Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = nanodomain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 32435 KB  
Article
Structure and Magnetic Properties of Vanadium-Doped Heusler Ni-Mn-In Alloys
by Dmitry Kuznetsov, Elena Kuznetsova, Alexey Mashirov, Alexander Kamantsev, Denis Danilov, Georgy Shandryuk, Sergey Taskaev, Irek Musabirov, Ruslan Gaifullin, Maxim Kolkov, Victor Koledov and Pnina Ari-Gur
Nanomaterials 2025, 15(19), 1466; https://doi.org/10.3390/nano15191466 - 24 Sep 2025
Viewed by 48
Abstract
The crystal structure, texture, martensitic transformation, and magnetic properties of magnetic shape-memory Heusler alloys of Ni51−xMn33.4In15.6Vx (x = 0; 0.1; 0.3; 0.5; 1) were investigated. Experimental studies of the magnetic properties and meta-magnetostructural transition (martensitic transition—MT) [...] Read more.
The crystal structure, texture, martensitic transformation, and magnetic properties of magnetic shape-memory Heusler alloys of Ni51−xMn33.4In15.6Vx (x = 0; 0.1; 0.3; 0.5; 1) were investigated. Experimental studies of the magnetic properties and meta-magnetostructural transition (martensitic transition—MT) confirm the main sensitivity of the martensitic transition temperature to vanadium doping and to an applied magnetic field. This makes this family of shape-memory alloys promising for use in numerous applications, such as magnetocaloric cooling and MEMS technology. Diffuse electron scattering was analyzed, and the structures of the austenite and martensite were determined, including the use of TEM in situ experiments during heating and cooling for an alloy with a 0.3 at.% concentration of V. In the austenitic state, the alloys are characterized by a high-temperature-ordered phase of the L21 type. The images show nanodomain structures in the form of tweed contrast and contrast from antiphase domains and antiphase boundaries. The alloy microstructure in the temperature range from the martensitic finish to 113 K consists of a six-layer modulated martensite, with 10 M and 14 M modulation observed in local zones. The morphology of the double structure of the modulated martensite structure inherits the morphology of the nanodomain structure in the parent phase. This suggests that it is possible to control the structure of the high-temperature austenite phase and the temperature of the martensitic transition by alloying and/or rapidly quenching from the high-temperature phase. In addition, attention is paid to maintaining fine interface structures. High-resolution transmission electron microscopy showed good coherence along the austenite–martensite boundary. Full article
Show Figures

Graphical abstract

14 pages, 10136 KB  
Article
The Influence of Plasma-Carburizing Temperature on the Microstructure and Properties of DLC/Carbonitride Wear-Resistant and Friction-Reducing Functional Layer
by Jiawei Yao, Yiming Ma, Peiwu Cong, Fuyao Yan, Wenlin Lu, Yanxiang Zhang, Mufu Yan and Jingbo Ma
Coatings 2025, 15(8), 966; https://doi.org/10.3390/coatings15080966 - 19 Aug 2025
Viewed by 431
Abstract
M50 steel is widely used in the manufacturing of high-end bearing components for aero-engine shafts, where an excellent surface performance is required to withstand harsh service conditions. In this study, plasma carburizing at different temperatures varying from 410 to 570 °C was performed [...] Read more.
M50 steel is widely used in the manufacturing of high-end bearing components for aero-engine shafts, where an excellent surface performance is required to withstand harsh service conditions. In this study, plasma carburizing at different temperatures varying from 410 to 570 °C was performed on pre-nitrided M50 steel to investigate the influence of the temperature on the structural evolution and mechanical behavior of the self-lubricating functional layer. The microstructure, phase composition, hardness, and wear resistance of the carburized samples were fully characterized using scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, a nano-indenter, and other analytical techniques. The carbon-rich film with nano-domains contains a significant amount of sp3 bonds at low carburizing temperatures, exhibiting a Diamond-like carbon (DLC) film character. With the rise in the carburizing temperature, the initially distinct interface between the carbon-rich film and the compound layer gradually disappears as the nitrides are progressively replaced by carbides; the sp3 bond of the film is decreased, which reduces the hardness and wear resistance. Samples carburized at 490 °C with a homogeneous surface layer consisting of DLC film and a compound layer showed a low friction coefficient (about 0.22) and a 60% reduction in the wear rate compared with the nitrided specimen. The formation of a surface carbon-enriched layer also plays a role in avoiding oxidative wear. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

