Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (109)

Search Parameters:
Keywords = natural enemy diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1569 KB  
Article
Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower
by Keerthi Manikyanahalli Chandrashekara, Sachin Suresh Suroshe, Grandhi Ramamurthy Hithesh, Subhash Chander, Rakesh Kumar, Kirankumar G. Nagaraju, Srinivas Kummari, Rakshith H. Siddaswamy, Chaitanya Mallanagouda, Eere Vidya Madhuri, Jagadam Sai Rupali, Loganathan Ramakrishnan and Harishkumar H. Venkatachalapathi
Horticulturae 2025, 11(9), 1045; https://doi.org/10.3390/horticulturae11091045 - 2 Sep 2025
Abstract
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower [...] Read more.
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower cultivation during the winter seasons of 2017–18 and 2021–22. Nine insect pests belonging to six families of three orders were recorded. The calendula intercropping system (IS) consistently showed the lowest infestation by Plutella xylostella and Pieris brassicae/plant. Calendula IS had attracted the highest numbers of syrphids, Cotesia glomerata, Diaeretiella rapae, Cotesia vestalis, and coccinellids such as Coccinella septempunctata and Cheilomenes sexmaculata. In candytuft IS, a strong tri-trophic interaction between the flower and D. rapae significantly reduced aphid populations, for each additional D. rapae, aphid numbers decreased by 48.53 in 2018. The marigold IS recorded the highest Shannon diversity index in 2021–22. The longest adult survival of C. septempunctata (8.67 ± 3.35 days), in the absence of aphids was recorded on candytuft flowers. The total sugars and protein in flowers positively influenced the longevity of the adult coccinellid beetles (R2-40.42 and 20.79%, respectively). Calendula intercropping yielded the highest revenue return of Indian rupee (₹) 11.33 per INR 1 invested, compared to the cauliflower monocrop (1.58). These findings demonstrate that, intercropping and habitat manipulation can enhance ecological pest control and reduce the dependence on synthetic chemicals. Full article
(This article belongs to the Special Issue Enhancing Biological Control of Insect Pests of Horticultural Crops)
Show Figures

Graphical abstract

14 pages, 1350 KB  
Article
First Detection of Encarsia smithi in Italy and Co-Occurrence with Eretmocerus iulii: A Case of Unintentional Introductions and New Associations with the Invasive Species Aleurocanthus spiniferus
by Gianluca Melone, Lucia Andretta, Feliciana Pica, Francesco Pio Donnarumma, Roberta Ascolese, Francesco Nugnes and Stefania Laudonia
Insects 2025, 16(9), 891; https://doi.org/10.3390/insects16090891 - 27 Aug 2025
Viewed by 448
Abstract
The occurrence of the invasive Orange Spiny Whitefly (Aleurocanthus spiniferus) has expanded rapidly in Italy, prompting responses from both native and unintentionally introduced natural enemies. Through field monitoring, morpho-molecular identification, and phenological analysis, a multi-species parasitoid complex acting on this pest [...] Read more.
The occurrence of the invasive Orange Spiny Whitefly (Aleurocanthus spiniferus) has expanded rapidly in Italy, prompting responses from both native and unintentionally introduced natural enemies. Through field monitoring, morpho-molecular identification, and phenological analysis, a multi-species parasitoid complex acting on this pest was revealed. In addition to the predominant activity of Eretmocerus iulii, this study reports the first European detection of Encarsia smithi, genetically confirmed as belonging to haplogroup I, a lineage previously associated with A. spiniferus in Asia. Occasional parasitization by Cales noacki was also observed. Seasonal patterns suggest a possible ecological complementarity between Er. iulii and E. smithi, which may contribute to the suppression of A. spiniferus populations. Although climatic variables showed weak correlations with infestation or parasitism rates, a slight positive relationship was observed between rainfall and whitefly abundance. The increasing biocenotic complexity, reflected by the diversity and interactions among parasitoid species, indicates an emerging ecological balance. These findings underscore the potential role of unintentional biological control in supporting agroecosystem resilience. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Sap-Sucking Pests)
Show Figures

