Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = narrow linewidth filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3384 KB  
Review
Research Progress on Tunable External Cavity Semiconductor Lasers in Visible and Near-Infrared Wavebands
by Wei Luo, Jie Chen, Canyuan Yang, Shenglan Li, Yue Lou, Enning Zhu, Shaoyi Yu, Xinyi Wu, Xiaofei Gao, Dongxin Xu, Zaijin Li, Yi Qu and Lin Li
Coatings 2025, 15(9), 1010; https://doi.org/10.3390/coatings15091010 - 1 Sep 2025
Viewed by 242
Abstract
The TECSL has attracted much attention due to its wide tuning range, narrow linewidth, high output power, and excellent SMSR. It holds irreplaceable value in optical communication, spectroscopy analysis, and biomedical applications. The demand for a wide tuning range, high power, narrow linewidth, [...] Read more.
The TECSL has attracted much attention due to its wide tuning range, narrow linewidth, high output power, and excellent SMSR. It holds irreplaceable value in optical communication, spectroscopy analysis, and biomedical applications. The demand for a wide tuning range, high power, narrow linewidth, and a high SMSR has driven the development of high-performance TECSL structures. This paper comprehensively discusses five key TECSL structures: Littrow-type structures, Littman-type structures, filter-type structures, fiber-type structures, and waveguide-type structures, and elaborates on their structures and principles. This paper reviews the research process of different type-structure TECSLs, analyzes the advantages and disadvantages of different external cavity structures, and explores the future development trends of TECSLs. The review shows that the Littrow-type structure TECSL achieved an extremely wide tuning range using diffraction gratings, reaching up to 360 nm. The Littman-type structure TECSL demonstrated excellent spectral purity, achieving an SMSR of 71.03 dB. The filter-type structure TECSL was able to achieve flexible wavelength selection using tunable filters, achieving a linewidth of 570 Hz. The fiber-type structure TECSL has a linewidth of up to 600 Hz. The waveguide-type structure TECSL can achieve a linewidth as low as 0.252 kHz and a tuning range of up to 120.9 nm. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

10 pages, 2289 KB  
Communication
Raman Gas Analysis with External Power Build-Up Cavity of Line-Narrowed 407-nm Laser Diode
by Zhongyi Yao, Xinbing Wang and Duluo Zuo
Sensors 2025, 25(15), 4600; https://doi.org/10.3390/s25154600 - 25 Jul 2025
Viewed by 366
Abstract
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, [...] Read more.
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, the laser linewidth was narrowed by resonant optical feedback, and tens of watts of external cavity power were built up. The coupling mechanism between the semiconductor laser and the external cavity are discussed, as well as the noise background in the experimental results. The Raman spectrum of ambient air was analyzed, achieving a methane detection limit of 1 ppm. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

18 pages, 3893 KB  
Article
Creation of Low-Loss Dual-Ring Optical Filter via Temporal Coupled Mode Theory and Direct Binary Search Inverse Design
by Yuchen Hu, Tong Wang, Wen Zhou and Bo Hu
Photonics 2025, 12(7), 681; https://doi.org/10.3390/photonics12070681 - 6 Jul 2025
Viewed by 394
Abstract
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing [...] Read more.
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing transmission performance. Based on theoretical results, a direct binary search algorithm was implemented. The parameters of the proposed device were calculated using a three-dimensional finite-difference time-domain method for verification. The numerical results demonstrate a free spectral range of 86 nm, with insertion loss and extinction ratios of 0.3 dB and 22 dB, respectively. The proposed device has a narrow spectral linewidth of 0.3 nm within a compact footprint of 24 μm×25.5 μm. The device shows significant application potential in laser external cavities and dense wavelength division multiplexing systems. Moreover, this work provides a novel methodology for precision design of photonic devices. Full article
Show Figures

