilayered films composed of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) during controlled composting tests performed at the laboratory scale. The compostability of monolayer PLA and PHBV films, hot-pressed bilayers, and coextruded multilayer films produced in industrial or semi-industrial settings was systematically evaluated. Materials supplied by Fraunhofer LBF (Darmstadt, Germany) were tested as specified by the EVS-EN standard ISO 14855-1:2012 and EVS-EN ISO 20200:2016 standards. Composting took place in sealed, aerated vessels at 58 ± 2 °C with 50 ± 5% moisture and >6% oxygen. Biodegradation was measured via CO2 evolution, and disintegration was assessed visually and physically. PLA-1OLA films achieved 98.59% biodegradation and 91.13% disintegration. PHBV-5OLA and multilayer PLA-1OLA/PHBV-5OLA films showed biodegradation rates of 85.49% and 73.14%, with disintegration degrees of 89.93% and 79.18%, respectively. However, modified multilayer structures displayed slightly reduced compostability compared with pure compounds, likely due to the influence of additional components. To meet the 90% biodegradability threshold required by EVS-EN 13432:2003, increasing the PLA-1OLA content is recommended. This study introduces a novel combination of biobased polymers and plasticizers in multilayer formats, offering a deeper understanding of structure–property–degradation relationships. Its significance lies in advancing the design of sustainable packaging materials that balance functionality with environmental compatibility. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

29 pages, 3717 KB  
Article
Inverse Procedure to Initial Parameter Estimation for Air-Dropped Packages Using Neural Networks
by Beata Potrzeszcz-Sut and Marta Grzyb
Appl. Sci. 2025, 15(19), 10422; https://doi.org/10.3390/app151910422 - 25 Sep 2025
Abstract
This paper presents a neural network–driven framework for solving the inverse problem of initial parameter estimation in air-dropped package missions. Unlike traditional analytical methods, which are computationally intensive and often impractical in real time, the proposed system leverages the flexibility of multilayer perceptrons [...] Read more.
This paper presents a neural network–driven framework for solving the inverse problem of initial parameter estimation in air-dropped package missions. Unlike traditional analytical methods, which are computationally intensive and often impractical in real time, the proposed system leverages the flexibility of multilayer perceptrons to model both forward and inverse relationships between drop conditions and flight outcomes. In the forward stage, a trained network predicts range, flight time, and impact velocity from predefined release parameters. In the inverse stage, a deeper neural model reconstructs the required release velocity, angle, and altitude directly from the desired operational outcomes. By employing a hybrid workflow—combining physics-based simulation with neural approximation—our approach generates large, high-quality datasets at low computational cost. Results demonstrate that the inverse network achieves high accuracy across deterministic and stochastic tests, with minimal error when operating within the training domain. The study confirms the suitability of neural architectures for tackling complex, nonlinear identification tasks in precision airdrop operations. Beyond their technical efficiency, such models enable agile, GPS-independent mission planning, offering a reliable and low-cost decision support tool for humanitarian aid, scientific research, and defense logistics. This work highlights how artificial intelligence can transform conventional trajectory design into a fast, adaptive, and autonomous capability. Full article
(This article belongs to the Special Issue Application of Neural Computation in Artificial Intelligence)
Show Figures