18 pages, 736 KB  
Review
Divergent Functions of Rap1A and Rap1B in Endothelial Biology and Disease
by Ramoji Kosuru and Magdalena Chrzanowska
Int. J. Mol. Sci. 2025, 26(11), 5372; https://doi.org/10.3390/ijms26115372 - 4 Jun 2025
Cited by 1 | Viewed by 1396 | Correction
Abstract
Rap1A and Rap1B are closely related small GTPases that regulate endothelial adhesion, vascular integrity, and signaling pathways via effector domain interactions, with downstream effectors controlling integrins and cadherins. Although both isoforms are essential for vascular development, recent studies using endothelial-specific knockout models have [...] Read more.
Rap1A and Rap1B are closely related small GTPases that regulate endothelial adhesion, vascular integrity, and signaling pathways via effector domain interactions, with downstream effectors controlling integrins and cadherins. Although both isoforms are essential for vascular development, recent studies using endothelial-specific knockout models have uncovered distinct, non-redundant functions. Rap1B is a key regulator of VEGFR2 signaling, promoting angiogenesis, nitric oxide production, and immune evasion in tumors while restraining proinflammatory signaling in atherosclerosis. In contrast, Rap1A unexpectedly functions as a modulator of endothelial calcium homeostasis by restricting Orai1-mediated store-operated calcium entry, thereby limiting inflammatory responses and vascular permeability. New insights into Rap1 regulation highlight the roles of context-specific guanine nucleotide exchange factors, such as RasGRP3, and non-degradative ubiquitination in effector selection. Emerging data suggest that isoform-specific interactions between the Rap1 hypervariable regions and plasma membrane lipids govern their localization to distinct nanodomains, potentially influencing downstream signaling specificity. Together, these findings redefine the roles of Rap1A and Rap1B in endothelial biology and highlight their relevance in diseases such as tumor angiogenesis, atherosclerosis, and inflammatory lung injury. We discuss the therapeutic implications of targeting Rap1 isoforms in vascular pathologies and cancer, emphasizing the need for isoform-specific strategies that preserve endothelial homeostasis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

50 pages, 7741 KB  
Article
X-Ray Crystal and Cryo-Electron Microscopy Structure Analysis Unravels How the Unique Thylakoid Lipid Composition Is Utilized by Cytochrome b6f for Driving Reversible Proteins’ Reorganization During State Transitions
by Radka Vladkova
Membranes 2025, 15(5), 143; https://doi.org/10.3390/membranes15050143 - 8 May 2025
Viewed by 1531
Abstract
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease [...] Read more.
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease its hydrophobic thickness (dP) in parallel with the reduction or oxidation of the PQ pool induced by changes in light quality. This property appears to be the long-sought biophysical driver behind the reorganizations of membrane proteins during STs. This study decisively advances the hydrophobic mismatch (HMM) model for cytb6f-driven STs by thoroughly analyzing thirteen X-ray crystal and eight cryo-electron microscopy cytb6f structures. It uncovers the lipid nanoenvironments that cytb6f, with different hydrophobic thicknesses, selectively attracts. Under optimal, stationary conditions for photosynthesis in low light, when there is hydrophobic matching between the hydrophobic thicknesses of cytb6f dP and that of the bulk thylakoid lipid phase dL, dP = dL, cytb6f predominantly binds to anionic lipids—several phosphatidylglycerol (PG) molecules and one sulfoquinovosyldiacylglycerol (SQDG) molecule. Upon the induction of the transition to State 2, when dP increases and induces a positive HMM (dP > dL), the neutral, non-bilayer-forming lipid monogalactosyldiacylglycerol (MGDG) replaces some of the bound PGs. Upon the induction of the transition to State 1, when dP decreases and induces a negative HMM (dP < dL), PGs and SQDG detach from their binding sites, and two neutral, bilayer-forming lipids such as digalactosyldiacylglycerol (DGDG) occupy two sites. Additionally, this research uncovers two lipid-mediated signaling pathways from Chla to the center of flexibility, the Phe/Tyr124fg-loop-suIV residue—one of which involves β-carotene. This study identifies two novel types of lipid raft-like nanodomains that are devoid of typical components, such as sphingomyelin and cholesterol. These findings firmly validate the HMM model and underscore the STs as the first recognized functional process that fully utilizes the unique and evolutionarily conserved composition of just four thylakoid lipid classes. This research contributes to our understanding of membrane dynamics in general and STs in particular. It introduces a novel and simple approach for reversible protein reorganization driven purely by biophysical mechanisms, with promising implications for various membrane-based applications. Full article
Show Figures