Figure 1

9 pages, 2685 KB  
Communication
Precisely Tunable 780 nm External Cavity Diode Laser
by Baoni Han, Yuanlin Shi, Xu Tang, Jing Li, Chenggang Guan, Junzhu Ye and Rongxu Shen
Photonics 2025, 12(4), 293; https://doi.org/10.3390/photonics12040293 - 21 Mar 2025
Viewed by 955
Abstract
State-of-the-art research on narrow-linewidth external cavity semiconductor lasers has provided limited discussion on the capability of continuous wavelength tuning. In this study, we present a 780 nm tunable external cavity diode laser (ECDL) with narrow linewidth. An angle-adjustable interference filter (IF) is employed [...] Read more.
State-of-the-art research on narrow-linewidth external cavity semiconductor lasers has provided limited discussion on the capability of continuous wavelength tuning. In this study, we present a 780 nm tunable external cavity diode laser (ECDL) with narrow linewidth. An angle-adjustable interference filter (IF) is employed as the mode-selection element, enabling a wide wavelength tuning range. Precise, mode-hop-free continuous tuning is achieved through a combination of current modulation and piezoelectric ceramic transducer (PZT) control, with a tuning accuracy of 1.65 pm/mA. Experimental optimization of the interference filter external cavity diode laser (IF-ECDL) operating conditions resulted in a narrow linewidth of 55 kHz and a high output power of 51 mW. Furthermore, by integrating current and PZT tuning, continuous wavelength tuning of the IF-ECDL output is demonstrated over a specified range. Full article
Show Figures

Figure 1

12 pages, 3771 KB  
Article
Reflective Semiconductor Optical Amplifier Chip with Low Ripple for C-Band External Cavity Narrow-Linewidth Laser
by Shaojie Li, Haiyang Yu, Haotian Bao, Menghan Ren, Jianguo Liu, Zeqiu Liu and Yulian Cao
Photonics 2025, 12(3), 193; https://doi.org/10.3390/photonics12030193 - 25 Feb 2025
Viewed by 1007
Abstract
The main characteristic of a reflective semiconductor optical amplifier chip (RSOA) is that it does not generate optical resonance under electric pumping and maintains the operation state of spontaneous emission. In this paper, a Nb2O5/SiO2/Nb2O [...] Read more.
The main characteristic of a reflective semiconductor optical amplifier chip (RSOA) is that it does not generate optical resonance under electric pumping and maintains the operation state of spontaneous emission. In this paper, a Nb2O5/SiO2/Nb2O5/SiO2 (four-layer Nb2O5/SiO2) film system is employed as the coating material for the output facet of the RSOA. The 3 dB spectral width of the spontaneous emission spectrum from this RSOA reaches 79.4 nm, with a ripple of less than 1 dB occurring across this wavelength range. Notably, around the 1550 nm wavelength, the ripple is as low as 0.5 dB. This represents the best performance reported for this type of chip. The RSOA is packaged as a narrow-linewidth external cavity laser. Under test conditions of 25 °C and 180 mA, the external cavity laser produces an output power of 12.6 mW and achieves a linewidth of 299.8 Hz. Furthermore, by adjusting the Fabry–Pérot (FP) standard cavity, filtering, and other external cavity parameters, the lasing spectrum of the narrow-linewidth external cavity laser based on the RSOA is tunable across a wavelength range from 1535.83 nm to 1561.42 nm, which shows the usability of the proposed ROSA for a C-band external cavity narrow-linewidth laser. Full article
Show Figures

Figure 1

13 pages, 5328 KB  
Article
InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads
by Jessica César-Cuello, Alberto Zarzuelo, Robinson C. Guzmán, Charoula Mitsolidou, Ilka Visscher, Roelof B. Timens, Paulus W. L. Van Dijk, Chris G. H. Roeloffzen, Luis González, José Manuel Delgado Mendinueta and Guillermo Carpintero
Photonics 2025, 12(1), 77; https://doi.org/10.3390/photonics12010077 - 16 Jan 2025
Viewed by 1309
Abstract
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed [...] Read more.
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed by two micro-ring resonators. Through beating the wavelengths generated from three of these lasers, we demonstrate the simultaneous generation of two LO signals within bands crucial for satellite communications (SatCom): one in the Ka-band and the other in the V-band. The device provides an extensive wavelength tuning range across the entire C-band and exhibits exceptionally narrow optical linewidths, below 40 kHz in free-running mode. This results in ultra-wideband tunable RF signals with narrow electrical linewidths below 100 kHz. The system is compact and highly scalable, with the potential to generate up to 10 simultaneous LO signals, being a promising solution for advanced RF signal generation in high throughput satellite payloads. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