Figure 1

25 pages, 3982 KB  
Article
Acetylated Xylan as Renewable Feedstock for Biodegradable Food Packaging: Synthesis, Structural Characterization and Performance Evaluation
by Petronela Nechita, Mirela Iana-Roman and Silviu-Marian Năstac
Polysaccharides 2025, 6(3), 85; https://doi.org/10.3390/polysaccharides6030085 - 19 Sep 2025
Viewed by 299
Abstract
This study investigates the potential of acetylated xylan as a functional component in coatings for biodegradable paper-based food packaging. Acetylated xylan was synthesized in the laboratory via the reaction of native beechwood xylan with acetic anhydride. Multilayer coatings composed of acetylated xylan, chitosan, [...] Read more.
This study investigates the potential of acetylated xylan as a functional component in coatings for biodegradable paper-based food packaging. Acetylated xylan was synthesized in the laboratory via the reaction of native beechwood xylan with acetic anhydride. Multilayer coatings composed of acetylated xylan, chitosan, and zinc oxide nanoparticles (ZnO NPs) were applied to paper substrates as single and double layers (approximately 5 g/m2) to enhance their barrier and antimicrobial properties. The coated papers were evaluated for mechanical properties, resistance to water, oil, and grease, antimicrobial activity against pathogenic bacteria, and biodegradability in soil. The combination of xylan derivatives with chitosan significantly improved surface hydrophobicity (contact angle ~87°) and achieved complete inhibition (100%) of Staphylococcus aureus and Salmonella spp., without compromising biodegradability. Incorporation of ZnO NPs further enhanced both the barrier properties and antimicrobial efficacy, particularly against S. aureus. A high biodegradation rate (~92%) was recorded after 42 days of soil burial. These results demonstrate the suitability of xylan-based multilayer coatings as sustainable alternatives for food packaging applications. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Materials)
Show Figures

Figure 1

22 pages, 3555 KB  
Article
Functional Multilayer Biopolymer Films with Botanical Additives for Sustainable Printed Electronics
by Nikola Nowak-Nazarkiewicz, Wiktoria Grzebieniarz, Beata Synkiewicz-Musialska, Lesław Juszczak, Agnieszka Cholewa-Wójcik and Ewelina Jamróz
Materials 2025, 18(18), 4328; https://doi.org/10.3390/ma18184328 - 16 Sep 2025
Viewed by 367
Abstract
In this study, multilayer biopolymer films composed of furcellaran, chitosan, and gelatin were incorporated with aqueous extracts of Lavandula angustifolia and Clitoria ternatea. These materials were engineered as sustainable, biodegradable substrates suitable for screen-printing applications. The primary objective was to enhance the [...] Read more.
In this study, multilayer biopolymer films composed of furcellaran, chitosan, and gelatin were incorporated with aqueous extracts of Lavandula angustifolia and Clitoria ternatea. These materials were engineered as sustainable, biodegradable substrates suitable for screen-printing applications. The primary objective was to enhance the films’ functional properties, including their mechanical integrity, barrier performance, and printability, thereby broadening their potential utility in environmentally responsible technological applications. FTIR and UV–Vis analyses confirmed the presence of functional groups associated with the contained plant extracts and showed significantly improved UV-blocking properties. Thermal and mechanical tests showed that the films maintained good structural integrity, and only high extract concentrations slightly affected tensile strength. Importantly, the materials exhibited gradual but limited thermal shrinkage (<3.7%) up to 130 °C, while maintaining their multilayer structure. Water-related evaluations, including WCA, solubility, pH, and conductivity, confirmed their biodegradability in aqueous environments without exceeding ecotoxicological thresholds. Microbiological tests demonstrated selective antimicrobial activity. The key novelty of this work is the evaluation of these active multilayer biopolymer films as screen-printing substrates. This is the first report in which screen-printing compatibility with active multilayer biopolymer systems is presented, highlighting their potential in sustainable packaging that integrates biodegradable matrices with printed sensor layers. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