Figure 1

22 pages, 4903 KB  
Review
Hybrid Materials Based on Self-Assembled Block Copolymers and Magnetic Nanoparticles—A Review
by Galder Kortaberria
Polymers 2025, 17(10), 1292; https://doi.org/10.3390/polym17101292 - 8 May 2025
Viewed by 1081
Abstract
In this review work, the different routes and methods for preparing hybrid materials based on nanostructured block copolymers (BCPs) and magnetic nanoparticles (MNPs) are analyzed, as they can be potentially employed in different sectors like biomedicine, electronic or optoelectronic devices, data storing devices, [...] Read more.
In this review work, the different routes and methods for preparing hybrid materials based on nanostructured block copolymers (BCPs) and magnetic nanoparticles (MNPs) are analyzed, as they can be potentially employed in different sectors like biomedicine, electronic or optoelectronic devices, data storing devices, etc. The first procedure for their preparation consists of the nanostructuring of BCPs in the presence of previously synthesized NPs by modifying their surface for increasing compatibility with the matrix or employing magnetic fields for NP orientation, which can also promote the orientation of nanodomains. Surface modification with surfactants led to the selective confinement of NPs depending on the interaction (mainly hydrogen bonding) degree and their intensity. Surface modification with brushes can be performed by three methods, including grafting from, grafting to, or grafting through. Those methods are compared in terms of success for the positioning and confinement of NPs in the desired domains, showing the crucial importance of brush length and grafting density, as well as of NP amount and modification degree in the self-assembled morphology. Regarding the use of external magnetic fields, the importance of relative amounts of MNPs and BCPs employed and that of the magnetic field intensity for the orientation of the NPs and the nearby BCP domains is shown. The second procedure, consisting of the in situ synthesis of NPs inside the nanodomains by a reduction in the respective metallic ions or employing metal-containing BCPs for the generation of MNP patterns or arrays, is also shown. In all cases, the transference of magnetic properties to the nanocomposite was successful. Finally, a brief summary of some aspects about the use of BCPs for the synthesis, encapsulation, and release of MNPs is shown, as they present potential biomedical applications such as cancer treatment, among others. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Graphical abstract

28 pages, 3566 KB  
Review
Role of PDE4 Family in Cardiomyocyte Physiology and Heart Failure
by Ivan Sherstnev, Aleksandra Judina, Giovanni Battista Luciani, Alessandra Ghigo, Emilio Hirsch and Julia Gorelik
Cells 2025, 14(6), 460; https://doi.org/10.3390/cells14060460 - 20 Mar 2025
Viewed by 2050
Abstract
Phosphodiesterase 4 (PDE4) is a key regulator of cyclic adenosine monophosphate (cAMP) signalling in cardiomyocytes, controlling contractility, calcium handling, and hypertrophic responses. PDE4 provides spatial and temporal precision to cAMP signalling, particularly under β-adrenergic stimulation, through its compartmentalised activity in subcellular nanodomains, including [...] Read more.
Phosphodiesterase 4 (PDE4) is a key regulator of cyclic adenosine monophosphate (cAMP) signalling in cardiomyocytes, controlling contractility, calcium handling, and hypertrophic responses. PDE4 provides spatial and temporal precision to cAMP signalling, particularly under β-adrenergic stimulation, through its compartmentalised activity in subcellular nanodomains, including the sarcoplasmic reticulum, plasma membrane and nuclear envelope. This review highlights the cardiac PDE4 isoforms PDE4A, PDE4B and PDE4D, focusing on their distinct localisation and contributions to cardiac physiology and pathophysiology, particularly in heart failure and arrhythmias. Although PDE4 plays a smaller role in overall cAMP hydrolysis in human hearts than in rodents, its compartmentalised function remains critical. Recent therapeutic advances have shifted from pan-PDE4 inhibitors to isoform-specific approaches to enhance efficacy while minimising systemic toxicity. We discuss the potential of selective PDE4 modulators, gene therapies and combination strategies in restoring cAMP compartmentation and preventing maladaptive cardiac remodelling. By integrating rodent and human studies, this review underscores the translational challenges and therapeutic opportunities surrounding PDE4, positioning it as both a key regulator of cardiac signalling and a promising target for heart failure therapies. Full article
Show Figures