10 pages, 3849 KB  
Communication
Tunable Single-Longitudinal-Mode Thulium–Holmium Co-Doped Fiber Laser with an Ultra-Narrow Linewidth by Utilizing a Triple-Ring Passive Sub-Ring Resonator
by Pengfei Wang, Fengping Yan, Qi Qin, Dandan Yang, Ting Feng, Peng Liu, Ting Li, Chenhao Yu, Xiangdong Wang, Hao Guo, Yuezhi Cai, Wenjie Ji and Youchao Jiang
Photonics 2025, 12(1), 19; https://doi.org/10.3390/photonics12010019 - 28 Dec 2024
Viewed by 955
Abstract
A low-cost, wavelength-tunable single-longitudinal-mode (SLM) thulium–holmium co-doped fiber laser (THDFL) in a 2 μm band with a simple structure is described in the present paper. To obtain a stable SLM and narrow laser linewidth, a five-coupler-based three-ring (FCTR) filter is utilized in the [...] Read more.
A low-cost, wavelength-tunable single-longitudinal-mode (SLM) thulium–holmium co-doped fiber laser (THDFL) in a 2 μm band with a simple structure is described in the present paper. To obtain a stable SLM and narrow laser linewidth, a five-coupler-based three-ring (FCTR) filter is utilized in the ring cavity of the fiber laser. Tunable SLM wavelength output from THDFLs with kHz linewidths can be achieved by designing the FCTR filter with an effective free-spectral range and a 3 dB bandwidth at the main resonant peak. The measurement results show that the laser is in the SLM lasing state, with a highly stabilized optical spectrum, a linewidth of approximately 9.45 kHz, an optical signal-to-noise ratio as high as 73.6 dB, and a relative intensity noise of less than −142.66 dB/Hz. Furthermore, the wavelength can be tuned in the range of 2.6 nm. The proposed fiber laser has a wide range of applications, including coherence optical communication, optical fiber sensing, and dense wavelength-division-multiplexing. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

11 pages, 5675 KB  
Communication
780 nm Narrow Linewidth External Cavity Diode Laser for Quantum Sensing
by Junzhu Ye, Chenggang Guan, Puchu Lv, Weiqi Wang, Xuan Chen, Ziyi Wang, Yifan Xiao, Linfeng Zhan, Jiaoli Gong and Yucheng Yao
Sensors 2024, 24(22), 7237; https://doi.org/10.3390/s24227237 - 13 Nov 2024
Cited by 2 | Viewed by 2485
Abstract
To meet the demands of laser communication, quantum precision measurement, cold atom technology, and other fields for narrow linewidth and low-noise light sources, an external cavity diode laser (ECDL) operating in the wavelength range around 780 nm was set up with a Fabry–Pérot [...] Read more.
To meet the demands of laser communication, quantum precision measurement, cold atom technology, and other fields for narrow linewidth and low-noise light sources, an external cavity diode laser (ECDL) operating in the wavelength range around 780 nm was set up with a Fabry–Pérot etalon (F–P) and an interference filter (IF) in the experiment. The interference filter type ECDL (IF–ECDL) with butterfly-style packaging configuration has continuous wavelength tuning within a specified range through precise temperature and current control and has excellent single-mode characteristics. Experimental results indicate that the output power of the IF–ECDL is 14 mW, with a side-mode suppression ratio (SMSR) of 54 dB, a temperature-controlled mode-hop-free tuning range of 527 GHz (1.068 nm), and an output linewidth of 570 Hz. Compared to traditional lasers operating at 780 nm, the IF–ECDL exhibits narrower linewidth, lower noise, and higher spectral purity, and its dimensions are merely 25 × 15 × 8.5 mm3 weighing only 19.8 g, showcasing remarkable miniaturization and lightweight advantages over similar products in current research fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 29393 KB  
Article
Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG
by Kaiwen Wang, Bin Yin, Chao Lv, Yanzhi Lv, Yiming Wang, Hao Liang, Qun Wang, Shiyang Wang, Fengjie Yu, Zhong Zhang, Ziwang Li and Songhua Wu
Photonics 2024, 11(10), 946; https://doi.org/10.3390/photonics11100946 - 8 Oct 2024
Cited by 2 | Viewed by 2328
Abstract
In this paper, a dual-wavelength narrow-linewidth fiber laser based on parity-time (PT) symmetry theory is proposed and experimentally demonstrated. The PT-symmetric filter system consists of two optical couplers (OCs), four polarization controllers (PCs), a polarization beam splitter (PBS), and cascaded fiber Bragg gratings [...] Read more.
In this paper, a dual-wavelength narrow-linewidth fiber laser based on parity-time (PT) symmetry theory is proposed and experimentally demonstrated. The PT-symmetric filter system consists of two optical couplers (OCs), four polarization controllers (PCs), a polarization beam splitter (PBS), and cascaded fiber Bragg gratings (FBGs), enabling stable switchable dual-wavelength output and single longitudinal-mode (SLM) operation. The realization of single-frequency oscillation requires precise tuning of the PCs to match gain, loss, and coupling coefficients to ensure that the PT-broken phase occurs. During single-wavelength operation at 1548.71 nm (λ1) over a 60-min period, power and wavelength fluctuations were observed to be 0.94 dB and 0.01 nm, respectively, while for the other wavelength at 1550.91 nm (λ2), fluctuations were measured at 0.76 dB and 0.01 nm. The linewidths of each wavelength were 1.01 kHz and 0.89 kHz, with a relative intensity noise (RIN) lower than −117 dB/Hz. Under dual-wavelength operation, the maximum wavelength fluctuations for λ1 and λ2 were 0.03 nm and 0.01 nm, respectively, with maximum power fluctuations of 3.23 dB and 2.38 dB. The SLM laser source is suitable for applications in long-distance fiber-optic sensing and coherent LiDAR detection. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