Figure 1

25 pages, 1452 KB  
Review
The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa
by Trisna D. Tungadi, Francis O. Wamonje, Netsai M. Mhlanga, Alex M. Murphy, Warren Arinaitwe and John P. Carr
Agriculture 2025, 15(17), 1808; https://doi.org/10.3390/agriculture15171808 - 25 Aug 2025
Viewed by 458
Abstract
Common bean (Phaseolus vulgaris L.), the world’s most widely grown legume crop, is not only of great commercial importance but is also a vital smallholder crop in low-to-medium-income countries. In sub-Saharan Africa common bean provides consumers with a major proportion of their [...] Read more.
Common bean (Phaseolus vulgaris L.), the world’s most widely grown legume crop, is not only of great commercial importance but is also a vital smallholder crop in low-to-medium-income countries. In sub-Saharan Africa common bean provides consumers with a major proportion of their dietary protein and micronutrients. However, productivity is constrained by viruses, particularly those vectored by aphids and whiteflies, and problems are further compounded by seed-borne transmission. We describe common bean’s major viral threats including the aphid-transmitted RNA viruses bean common mosaic virus and bean common mosaic necrosis virus, and the whitefly-transmitted begomoviruses bean golden mosaic virus and bean golden yellow mosaic virus and discuss how high-throughput sequencing is revealing emerging threats. We discuss how recent work on indirect and direct viral ‘manipulation’ of vector behaviour is influencing modelling of viral epidemics. Viral extended phenotypes also modify legume interactions with beneficial organisms including root-associated microbes, pollinators and the natural enemies of vectors. While problems with common bean tissue culture have constrained transgenic and gene editing approaches to crop protection, topical application of double-stranded RNA molecules could provide a practical protection system compatible with the wide diversity of common bean lines grown in sub-Saharan Africa. Full article
(This article belongs to the Special Issue Advances in the Cultivation and Production of Leguminous Plants)
Show Figures

Figure 1

39 pages, 10816 KB  
Article
A Novel Adaptive Superb Fairy-Wren (Malurus cyaneus) Optimization Algorithm for Solving Numerical Optimization Problems
by Tianzuo Yuan, Huanzun Zhang, Jie Jin, Zhebo Chen and Shanshan Cai
Biomimetics 2025, 10(8), 496; https://doi.org/10.3390/biomimetics10080496 - 27 Jul 2025
Viewed by 687
Abstract
Superb Fairy-wren Optimization Algorithm (SFOA) is an animal-based meta-heuristic algorithm derived from Fairy-wren’s behavior of growing, feeding, and avoiding natural enemies. The SFOA has some shortcomings when facing complex environments. Its switching mechanism is not enough to adapt to complex optimization problems, and [...] Read more.
Superb Fairy-wren Optimization Algorithm (SFOA) is an animal-based meta-heuristic algorithm derived from Fairy-wren’s behavior of growing, feeding, and avoiding natural enemies. The SFOA has some shortcomings when facing complex environments. Its switching mechanism is not enough to adapt to complex optimization problems, and it faces a weakening of population diversity in the late stage of optimization, leading to a higher possibility of falling into local optima. In addition, its global search ability needs to be improved. To address the above deficiencies, this paper proposes an Adaptive Superb Fairy-wren Optimization Algorithm (ASFOA). To assess the ability of the proposed ASFOA, three groups of experiments are conducted in this paper. Firstly, the effectiveness of the proposed improved strategies is checked on the CEC2018 test set. Second, the ASFOA is compared with eight classical/highly cited/newly proposed metaheuristics on the CEC2018 test set, in which the ASFOA performed the best overall, with average rankings of 1.621, 1.138, 1.483, and 1.966 in the four-dimensional cases, respectively. Then the convergence and robustness of ASFOA is verified on the CEC2022 test set. The experimental results indicate that the proposed ASFOA is a competitive metaheuristic algorithm variant with excellent performance in terms of convergence and distribution of solutions. In addition, we further validate the ability of ASFOA to solve real optimization problems. The average ranking of the proposed ASFOA on 10 engineering constrained optimization problems is 1.500. In summary, ASFOA is a promising variant of metaheuristic algorithms. Full article
Show Figures