33 pages, 2296 KB  
Review
The Opportunities and Challenges of Biobased Packaging Solutions
by Ed de Jong, Ingrid Goumans, Roy (H. A.) Visser, Ángel Puente and Gert-Jan Gruter
Polymers 2025, 17(16), 2217; https://doi.org/10.3390/polym17162217 - 14 Aug 2025
Viewed by 1174
Abstract
The outlook for biobased plastics in packaging applications is increasingly promising, driven by a combination of environmental advantages, technological innovation, and shifting market dynamics. Derived from renewable biological resources, these materials offer compelling benefits over conventional fossil-based plastics. They can substantially reduce greenhouse [...] Read more.
The outlook for biobased plastics in packaging applications is increasingly promising, driven by a combination of environmental advantages, technological innovation, and shifting market dynamics. Derived from renewable biological resources, these materials offer compelling benefits over conventional fossil-based plastics. They can substantially reduce greenhouse gas emissions, are often recyclable or biodegradable, and, in some cases, require less energy to produce. These characteristics position biobased plastics as a key solution to urgent environmental challenges, particularly those related to climate change and resource scarcity. Biobased plastics also demonstrate remarkable versatility. Their applications range from high-performance barrier layers in multilayer packaging to thermoformed containers, textile fibers, and lightweight plastic bags. Notably, all major fossil-based packaging applications can be substituted with biobased alternatives. This adaptability enhances their commercial viability across diverse sectors, including food and beverage, pharmaceutical, cosmetics, agriculture, textiles, and consumer goods. Several factors are accelerating growth in this sector. These include the increasing urgency of climate action, the innovation potential of biobased materials, and expanding government support through funding and regulatory initiatives. At the same time, consumer demand is shifting toward sustainable products, and companies are aligning their strategies with environmental, social, and governance (ESG) goals—further boosting market momentum. However, significant challenges remain. High production costs, limited economies of scale, and the capital-intensive nature of scaling biobased processes present economic hurdles. The absence of harmonized policies and standards across regions, along with underdeveloped end-of-life infrastructure, impedes effective waste management and recycling. Additionally, consumer confusion around the disposal of biobased plastics—particularly those labeled as biodegradable or compostable—can lead to contamination in recycling streams. Overcoming these barriers will require a coordinated, multifaceted approach. Key actions include investing in infrastructure, advancing technological innovation, supporting research and development, and establishing clear, consistent regulatory frameworks. Public procurement policies, eco-labeling schemes, and incentives for low-carbon products can also play a pivotal role in accelerating adoption. With the right support mechanisms in place, biobased plastics have the potential to become a cornerstone of a sustainable, circular economy. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 4450 KB  
Article
Laser-Based Selective Removal of EMI Shielding Layers in System-in-Package (SiP) Modules
by Xuan-Bach Le, Won Yong Choi, Keejun Han and Sung-Hoon Choa
Micromachines 2025, 16(8), 925; https://doi.org/10.3390/mi16080925 - 11 Aug 2025
Viewed by 663
Abstract
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, [...] Read more.
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, we propose a novel, laser-based approach for the selective removal of EMI shielding layers without physical masking. Numerical simulations were conducted to investigate the thermal and mechanical behavior of multilayer EMI shielding structures under two irradiation modes: full-area and laser scanning. The results showed that the laser scanning method induced higher interfacial shear stress, reaching up to 38.6 MPa, compared to full-area irradiation (12.5 MPa), effectively promoting delamination while maintaining the integrity of the underlying epoxy mold compound (EMC). Experimental validation using a nanosecond pulsed fiber laser confirmed that complete removal of the EMI shielding layer could be achieved at optimized laser powers (~6 W) without damaging the EMC, whereas excessive power (8 W) caused material degradation. The laser scanning speed was 50 mm/s, and the total laser irradiation time of the package was 0.14 s, which was very fast. This study demonstrates the feasibility of a non-contact, damage-free, and selective EMI shielding removal technique, offering a promising solution for next-generation semiconductor packaging. Full article
(This article belongs to the Special Issue Emerging Packaging and Interconnection Technology, Second Edition)
Show Figures