17 pages, 8273 KB  
Article
High-Repetition-Rate 2.3–2.7 µm Acousto-Optically Tuned Narrow-Line Laser System Comprising Two Master Oscillators and Power Amplifiers Based on Polycrystalline Cr2+:ZnSe with the 2.1 µm Ho3+:YAG Pulsed Pumping
by Oleg Antipov, Ilya Eranov, Stanislav Balabanov, Anton Dobryinin, Yuri Getmanovskiy, Valeriy Sharkov and Nikolay Yudin
Photonics 2024, 11(6), 555; https://doi.org/10.3390/photonics11060555 - 12 Jun 2024
Viewed by 1438
Abstract
High-average-power narrow-linewidth tunable solid-state lasers in the wavelength region between 2 and 3 μm are attractive light sources for many applications. This paper reports a narrow-linewidth widely tunable laser system based on the polycrystalline Cr2+:ZnSe elements pumped by repetitively pulsed 2.1 [...] Read more.
High-average-power narrow-linewidth tunable solid-state lasers in the wavelength region between 2 and 3 μm are attractive light sources for many applications. This paper reports a narrow-linewidth widely tunable laser system based on the polycrystalline Cr2+:ZnSe elements pumped by repetitively pulsed 2.1 µm Ho3+:YAG laser operating at a pulse rate of tens of kilohertz. An advanced procedure of ZnSe element doping and surface improvement was applied to increase the laser-induced damage threshold, which resulted in an increase in the output power of the Cr2+:ZnSe laser system. The high-average-power laser system comprised double master oscillators and power amplifiers: Ho3+:YAG and Cr2+:ZnSe laser oscillators, and Ho3+:YAG and Cr2+:ZnSe power amplifiers. The output wavelength was widely tuned within 2.3–2.7 µm by means of an acousto-optical tunable filter inside a Cr2+:ZnSe master oscillator cavity. The narrow-linewidth operation at the pulse repetition rate of 20–40 kHz in a high-quality beam with an average output power of up to 9.7 W was demonstrated. Full article
Show Figures