Figure 1

18 pages, 947 KB  
Article
Temporal Dynamics of Host Plant Use and Parasitism of Three Stink Bug Species: A Multi-Trophic Perspective
by Martina Falagiarda, Francesco Tortorici, Sara Bortolini, Martina Melchiori, Manfred Wolf and Luciana Tavella
Insects 2025, 16(7), 731; https://doi.org/10.3390/insects16070731 - 17 Jul 2025
Viewed by 633
Abstract
Stink bugs are widespread agricultural pests that damage crops and reduce yield. Their impact is influenced by host plant selection and interactions with natural enemies, particularly egg parasitoids. Understanding these relationships is crucial for improving biological control strategies. This paper investigates the seasonal [...] Read more.
Stink bugs are widespread agricultural pests that damage crops and reduce yield. Their impact is influenced by host plant selection and interactions with natural enemies, particularly egg parasitoids. Understanding these relationships is crucial for improving biological control strategies. This paper investigates the seasonal host plant use and parasitism of Halyomorpha halys, Palomena prasina, and Pentatoma rufipes in South Tyrol, Italy. Over two years, we conducted field surveys at 27 sites, recording stink bug presence across 85 plant species and analyzing egg parasitism rates. Results show that stink bugs exhibit distinct host plant preferences, with H. halys utilizing the broadest range of host plants while P. prasina and P. rufipes showed stronger affinities for specific families such as Sapindaceae and Rosaceae. Parasitism rates varied across species and plant families: Trissolcus japonicus predominantly parasitized H. halys while T. cultratus and two Telenomus species targeted P. rufipes and P. prasina, respectively. Spatial–temporal features and host plant associations significantly influenced species distributions and parasitoid occurrence. These findings emphasize the role of plant–insect interactions in shaping pest and parasitoid dynamics. Integrating plant diversity into pest management strategies could enhance parasitoid effectiveness and reduce stink bug populations, contributing to more sustainable agricultural practices. Full article
Show Figures

Figure 1

13 pages, 1285 KB  
Article
Symbiont-Targeted Control of Halyomorpha halys Does Not Affect Local Insect Diversity in a Hazelnut Orchard
by Sofia Victoria Prieto, Matteo Dho, Bianca Orrù, Elena Gonella and Alberto Alma
Insects 2025, 16(7), 688; https://doi.org/10.3390/insects16070688 - 30 Jun 2025
Viewed by 653
Abstract
Harmless crop-associated insect communities are a fundamental part of the agroecosystem. Their potential as a reservoir of natural enemies of pests has encouraged their conservation through the development of low-impact pest management programs. The brown marmorated stink bug, Halyomorpha halys, represents a serious [...] Read more.
Harmless crop-associated insect communities are a fundamental part of the agroecosystem. Their potential as a reservoir of natural enemies of pests has encouraged their conservation through the development of low-impact pest management programs. The brown marmorated stink bug, Halyomorpha halys, represents a serious threat to Italian hazelnut production. Laboratory and field experiments confirmed the susceptibility of this pest to the disruption of the obligated symbiotic interaction with gut bacteria, paving the way for the development of the symbiont-targeted control strategy. Here we present the results of a three-year field assessment of symbiont-targeted control in a hazelnut orchard in northwestern Italy. The use of a biocomplex to disrupt symbiont acquisition by H. halys nymphs was compared to the use of lambda-cyhalothrin insecticide. The effects on the local entomofauna were assessed, as were the trend of H. halys population and the damage caused by stink bugs to harvested hazelnuts. The insecticide consistently reduced the insect diversity in the field, while the anti-symbiont biocomplex had no effect. However, the control of the H. halys population and the stink bug-induced damage to hazelnuts varied over the years in the field plot submitted to the symbiont-targeted approach. Our results indicate that the symbiont-targeted control does not interfere with local insect communities. Key aspects for improving the effectiveness of this tactic are discussed. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