Figure 1

15 pages, 6281 KB  
Article
Structure and Mixed Proton–Electronic Conductivity in Pr and Nb-Substituted La5.4MoO12−δ Ceramics
by Abraham Sánchez-Caballero, José M. Porras-Vázquez, Lucía dos Santos-Gómez, Javier Zamudio-García, Antonia Infantes-Molina, Jesús Canales-Vázquez, Enrique R. Losilla and David Marrero-López
Materials 2025, 18(3), 529; https://doi.org/10.3390/ma18030529 - 24 Jan 2025
Cited by 1 | Viewed by 1029
Abstract
Lanthanide molybdates are materials known for their mixed proton–ionic conductivity. This study investigates the effects of Pr content and Nb-doping on the crystal structure and electrical properties of the La5.4−xPrxMo1−yNbyO12−δ (x = 0, 1.35, [...] Read more.
Lanthanide molybdates are materials known for their mixed proton–ionic conductivity. This study investigates the effects of Pr content and Nb-doping on the crystal structure and electrical properties of the La5.4−xPrxMo1−yNbyO12−δ (x = 0, 1.35, 2.7, 4.05, 5.4; y = 0, 0.1) series. The research focuses on two primary objectives: (i) enhancing the electronic conductivity through the use of Pr4+/Pr3+ redox pairs and (ii) increasing the ionic conductivity through Nb5+ aliovalent doping. The materials were thoroughly characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission and scanning electron microscopy (TEM and SEM), and complex impedance spectroscopy. The average crystal structure of the materials depended significantly on the Pr content. In general, compositions with a higher Pr content crystallize in a cubic fluorite-type structure, whereas those with a lower Pr content stabilize a rhombohedral polymorph. However, detailed TEM studies reveal a more complex local crystal structure characterized by nanodomains and incommensurate modulations. The highest conductivity values were observed in a N2 atmosphere for compositions with an elevated Pr content, with values of 0.17 and 204.4 mS cm−1 for x = 0 and x = 5.4, respectively, at 700 °C, which is attributed to electronic conduction mediated by the Pr4+/Pr3+ redox pair, as confirmed by XPS. These findings highlight the potential of tailored doping strategies to optimize the conducting properties of lanthanide molybdates for specific high-temperature electrochemical applications. Full article
Show Figures

Figure 1

27 pages, 1396 KB  
Review
Polar Glycerolipids and Membrane Lipid Rafts
by Anatoly Zhukov and Mikhail Vereshchagin
Int. J. Mol. Sci. 2024, 25(15), 8325; https://doi.org/10.3390/ijms25158325 - 30 Jul 2024
Cited by 7 | Viewed by 2871
Abstract
Current understanding of the structure and functioning of biomembranes is impossible without determining the mechanism of formation of membrane lipid rafts. The formation of liquid-ordered and disordered phases (Lo and Ld) and lipid rafts in membranes and their simplified models is discussed. A [...] Read more.
Current understanding of the structure and functioning of biomembranes is impossible without determining the mechanism of formation of membrane lipid rafts. The formation of liquid-ordered and disordered phases (Lo and Ld) and lipid rafts in membranes and their simplified models is discussed. A new consideration of the processes of formation of lipid phases Lo and Ld and lipid rafts is proposed, taking into account the division of each of the glycerophospholipids into several groups. Generally accepted three-component schemes for modeling the membrane structure are critically considered. A four-component scheme is proposed, which is designed to more accurately assume the composition of lipids in the resulting Lo and Ld phases. The role of the polar head groups of phospholipids and, in particular, phosphatidylethanolamine is considered. The structure of membrane rafts and the possible absence of a clear boundary between the Lo and Ld phases are discussed. Full article
Show Figures