Figure 1

14 pages, 3394 KB  
Article
High-Performance Fiber Ring Laser Based on Polarization Space Parity-Time Symmetry Breaking
by Fengling Zhang, Zhengmao Wu, Xin Tong and Guangqiong Xia
Photonics 2024, 11(6), 501; https://doi.org/10.3390/photonics11060501 - 25 May 2024
Cited by 1 | Viewed by 1946
Abstract
This work proposes and experimentally demonstrates a high-performance polarization space parity-time (PT) symmetric fiber ring laser to achieve a low-noise, narrow-linewidth, and highly stable single-longitudinal-mode output. The gain/loss and coupling coefficients are regulated by adjusting a polarization controller (PC) and the pumping current [...] Read more.
This work proposes and experimentally demonstrates a high-performance polarization space parity-time (PT) symmetric fiber ring laser to achieve a low-noise, narrow-linewidth, and highly stable single-longitudinal-mode output. The gain/loss and coupling coefficients are regulated by adjusting a polarization controller (PC) and the pumping current of an erbium-doped fiber amplifier (EDFA) within the ring cavity. The results show that the single longitudinal mode oscillation of the laser can be implemented by PT symmetry breaking. The frequency noise spectral density and the linewidth characteristics of the laser are evaluated by the short-delay self-heterodyne method. The results reveal that excellent low-frequency noise (181 Hz2/Hz at a 10 kHz offset frequency) and narrow fundamental linewidth (68 Hz) can be achieved. Additionally, the laser exhibits outstanding stability with only 0.64 pm wavelength drift over 30 min. By tuning an optical tunable filter (OTF), the wavelength tunable range of the laser can cover the entire C-band. Furthermore, the impacts of different fiber length on the frequency noise spectral density and the filter bandwidth on stability are analyzed, offering guidance for component selection in such laser systems. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