21 pages, 2531 KB  
Article
Processing Tomato Crop Benefits from Flowering Plants in Field Margins That Support Pollinators and Natural Enemies
by Vaya Kati, Theodoros Stathakis, Leonidas Economou, Philippos Mylonas, Myrto Barda, Theodoros Angelioudakis, Athanasia Bratidou Parlapani, Ilias Tsamis and Filitsa Karamaouna
Agronomy 2025, 15(7), 1558; https://doi.org/10.3390/agronomy15071558 - 26 Jun 2025
Viewed by 718
Abstract
In a two-year experiment, we examined whether increasing plant diversity in the margins of processing tomato fields could attract pollinators and natural enemies of pests compared to weed flora, and questioned the effect on crop yield. Two plant mixtures sown in winter (WM) [...] Read more.
In a two-year experiment, we examined whether increasing plant diversity in the margins of processing tomato fields could attract pollinators and natural enemies of pests compared to weed flora, and questioned the effect on crop yield. Two plant mixtures sown in winter (WM) and spring (SM) were compared with weed vegetation along a tomato crop (CT) and an adjacent irrigation channel (CC). Flower cover was higher in the sown mixtures than the weedy margins, and brought in more visits of pollinating bees (including potential tomato pollinators) than the latter. Flowering species were mainly Eruca vesicaria (WM, SM), Coriandrum sativum and Lathyrus sativus (WM), Fagopyron esculentum and Phacelia tanacetifolia (SM), and Ammi majus, Rapistrum rugosum (CC, CT). Parasitoids (Eulophidae, Braconidae, Scelionidae) were more abundant in the sown and CC margins compared to the CT margin, while the abundance of predators (Aeolothripidae, Orius sp., Thomisidae) was similar among all types of margins. Fruit weight was higher in the field with the sown margins, while pest incidence in the crop was not affected by the margin type. Our findings provide new insights into the contribution of managed and existing field margins in attracting beneficial arthropods, and their implications on yield. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming)
Show Figures

Figure 1

23 pages, 4420 KB  
Article
Plant-Driven Effects of Wildflower Strips on Natural Enemy Biodiversity and Pest Suppression in an Agricultural Landscape in Hangzhou, China
by Wenhao Hu, Kang Ni, Yu Zhu, Shuyi Liu, Xuhua Shao, Zhenrong Yu, Luyu Wang, Rui Zhang, Meichun Duan and Wenhui Xu
Agronomy 2025, 15(6), 1286; https://doi.org/10.3390/agronomy15061286 - 23 May 2025
Viewed by 748
Abstract
Agricultural intensification has led to biodiversity loss and compromised ecosystem services, necessitating sustainable pest management strategies. This study evaluates the efficacy of wildflower strips (WFS) in enhancing natural enemy communities and suppressing pest activity in rice-wheat rotation landscapes of eastern China. An experiment [...] Read more.
Agricultural intensification has led to biodiversity loss and compromised ecosystem services, necessitating sustainable pest management strategies. This study evaluates the efficacy of wildflower strips (WFS) in enhancing natural enemy communities and suppressing pest activity in rice-wheat rotation landscapes of eastern China. An experiment compared WFS (10-species mixtures) with natural grass strips (CK) across biodiversity, functional traits, and pest dynamics. WFS significantly increased parasitic wasp α-diversity (species richness: +195.5%, activity density: +362.0%) and suppressed pest (Armadillidium vulgare) populations by 68%, primarily through female-biased sex ratios and functional trait shifts. Key species like Lindenius mesopleuralis and Ectemnius continuus emerged as indicators of WFS habitats. Spider communities showed no β-diversity differentiation but exhibited functional guild shifts (e.g., web-building specialists). Plant community composition, particularly floral resource availability and phenological continuity, drove natural enemy assembly and pest regulation, outperforming the CK group in rare species conservation. Our findings highlight WFS as a precision tool for enhancing pest control through targeted plant selection and trait-mediated interactions. This study advances the understanding of habitat-driven pest regulation, providing a framework for optimizing ecological intensification in agroecosystems. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