Figure 1

26 pages, 2472 KB  
Article
Incorporating Recyclates Derived from Household Waste into Flexible Food Packaging Applications: An Environmental Sustainability Assessment
by Trang T. Nhu, Anna-Sophie Haslinger, Sophie Huysveld and Jo Dewulf
Recycling 2025, 10(4), 142; https://doi.org/10.3390/recycling10040142 - 17 Jul 2025
Viewed by 664
Abstract
Integrating recyclates into food packaging is key towards circularity while meeting functionality and safety requirements; however, associated environmental impacts remain underexplored. This gap was addressed through a cradle-to-gate life cycle assessment, using the Environmental Footprint method, along with substitution and cut-off approaches for [...] Read more.
Integrating recyclates into food packaging is key towards circularity while meeting functionality and safety requirements; however, associated environmental impacts remain underexplored. This gap was addressed through a cradle-to-gate life cycle assessment, using the Environmental Footprint method, along with substitution and cut-off approaches for handling the multifunctionality of recycling. Recyclates were derived from polyethylene (PE)-rich household food packaging waste, purified via delamination-deinking. Firstly, results show that shifting from virgin multi-material to mono-material multilayer structures with or without recyclates, while maintaining functionality, offers environmental benefits. Secondly, recyclates should sufficiently substitute virgin materials in quantity and quality, decreasing the need for primary plastics and avoiding recyclate incorporation without functionality. Otherwise, thicker laminates are obtained, increasing processability challenges and environmental impacts, e.g., 12% for particulate matter, and 14% for mineral-metal resource use when the recycle content rises from 34 to 50%. Thirdly, a fully closed loop for flexible food packaging is not yet feasible. Key improvements lie in reducing residues generated during recycling, especially in delamination-deinking, lowering energy use in recompounding, and using more efficient transport modes for waste collection. Further research is essential to optimise the innovative technologies studied for flexible food packaging and refine them for broader applications. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

20 pages, 967 KB  
Article
A Comprehensive Investigation of the Two-Phonon Characteristics of Heat Conduction in Superlattices
by Pranay Chakraborty, Milad Nasiri, Haoran Cui, Theodore Maranets and Yan Wang
Crystals 2025, 15(7), 654; https://doi.org/10.3390/cryst15070654 - 17 Jul 2025
Viewed by 605
Abstract
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity [...] Read more.
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

16 pages, 6023 KB  
Article
Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging
by Justyna Jakubska, Andrzej Hudecki, Dominika Kluska, Paweł Grzybek, Klaudiusz Gołombek, Wojciech Pakieła, Hanna Spałek, Patryk Włodarczyk, Aleksandra Kolano-Burian and Gabriela Dudek
Foods 2025, 14(14), 2470; https://doi.org/10.3390/foods14142470 - 14 Jul 2025
Viewed by 806
Abstract
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer [...] Read more.
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer film production method, combining electrospun polycaprolactone (PCL) fibers with a chitosan matrix. Two configurations were investigated: (1) nonwoven PCL layers placed between chitosan sheets and (2) a chitosan sheet sandwiched between two nonwoven PCL layers. Both systems were evaluated using PCL fibers derived from medical-grade and technical-grade polymers. The chitosan/polycaprolactone/chitosan (CH/PCL/CH) configuration demonstrated superior performance, achieving enhanced interlayer cohesion and significantly improved mechanical strength, durability, and barrier properties. Notably, this configuration achieved tensile strength and elongation at break values of 57.1 MPa and 36.3%, respectively—more than double those of pure chitosan films. This breakthrough underscores the potential of multilayered biopolymer films as eco-friendly packaging solutions, offering exceptional promise for sustainable applications in the food packaging industry. Full article
Show Figures