Figure 1

22 pages, 2325 KB  
Review
Understanding Aβ Peptide Binding to Lipid Membranes: A Biophysical Perspective
by Hasna Ahyayauch, Massimo E. Masserini, Alicia Alonso and Félix M. Goñi
Int. J. Mol. Sci. 2024, 25(12), 6401; https://doi.org/10.3390/ijms25126401 - 10 Jun 2024
Cited by 4 | Viewed by 2994
Abstract
Aβ peptides are known to bind neural plasma membranes in a process leading to the deposit of Aβ-enriched plaques. These extracellular structures are characteristic of Alzheimer’s disease, the major cause of late-age dementia. The mechanisms of Aβ plaque formation and deposition are far [...] Read more.
Aβ peptides are known to bind neural plasma membranes in a process leading to the deposit of Aβ-enriched plaques. These extracellular structures are characteristic of Alzheimer’s disease, the major cause of late-age dementia. The mechanisms of Aβ plaque formation and deposition are far from being understood. A vast number of studies in the literature describe the efforts to analyze those mechanisms using a variety of tools. The present review focuses on biophysical studies mostly carried out with model membranes or with computational tools. This review starts by describing basic physical aspects of lipid phases and commonly used model membranes (monolayers and bilayers). This is followed by a discussion of the biophysical techniques applied to these systems, mainly but not exclusively Langmuir monolayers, isothermal calorimetry, density-gradient ultracentrifugation, and molecular dynamics. The Methodological Section is followed by the core of the review, which includes a summary of important results obtained with each technique. The last section is devoted to an overall reflection and an effort to understand Aβ-bilayer binding. Concepts such as Aβ peptide membrane binding, adsorption, and insertion are defined and differentiated. The roles of membrane lipid order, nanodomain formation, and electrostatic forces in Aβ–membrane interaction are separately identified and discussed. Full article
(This article belongs to the Special Issue Structure and Formation Mechanism of Amyloid Fibrils)
Show Figures

Figure 1

18 pages, 4789 KB  
Article
3D-Printable Sustainable Bioplastics from Gluten and Keratin
by Jumana Rashid Mohammed Haroub Alshehhi, Nisal Wanasingha, Rajkamal Balu, Jitendra Mata, Kalpit Shah, Naba K. Dutta and Namita Roy Choudhury
Gels 2024, 10(2), 136; https://doi.org/10.3390/gels10020136 - 7 Feb 2024
Cited by 11 | Viewed by 4197
Abstract
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised [...] Read more.
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised of both wheat gluten and wool keratin proteins for the first time, employing a ruthenium-based photocrosslinking strategy. This approach addresses the demand for sustainable materials, reducing the environmental impact by using proteins from renewable and biodegradable sources. Gluten film was fabricated from an alcohol–water mixture soluble fraction, largely comprised of gliadin proteins. Co-crosslinking hydrolyzed low-molecular-weight keratin with gluten enhanced its hydrophilic properties and enabled the tuning of its physicochemical properties. Furthermore, the hierarchical structure of the fabricated films was studied using neutron scattering techniques, which revealed the presence of both hydrophobic and hydrophilic nanodomains, gliadin nanoclusters, and interconnected micropores in the matrix. The films exhibited a largely (>40%) β-sheet secondary structure, with diminishing gliadin aggregate intensity and increasing micropore size (from 1.2 to 2.2 µm) with an increase in keratin content. The hybrid films displayed improved molecular chain mobility, as evidenced by the decrease in the glass-transition temperature from ~179.7 °C to ~173.5 °C. Amongst the fabricated films, the G14K6 hybrid sample showed superior water uptake (6.80% after 30 days) compared to the pristine G20 sample (1.04%). The suitability of the developed system for multilayer 3D printing has also been demonstrated, with the 10-layer 3D-printed film exhibiting >92% accuracy, which has the potential for use in packaging, agricultural, and biomedical applications. Full article
(This article belongs to the Special Issue 3D Printing of Gel-Based Materials)
Show Figures