26 pages, 4653 KB  
Review
Biology and Ecology of Lygus pratensis (Linn, 1758) (Heteroptera: Miridae): Towards the Practical Management of Cropping Landscapes in China
by Pengfei Li, Changqing Gou and Hongzu Feng
Insects 2025, 16(5), 441; https://doi.org/10.3390/insects16050441 - 23 Apr 2025
Viewed by 1018
Abstract
Lygus pratensis (Linnaeus) (Hemiptera: Miridae) is an agricultural pest widely distributed across Europe, China, North Africa, the Middle East, and India. The population of L. pratensis has increased in recent years due to the prolonged reproductive period, high productivity, and strong adaptability of [...] Read more.
Lygus pratensis (Linnaeus) (Hemiptera: Miridae) is an agricultural pest widely distributed across Europe, China, North Africa, the Middle East, and India. The population of L. pratensis has increased in recent years due to the prolonged reproductive period, high productivity, and strong adaptability of adult L. pratensis, along with other factors such as changes in crop planting schemes. It significantly damages cotton production and adversely affects commercial crops such as alfalfa and fruit trees. Recent studies on the interrelationship between landscape features and pest management have provided new insights for controlling L. pratensis. This paper primarily reviews multiple aspects, including its life history and habits, host plants, pheromones, diapause characteristics, migratory dispersal, the relationship between L. pratensis occurrences and environmental factors, chemical control and resistance, sampling surveys and prevention indicators, ecological control, molecular genetic control, and the ecological effects of farmland landscape patterns on L. pratensis. We focus on the outlook for the conservation effectiveness of farmland landscape patterns on the diversity of natural enemies and the developmental direction of the ecological regulation of L. pratensis. The aim is to develop new control strategies and technologies to enhance the comprehensive control of L. pratensis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 2348 KB  
Article
Reproductive Behavior of the Polyembryonic Parasitoid Copidosomopsis nacoleiae (Eady) at Different Ages
by Huili Ouyang, Dongyu Chen, Peng Xiang, Xiaoyun Wang, Wen Lu and Xialin Zheng
Insects 2025, 16(3), 239; https://doi.org/10.3390/insects16030239 - 25 Feb 2025
Cited by 1 | Viewed by 1140
Abstract
In the control of agricultural and forestry pests, excessive reliance on chemical pesticides has led to increasingly severe issues, such as toxic residues and heightened pest resistance. The effective use of biological control has become a major focus in pest management. Parasitoid wasps, [...] Read more.
In the control of agricultural and forestry pests, excessive reliance on chemical pesticides has led to increasingly severe issues, such as toxic residues and heightened pest resistance. The effective use of biological control has become a major focus in pest management. Parasitoid wasps, as a critical natural enemy of pests, are widely distributed, diverse in species, and play an essential role in natural pest control. Copidosomopsis nacoleiae, a recently discovered polyembryonic endoparasitoid wasp, parasitizes Diaphania angustalis; yet, its biological characteristics remain insufficiently studied. The artificial rearing and population propagation of this wasp have not yet been achieved, and its reproductive behavior and rhythm are not fully understood. To better utilize natural enemy resources and maximize their pest control benefits, we conducted laboratory rearing, behavioral observation, and population surveys to investigate the morphological characteristics, life history, and behavioral patterns of C. nacoleiae. Under laboratory conditions, C. nacoleiae has a generational cycle of 48.71 ± 0.48 days, with an egg–larval period of 32.17 ± 0.20 days and a pupal period of 14.36 ± 0.27 days. Adult wasps require nutritional supplementation and have a maximum lifespan of 2.18 ± 0.09 days when fed 10% honey water. The pre-mating period for adults is 4.72 ± 0.24 h, with an average mating frequency of 5.17 ± 1.65 times per lifetime. Females have a pre-oviposition period of 2.80 ± 0.31 h and an oviposition period of 4.52 ± 0.12 h, laying between 2 and 95 eggs, with an average of 12.75 ± 9.99 eggs, totaling 107.55 ± 28.38 eggs over their lifespan. Offspring production increases with the body length of the host’s mature larvae. Through the successful establishment of a laboratory population of D. angustalis, the biological characteristics, reproductive behavior, and rhythms of C. nacoleiae were systematically examined in this study, and its occurrence dynamics in the field were investigated. These results provide a theoretical foundation for the large-scale propagation and application of C. nacoleiae to control D. angustalis populations effectively. Full article
(This article belongs to the Special Issue Arthropod Reproductive Biology)
Show Figures