Graphical abstract

46 pages, 5003 KB  
Article
Optimization of Kerosene-like Fuels Produced via Catalytic Pyrolysis of Packaging Plastic Waste via Central Composite Design and Response Surface Methodology: Performance of Iron-Doped Dolomite and Activated Carbon
by Oratepin Arjharnwong, Tharapong Vitidsant, Aminta Permpoonwiwat, Naphat Phowan and Witchakorn Charusiri
Molecules 2025, 30(13), 2884; https://doi.org/10.3390/molecules30132884 - 7 Jul 2025
Cited by 1 | Viewed by 798
Abstract
Rapid economic growth has led to an increase in the use of multilayer plastic packaging, which involves complex polymer compositions and hinders recycling. This study investigated the catalytic pyrolysis of plastic packaging waste in a 3000 cm3 semibatch reactor, aiming to optimize [...] Read more.
Rapid economic growth has led to an increase in the use of multilayer plastic packaging, which involves complex polymer compositions and hinders recycling. This study investigated the catalytic pyrolysis of plastic packaging waste in a 3000 cm3 semibatch reactor, aiming to optimize kerosene-like hydrocarbon production. The temperature (420–500 °C), N2 flow rate (25–125 mL/min), and catalyst loading (5–20 wt.%) were examined individually and in combination with activated carbon and an Fe-doped dolomite (Fe/DM) catalyst. Central composite design (CCD) and response surface methodology (RSM) were used to identify the optimal conditions and synergistic effects. Pyrolysis product analysis involved simulation distillation gas chromatography (Sim-DGC), gas chromatography/mass spectrometry (GC/MS), and Fourier transform infrared (FT-IR) spectroscopy. The optimal conditions (440 °C, 50 mL/min N2 flow, catalyst loading of 10 wt.% using a 5 wt.% Fe-doped dolomite-activated carbon 0.6:0.4 mass/molar ratio) yielded the highest pyrolysis oil (79.6 ± 0.35 wt.%) and kerosene-like fraction (22.3 ± 0.22 wt.%). The positive synergistic effect of Fe/DM and activated carbon (0.6:0.4) enhanced the catalytic activity, promoting long-chain polymer degradation into mid-range hydrocarbons, with secondary cracking yielding smaller hydrocarbons. The pore structure and acid sites of the catalyst improved the conversion of intermediate hydrocarbons into aliphatic compounds (C5–C15), increasing kerosene-like hydrocarbon production. Full article
(This article belongs to the Special Issue Advances in Thermochemical Conversion of Solid Wastes)
Show Figures

Figure 1

18 pages, 5967 KB  
Article
Incorporation of Poly (Ethylene Terephthalate)/Polyethylene Residue Powder in Obtaining Sealing Concrete Blocks
by Ana Paula Knopik, Roberta Fonseca, Rúbia Martins Bernardes Ramos, Pablo Inocêncio Monteiro, Wellington Mazer and Juliana Regina Kloss
Processes 2025, 13(7), 2050; https://doi.org/10.3390/pr13072050 - 28 Jun 2025
Viewed by 632
Abstract
Polymer residues can be reused in civil construction by partially replacing mineral aggregates in concrete, thereby reducing the extraction of natural resources. This study aimed to evaluate the use of powdered poly (ethylene terephthalate) (PET) and polyethylene (PE) residues, accumulated in shaving-mill filters [...] Read more.
Polymer residues can be reused in civil construction by partially replacing mineral aggregates in concrete, thereby reducing the extraction of natural resources. This study aimed to evaluate the use of powdered poly (ethylene terephthalate) (PET) and polyethylene (PE) residues, accumulated in shaving-mill filters during the extrusion of multilayer films used in food packaging, in the production of sealing masonry blocks. The PET/PE residues were characterized by Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Cylindrical specimens were produced in which part of the sand, by volume, was replaced with 10, 20, 30, 40 and 50% polymer residue. The cylindrical specimens were evaluated for specific mass, water absorption and axial and diametral compressive strengths. The 10% content provided the highest compressive strength. This formulation was selected for the manufacture of concrete blocks, which were evaluated and compared with the specifications of ABNT NBR 6136:2014. The concrete blocks showed potential for applications without structural function and were classified as Class C. The results, in line with previous investigations on the incorporation of plastic waste in concrete, underscore the promising application potential of this strategy. Full article
Show Figures