Figure 1

29 pages, 12870 KB  
Article
Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer’s and Diabetic Diseases
by Natalia Santos, Luthary Segura, Amber Lewis, Thuong Pham and Kwan H. Cheng
Molecules 2024, 29(3), 740; https://doi.org/10.3390/molecules29030740 - 5 Feb 2024
Cited by 4 | Viewed by 2635
Abstract
The molecular events of protein misfolding and self-aggregation of tau and amylin are associated with the progression of Alzheimer’s and diabetes, respectively. Recent studies suggest that tau and amylin can form hetero-tau-amylin oligomers. Those hetero-oligomers are more neurotoxic than homo-tau oligomers. So far, [...] Read more.
The molecular events of protein misfolding and self-aggregation of tau and amylin are associated with the progression of Alzheimer’s and diabetes, respectively. Recent studies suggest that tau and amylin can form hetero-tau-amylin oligomers. Those hetero-oligomers are more neurotoxic than homo-tau oligomers. So far, the detailed interactions between the hetero-oligomers and the neuronal membrane are unknown. Using multiscale MD simulations, the lipid binding and protein folding behaviors of hetero-oligomers on asymmetric lipid nanodomains or raft membranes were examined. Our raft membranes contain phase-separated phosphatidylcholine (PC), cholesterol, and anionic phosphatidylserine (PS) or ganglioside (GM1) in one leaflet of the lipid bilayer. The hetero-oligomers bound more strongly to the PS and GM1 than other lipids via the hydrophobic and hydrophilic interactions, respectively, in the raft membranes. The hetero-tetramer disrupted the acyl chain orders of both PC and PS in the PS-containing raft membrane, but only the GM1 in the GM1-containing raft membrane as effectively as the homo-tau-tetramer. We discovered that the alpha-helical content in the heterodimer was greater than the sum of alpha-helical contents from isolated tau and amylin monomers on both raft membranes, indicative of a synergetic effect of tau-amylin interactions in surface-induced protein folding. Our results provide new molecular insights into understanding the cross-talk between Alzheimer’s and diabetes. Full article
Show Figures

Figure 1

14 pages, 6056 KB  
Article
Magnetron Sputtering as a Versatile Tool for Precise Synthesis of Hybrid Iron Oxide–Graphite Nanomaterial for Electrochemical Applications
by Fee Käufer, Antje Quade, Angela Kruth and Heike Kahlert
Nanomaterials 2024, 14(3), 252; https://doi.org/10.3390/nano14030252 - 24 Jan 2024
Cited by 3 | Viewed by 2348
Abstract
Iron oxide nanomaterials are promising candidates for various electrochemical applications. However, under operating conditions high electric resistance is still limiting performance and lifetime. By incorporating the electronically conductive carbon into a nanohybrid, performance may be increased and degeneration due to delamination may be [...] Read more.
Iron oxide nanomaterials are promising candidates for various electrochemical applications. However, under operating conditions high electric resistance is still limiting performance and lifetime. By incorporating the electronically conductive carbon into a nanohybrid, performance may be increased and degeneration due to delamination may be prevented, eliminating major drawbacks. For future applications, performance is an important key, but also cost-effective manufacturing suitable for scale-up must be developed. A possible approach that shows good potential for up-scale is magnetron sputtering. In this study, a systematic investigation of iron oxides produced by RF magnetron sputtering was carried out, with a focus on establishing correlations between process parameters and resulting structural properties. It was observed that increasing the process pressure was favourable with regard to porosity. Over the entire pressure range investigated, the product consisted of low-crystalline Fe3O4, as well as Fe2O3 as a minor phase. During sputtering, a high degree of graphitisation of carbon was achieved, allowing for sufficient electronic conductivity. By means of a new alternating magnetron sputtering process, highly homogeneous salt-and-pepper-type arrangements of both nanodomains, iron oxide and carbon were achieved. This nano-containment of the redox-active species in a highly conductive carbon domain improves the material’s overall conductivity, while simultaneously increasing the electrochemical stability by 44%, as confirmed by cyclic voltammetry. Full article
Show Figures

Figure 1

25 pages, 3282 KB  
Review
Molecular Regulation and Oncogenic Functions of TSPAN8
by Jicheng Yang, Ziyan Zhang, Joanne Shi Woon Lam, Hao Fan and Nai Yang Fu
Cells 2024, 13(2), 193; https://doi.org/10.3390/cells13020193 - 19 Jan 2024
Cited by 7 | Viewed by 5387
Abstract
Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the [...] Read more.
Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called “tetraspanin-enriched microdomains (TEMs)” or “tetraspanin nanodomains” that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers. Full article
Show Figures