Figure 1

15 pages, 1960 KB  
Article
Exploiting Plant–Natural Enemy Interactions: Selection and Evaluation of Plants for the Improvement of Biological Control
by Hipolito Cortez-Madrigal
Insects 2025, 16(2), 138; https://doi.org/10.3390/insects16020138 - 31 Jan 2025
Cited by 1 | Viewed by 1219
Abstract
To identify and select wild plant species as a source of nectar and pollen for the conservation of natural enemies (NEs), with an emphasis on parasitic Hymenoptera, entomological samplings were carried out on the inflorescences of plants in the northwest of Michoacán, Mexico, [...] Read more.
To identify and select wild plant species as a source of nectar and pollen for the conservation of natural enemies (NEs), with an emphasis on parasitic Hymenoptera, entomological samplings were carried out on the inflorescences of plants in the northwest of Michoacán, Mexico, in 2020. The species were selected based on the number and diversity of NEs, flowering period, phytosanitary risks (pests), and ease of multiplication. Of more than 27 plant species, NEs were recorded in 24. The Eulophid family represented 74.14% of 23 families of parasitoids recorded, and in 19 of the 23 plant species with parasitoids, the eulophid family was the most prevalent. Thirteen plant species were selected; annual species such as Tithonia tubaeformis and Stevia serrata stand out. Among the shrubs, Senecio salignus and Baccharis salicifolia stand out, as do trees such as Viguiera quinqueradiata, Thouinia villosa and Buddleja parviflora. Serjania racemosa and Phytolacca icosandra stand out for their long flowering period (>5 months) and the wide diversity of beneficial entomofauna. They are plants that reproduce easily and have a low phytosanitary risk to crops. The presence of flowering plants in agroecosystems could attract and maintain NE populations, even before pests arrive, with predictable benefits for integrated pest management. Full article
Show Figures

Figure 1

17 pages, 1599 KB  
Review
Utilizing Olive Fly Ecology Towards Sustainable Pest Management
by Giorgos Stavrianakis, Efstratios Sentas, Sofia Zafeirelli, Thomas Tscheulin and Thanasis Kizos
Biology 2025, 14(2), 125; https://doi.org/10.3390/biology14020125 - 25 Jan 2025
Cited by 3 | Viewed by 2074
Abstract
The olive fly (Bactrocera oleae, OLF) is a major pest of global significance that occurs in places where olive cultivation thrives. This paper highlights the economic and environmental damage caused by OLF infestations, including reduced olive oil yield and quality, disrupted [...] Read more.
The olive fly (Bactrocera oleae, OLF) is a major pest of global significance that occurs in places where olive cultivation thrives. This paper highlights the economic and environmental damage caused by OLF infestations, including reduced olive oil yield and quality, disrupted supply chains, and ecosystem imbalances due to heavy insecticide use. Understanding olive fly ecology is crucial for developing effective control strategies. The review explores the fly’s life cycle, its relationship with olive trees, and how environmental factors like temperature and humidity influence population dynamics. Additionally, studying the role of natural enemies and agricultural practices can pave the way for sustainable control methods that minimize environmental harm. Climate change, intensive cultivation, and the development of resistance to insecticides necessitate a shift towards sustainable practices. This includes exploring alternative control methods like biological control with natural enemies and attract-and-kill strategies. Furthermore, a deeper understanding of OLF ecology, including its response to temperature and its ability to find refuge in diverse landscapes, is critical for predicting outbreaks and implementing effective protection strategies. By employing a holistic approach that integrates ecological knowledge with sustainable control methods, we can ensure the continued viability of olive cultivation, protect the environment, and produce high-quality olive oil. Full article
Show Figures

Figure 1

22 pages, 3962 KB  
Review
Compounds Involved in the Invasive Characteristics of Lantana camara
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(2), 411; https://doi.org/10.3390/molecules30020411 - 19 Jan 2025
Cited by 7 | Viewed by 2633
Abstract
Lantana camara L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. L. camara infests diverse habitats with a wide range of climatic factors, and its [...] Read more.
Lantana camara L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. L. camara infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world’s 100 worst invasive alien species. Its infestation reduces species diversity and abundance in the natural ecosystems and reduces agricultural production. The life history characteristics of L. camara, such as its high reproductive ability and high adaptive ability to various environmental conditions, may contribute to its ability to infest and increase its population. Possible evidence of the compounds involved in the defense functions of L. camara against natural enemies, such as herbivore mammals and insects, parasitic nematodes, pathogenic fungi and bacteria, and the allelochemicals involved in its allelopathy against neighboring competitive plant species, have accumulated in the literature over three decades. Lantadenes A and B, oleanonic acid, and icterogenin are highly toxic to herbivore mammals, and β-humulene, isoledene, α-copaene thymol, and hexadecanoic acid have high insecticidal activity. β-Caryophyllene and cis-3-hexen-1-ol may function as herbivore-induced plant volatiles which are involved in sending warning signals to undamaged tissues and the next plants of the same species. Farnesol and farnesal may interrupt insect juvenile hormone biosynthesis and cause abnormal metamorphosis of insects. Several triterpenes, such as lantanolic acid, lantoic acid, pomolic acid, camarin, lantacin, camarinin, ursolic acid, and oleanonic acid, have demonstrated nematocidal activity. Lantadene A, β-caryophyllene, germacrene-D, β-curcumene, eicosapentaenoic acid, and loliolide may possess antimicrobial activity. Allelochemicals, such as caffeic acid, ferulic acid, salicylic acid, α-resorcylic acid, p-hydroxybenzoic acid, vanillic acid, unbelliferone, and quercetin, including lantadenes A and B and β-caryophyllene, suppress the germination and growth of neighboring plant species. These compounds may be involved in the defense functions and allelopathy and may contribute to L. camara’s ability to infest and to expand its population as an invasive plant species in new habitats. This is the first review to focus on how compounds enhance the invasive characteristics of L. camara. Full article
Show Figures