9 pages, 3545 KB  
Communication
A Single-Longitudinal-Mode S + C Band Wavelength-Tunable Fiber Laser
by Da Liu and Yi Jiang
Sensors 2024, 24(8), 2576; https://doi.org/10.3390/s24082576 - 17 Apr 2024
Cited by 2 | Viewed by 1364
Abstract
An external cavity wavelength-fiber ring laser (ECWTFL) based on a semiconductor optical amplifier and a combined wavelength scanning filter in the Littrow configuration is proposed and experimentally demonstrated. With the benefit of the combination of an external cavity wavelength filter and a Lyot [...] Read more.
An external cavity wavelength-fiber ring laser (ECWTFL) based on a semiconductor optical amplifier and a combined wavelength scanning filter in the Littrow configuration is proposed and experimentally demonstrated. With the benefit of the combination of an external cavity wavelength filter and a Lyot filter, the laser achieves a single-mode narrow linewidth output with a linewidth of 1.75 kHz. The wavelength tuning range reaches 133 nm, covering the entire S + C band. The proposed ECWTFL is used for demodulation of a fiber EFPI sensor; the result shows that the proposed ECWTFL has the ability to demodulate the small cavity-length FPI sensor. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 3308 KB  
Article
Online Testing Method for the Fine Spectral Characteristics of Narrow-Band Interference Filters Based on a Narrow-Linewidth Tunable Laser
by Kaijun Ji, Yong Yang, Xin Lin, Jiaming Liang, Kaijie Ji, Jiqin Wang, Linmei Liu, Zhenwei Chen, Wei Wang, Xuewu Cheng and Faquan Li
Sensors 2024, 24(4), 1152; https://doi.org/10.3390/s24041152 - 9 Feb 2024
Cited by 1 | Viewed by 1619
Abstract
The transmission spectrum of a narrow-band interference filter is crucial and highly influenced by factors such as the temperature and angle, thus requiring precise and online measurements. The traditional method of measuring the transmission spectrum of an interference filter involves the use of [...] Read more.
The transmission spectrum of a narrow-band interference filter is crucial and highly influenced by factors such as the temperature and angle, thus requiring precise and online measurements. The traditional method of measuring the transmission spectrum of an interference filter involves the use of a spectrometer, but the accuracy of this method is limited. Moreover, placing a narrow-band interference filter inside a spectrometer hinders real-time online measurements. To address this issue, there is demand for high-precision online spectral testing methods. In response to this demand, we propose and experimentally validate a fine spectral characterization method for narrow-band interference filters. This method uses a narrow-linewidth tunable laser, achieving a spectral resolution in the MHz range for online testing. Two types of narrow-band interference filters were tested using the constructed laser spectroscopy experimental system, obtaining a transmission spectrum with a spectral resolution of 318 MHz. In comparison to spectrometer-based methods, our proposed method demonstrates higher spectral accuracy, enables online measurements, and provides more accurate measurements for special spectral interference filters. This approach has significant application value and promising development prospects. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 10572 KB  
Article
Study on Linewidth and Phase Noise Characteristics of a Narrow Linewidth External Cavity Diode Laser
by Sheng Hu, Puchu Lv, Chenggang Guan, Shasha Li, Haixin Qin, Xiaoqiang Li, Xuan Chen, Linfeng Zhan, Weiqi Wang, Yifan Xiao and Minghu Wu
Sensors 2024, 24(4), 1103; https://doi.org/10.3390/s24041103 - 8 Feb 2024
Cited by 5 | Viewed by 3043
Abstract
In the field of inter-satellite laser communication, achieving high-quality communication and compensating for the Doppler frequency shift caused by relative motion necessitate lasers with narrow linewidths, low phase noise, and the ability to achieve mode-hop-free tuning within a specific range. To this end, [...] Read more.
In the field of inter-satellite laser communication, achieving high-quality communication and compensating for the Doppler frequency shift caused by relative motion necessitate lasers with narrow linewidths, low phase noise, and the ability to achieve mode-hop-free tuning within a specific range. To this end, this paper investigates a novel external cavity diode laser (ECDL) with a frequency-selective F-P etalon structure, leveraging the external cavity F-P etalon structure in conjunction with an auxiliary filter to achieve single longitudinal mode selection. The laser undergoes linewidth testing using a delayed self-heterodyne beating method, followed by the testing of its phase noise and frequency noise characteristics using a noise analyzer, yielding beat spectra and noise power spectral density profiles. Furthermore, the paper introduces an innovative bidirectional temperature-scanning laser method to achieve optimal laser-operating point selection and mode-hop-free tuning. The experimental results showcase that the single longitudinal mode spectral side-mode suppression ratio (SMSR) is around 70 dB, and the output power exceeds 10 mW. Enhancing the precision of the F-P etalon leads to a more pronounced suppression of low-frequency phase noise, reducing the Lorentzian linewidth from the initial 10 kHz level to a remarkable 5 kHz level. The bidirectional temperature-scanning laser method not only allows for the selection of the optimal operating point but also enables mode-hop-free tuning within 160 pm. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 4181 KB  
Article
Near-Perfect Infrared Transmission Based on Metallic Hole and Disk Coupling Array for Mid-Infrared Refractive Index Sensing
by Lingyi Xu, Jianjun Lai, Qinghua Meng, Changhong Chen and Yihua Gao
Chemosensors 2024, 12(1), 3; https://doi.org/10.3390/chemosensors12010003 - 26 Dec 2023
Viewed by 2417
Abstract
Nanostructured color filters, particularly those generated by the extraordinary optical transmission (EOT) resonance of metal–dielectric nanostructures, have been intensively studied over the past few decades. In this work, we propose a hybrid array composed of a hole array and a disk array with [...] Read more.
Nanostructured color filters, particularly those generated by the extraordinary optical transmission (EOT) resonance of metal–dielectric nanostructures, have been intensively studied over the past few decades. In this work, we propose a hybrid array composed of a hole array and a disk array with the same working period within the 3–14 μm mid-infrared band. Through numerical simulations, near-perfect transmission (more than 99%) and a narrower linewidth at some resonance wavelengths were achieved, which is vital for highly sensitive sensing applications. This superior performance is attributed to the surface plasmon coupling resonance between the hole and disk arrays. A high tunability of the near-perfect transmission peak with varying structural parameters, characteristics of sensitivity to the background refractive index, and angle independence were observed. We expect that this metallic hole and disk coupling array is promising for use in various applications, such as in plasmon biosensors for the high-sensitivity detection of biochemical substances. Full article
Show Figures

Figure 1

Back to TopTop