Figure 1

23 pages, 9650 KB  
Article
Molecular Mechanisms of Protein–Lipid Interactions and Protein Folding of Heterogeneous Amylin and Tau Oligomers on Lipid Nanodomains That Link to Alzheimer’s
by Natalia Santos, Luthary Segura, Amber Lewis, Thuong Pham and Kwan H. Cheng
Macromol 2023, 3(4), 805-827; https://doi.org/10.3390/macromol3040046 - 15 Dec 2023
Cited by 1 | Viewed by 1699
Abstract
The disruption of cell membranes by tau and amylin oligomers is linked to amyloid diseases such as Alzheimer’s and diabetes, respectively. The recent studies suggest that misfolded tau and amylin can form neurotoxic hetero-oligomers that are structurally different from homo-oligomers. However, the molecular [...] Read more.
The disruption of cell membranes by tau and amylin oligomers is linked to amyloid diseases such as Alzheimer’s and diabetes, respectively. The recent studies suggest that misfolded tau and amylin can form neurotoxic hetero-oligomers that are structurally different from homo-oligomers. However, the molecular interactions of these hetero-oligomers with the neuronal membranes remain unclear. Using MD simulations, we have investigated the binding behaviors, membrane disruption, and protein folding of hetero-oligomers on a raft membrane containing phase-separated lipid nanodomains like those found in neurons. We discovered that the hetero-oligomers bind to the liquid-order and liquid-disorder phase boundaries of the raft membrane. The major lipid-binding sites of these interactions include the L16 and I26 residues of amylin and the N-terminal of tau. Strong disruptions of the raft domain size by the hetero-tetramer were detected. Furthermore, the hetero-dimer disrupted the saturated phospholipid orientational order to a greater extent than the individual tau or amylin monomer. In addition, the constituent tau more strongly promoted the alpha-helix to the beta-sheet transition of the constituent amylin within the hetero-dimer when compared with the amylin monomer alone. Our results provide new molecular insights into understanding the neurotoxicity of the hetero-oligomers associated with the cross-talk between amyloid diseases. Full article
Show Figures

Graphical abstract

15 pages, 5055 KB  
Review
Impact of Structural Strain in Perovskite Epitaxial Thin Films on Their Functional Properties
by Florin Andrei, Maria Dinescu, Valentin Ion, Floriana Craciun, Ruxandra Birjega and Nicu Doinel Scarisoreanu
Crystals 2023, 13(12), 1686; https://doi.org/10.3390/cryst13121686 - 14 Dec 2023
Cited by 2 | Viewed by 2434
Abstract
The strain engineering effects induced by different means, e.g., the substrate lattice mismatch and/or chemical doping, on the functional properties of perovskite thin films have triggered interest in the use of these materials in different applications such as energy storage/generation or photonics. The [...] Read more.
The strain engineering effects induced by different means, e.g., the substrate lattice mismatch and/or chemical doping, on the functional properties of perovskite thin films have triggered interest in the use of these materials in different applications such as energy storage/generation or photonics. The effects of the film’s thickness and strain state of the structure for the lead-free perovskite ferrite-based materials (BiFeO3-BFO; Y-doped BiFeO3-BYFO; LaFeO3-LFO) on their functional properties are highlighted here. As was previously demonstrated, the dielectric properties of BFO epitaxial thin films are strongly affected by the film thickness and by the epitaxial strain induced by the lattice mismatch between substrate and film. Doping the BiFeO3 ferroelectric perovskite with rare-earth elements or inducing a high level of structural deformation into the crystalline structure of LaFeO3 thin films have allowed the tuning of functional properties of these materials, such as dielectric, optical or photocatalytic ones. These changes are presented in relation to the appearance of complex ensembles of nanoscale phase/nanodomains within the epitaxial films due to strain engineering. However, it is a challenge to maintain the same level of epitaxial strain present in ultrathin films (<10 nm) and to preserve or tune the positive effects in films of thicknesses usually higher than 30 nm. Full article
(This article belongs to the Special Issue Ferroelectric Materials)
Show Figures

Figure 1

Back to TopTop