Graphical abstract

22 pages, 2243 KB  
Review
Defensive Mechanisms of Mikania micrantha Likely Enhance Its Invasiveness as One of the World’s Worst Alien Species
by David R. Clements and Hisashi Kato-Noguchi
Plants 2025, 14(2), 269; https://doi.org/10.3390/plants14020269 - 18 Jan 2025
Cited by 9 | Viewed by 2193
Abstract
Mikania micrantha Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops [...] Read more.
Mikania micrantha Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world’s 100 worst invasive alien species. Its life history characteristics, such as the production of large numbers of wind-dispersed seeds, vegetative reproduction, rapid growth, and genetic diversity all contribute to its invasiveness. In this review, we focus on how mechanisms to defend against its natural enemies boost the invasiveness of M. micrantha. It possesses potent defenses against natural enemies such as pathogenic fungi, herbivorous insects, and parasitic nematodes, and exhibits allelopathic potential against plant competitors. These defensive abilities, in concert with its formidable life history characteristics, contribute to the invasiveness of M. micrantha, potentially leading to further naturalization. Several other reviews have summarized the biology and management of the species, but ours is the first review to focus on how the defensive mechanisms of M. micrantha likely enhance its invasiveness. Relatively little is known about the array of defensive capabilities of M. micrantha; therefore, there is considerable scope for further research on its chemical defenses. Full article
(This article belongs to the Special Issue Plant Invasions across Scales)
Show Figures

Figure 1

12 pages, 5969 KB  
Article
Predaceous and Phytophagous Pentatomidae Insects Exhibit Contrasting Susceptibilities to Imidacloprid
by Hongmei Cheng, Zhen Wang, Xiaoyu Yan, Changjin Lin, Yu Chen, Le Ma, Luyao Fu, Xiaolin Dong and Chenxi Liu
Int. J. Mol. Sci. 2025, 26(2), 690; https://doi.org/10.3390/ijms26020690 - 15 Jan 2025
Cited by 1 | Viewed by 865
Abstract
Imidacloprid, a widely used neonicotinoid insecticide, targets insect pests but also affects natural enemies. However, the effects of neonicotinoid insecticides on closely related insects remain unclear. We evaluated the harmful effects of imidacloprid on the phytophagous Halyomorpha halys and predaceous Arma chinensis. [...] Read more.
Imidacloprid, a widely used neonicotinoid insecticide, targets insect pests but also affects natural enemies. However, the effects of neonicotinoid insecticides on closely related insects remain unclear. We evaluated the harmful effects of imidacloprid on the phytophagous Halyomorpha halys and predaceous Arma chinensis. Bioassays revealed that imidacloprid was more toxic to H. halys than to A. chinensis and more harmful to the males than to the females of the two insects. A. chinensis adults recovered from imidacloprid-induced knockdown, as evidenced by restored respiratory rates, metabolic rates, and locomotion. Surviving A. chinensis showed reduced fecundity, suggesting a trade-off between detoxification and reproduction. Bioinformatics analysis of nicotinic acetylcholine receptors (nAChRs) and molecular docking simulations indicated a lower diversity of the nAChR gene family in A. chinensis than in H. halys, with weaker binding to imidacloprid, consistent with the relatively low toxicity of the insecticide in this species. This might account for the susceptibility differences to imidacloprid between the species. These findings underscore the efficacy of imidacloprid against H. halys and provide insights into the toxicities of neonicotinoids to target and non-target insects. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

Back to TopTop