Figure 1

16 pages, 3482 KB  
Article
Conducting EVA/GNP Composite Films with Multifunctional Applications: Effect of the Phosphonium-Based Ionic Liquid
by André A. Schettini, Debora P. Schmitz, Beatriz S. Cunha and Bluma G. Soares
J. Compos. Sci. 2025, 9(6), 256; https://doi.org/10.3390/jcs9060256 - 23 May 2025
Viewed by 655
Abstract
The application of graphene nanoplatelets (GNPs) in polymer composites is a challenge due to their high tendency to agglomerate and restack during processing. In this work, alkyl phosphonium-based ionic liquid was used to assist the dispersion of GNP in an ethylene-vinyl acetate (EVA) [...] Read more.
The application of graphene nanoplatelets (GNPs) in polymer composites is a challenge due to their high tendency to agglomerate and restack during processing. In this work, alkyl phosphonium-based ionic liquid was used to assist the dispersion of GNP in an ethylene-vinyl acetate (EVA) matrix, through a melt-mixing procedure. The mechanical properties and creep resistance of the films prepared by the film extrusion process were evaluated. The results demonstrated that the noncovalent treatment of GNP with the ionic liquid (IL) enhanced the electrical conductivity and creep stability of the EVA composites. The microwave absorbing properties were studied in the X-band and Ku-band. A reflection loss (RL) of −15 dB for EVA containing 0.5 wt% of GNP and 1:1 wt% of GNP/IL was achieved. The use of a multi-layered structure containing thin film layers was efficient for enhancing the microwave absorbing performance, with a minimum RL of −24.6 dB and effective absorption bandwidth of 4.3 GHz. This result is attributed to the internal reflection and scattering of the radiation between layers. The use of simple, low-cost materials and procedures, combined with the system’s excellent mechanical and electrical properties, makes it a promising candidate for multifunctional applications as electrostatic dissipative and microwave absorbing materials for electronic packaging and other electronic devices. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

20 pages, 3941 KB  
Article
Ecological Packaging: Reuse and Recycling of Rosehip Waste to Obtain Biobased Multilayer Starch-Based Material and PLA for Food Trays
by Yuliana Monroy, Florencia Versino, Maria Alejandra García and Sandra Rivero
Foods 2025, 14(11), 1843; https://doi.org/10.3390/foods14111843 - 22 May 2025
Viewed by 884
Abstract
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava [...] Read more.
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava starch with citric acid as a compatibilizer. Physicochemical characterization revealed appropriate surface roughness (Rz of 31–64 μm) and controlled water absorption capacities of the composite materials (contact angle of 85–95°), properties critical for food quality preservation and safety. The incorporation of polylactic acid (PLA) films in the laminates significantly enhanced the mechanical performance, increasing the stress resistance by 5 to 10 times, and improved moisture resistance, showing a 78–82% reduction in the materials’ water absorption capacity and an almost 50% decrease in water content and solubility, depending on the processing method. Results indicated that these biocomposite laminates represent a viable alternative to conventional polystyrene foam trays for food packaging. Two distinct multilayer manufacturing processes were comparatively evaluated to optimize production efficiency by reducing the energy consumption and processing time. This research contributes to circular economy principles by transforming agricultural waste into value-added laminated materials with commercial potential. Full article
Show Figures

Figure 1

21 pages, 6876 KB  
Article
Liquid Moisture Transport in Single and Layered Cotton Woven Fabrics
by Małgorzata Matusiak and Joanna Szpunar
Materials 2025, 18(10), 2326; https://doi.org/10.3390/ma18102326 - 16 May 2025
Viewed by 482
Abstract
The transport of liquid sweat mainly concerns the material that is next to the skin during clothing usage. When the inner surface of the material closest to the skin is adjacent to another layer of clothing, the matter is not so clear-cut. In [...] Read more.
The transport of liquid sweat mainly concerns the material that is next to the skin during clothing usage. When the inner surface of the material closest to the skin is adjacent to another layer of clothing, the matter is not so clear-cut. In the case of the multilayer clothing, the outer layer receives the liquid sweat from the next-to-skin layer and transport it further to ambient air. The aim of this work was to analyze the transport of liquid moisture in multilayer sets. Measurements were performed using a Moisture Management Tester. The studies confirmed that as a result of adding another layer in the outward direction, the characteristics of the liquid moisture transport of the internal surface of the inner layer of a multilayer package change significantly. The novelty of the presented research is the demonstration that the transport of liquid moisture in the layer adjacent to human skin may change when the next-to-skin layer is not adjacent to ambient air but to textile material forming the next layer of clothing. The presented studies also proved that the transport of liquid moisture on the inner surface of the layer adjacent to the skin changes to different extents depending on the type of material used as the next outer layer of clothing. Full article
(This article belongs to the Special Issue Advanced Textile Materials: Design, Properties and Applications)
Show Figures

Figure 1

Back to TopTop