Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = non-acoustic factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3489 KB  
Article
Assessing Annoyance and Sleep Disturbance Related to Changing Aircraft Noise Context: Evidence from Tan Son Nhat Airport
by Thulan Nguyen, Tran Thi Hong Nhung Nguyen, Makoto Morinaga, Yasuhiro Hiraguri and Takashi Morihara
Int. J. Environ. Res. Public Health 2025, 22(8), 1296; https://doi.org/10.3390/ijerph22081296 - 19 Aug 2025
Viewed by 271
Abstract
This study examines the impact of aircraft noise on annoyance and sleep disturbances among residents near Tan Son Nhat Airport in Ho Chi Minh City, Vietnam, from 2019 to 2023. It aims to assess the specific effects of aircraft noise exposure on sleep [...] Read more.
This study examines the impact of aircraft noise on annoyance and sleep disturbances among residents near Tan Son Nhat Airport in Ho Chi Minh City, Vietnam, from 2019 to 2023. It aims to assess the specific effects of aircraft noise exposure on sleep quality, as well as changes in exposure due to reduced air traffic during the COVID-19 pandemic. Surveys conducted before and during the pandemic revealed that, despite lower noise levels, residents continued to report high levels of annoyance, indicating a complex exposure-response relationship. This study evaluates both the impact of aircraft noise levels and the role of non-acoustic factors in mitigating sleep disturbances and shaping residents’ responses over time. The study’s findings support the applicability of WHO guidelines in this context and emphasize the importance of considering both noise reduction and community engagement in noise management strategies. Full article
(This article belongs to the Special Issue Community Response to Environmental Noise)
Show Figures

Figure 1

36 pages, 5042 KB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 1406
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

24 pages, 3561 KB  
Article
Controlling Parameters of Acoustic Velocity in Organic-Rich Mudstones (Vaca Muerta Formation, Argentina)
by Mustafa Kamil Yuksek, Gregor P. Eberli, Donald F. McNeill and Ralf J. Weger
Minerals 2025, 15(7), 694; https://doi.org/10.3390/min15070694 - 28 Jun 2025
Viewed by 322
Abstract
We conducted ultrasonic (1-MHz) laboratory measurements on 210 samples from the Vaca Muerta Formation (Neuquén Basin, Argentina) to determine the factors influencing acoustic velocities in siliciclastic–carbonate mudstone. We quantitatively assessed the calcium carbonate and total organic carbon (TOC) content and qualitatively identified the [...] Read more.
We conducted ultrasonic (1-MHz) laboratory measurements on 210 samples from the Vaca Muerta Formation (Neuquén Basin, Argentina) to determine the factors influencing acoustic velocities in siliciclastic–carbonate mudstone. We quantitatively assessed the calcium carbonate and total organic carbon (TOC) content and qualitatively identified the quartz and clay mineralogy. For brine-saturated samples, P-wave velocities ranged from 2826 to 6816 m/s, S-wave velocities ranged from 1474 to 3643 m/s, and porosity values ranged from 0.01 to 19.4%. Carbonate content percentages, found to be critically important, vary widely from 0.08 to 98.0%, while TOC ranged from 0 to 5.3%. Velocity was primarily controlled by carbonate content and, to a lesser extent, by the non-carbonate mineralogy of the rock (e.g., quartz, clay minerals). TOC content had little effect on the acoustic properties. Due to the low porosity of most samples, mineral composition had a stronger influence on velocity than porosity or pore geometry. The Vp/Vs ratio of dry samples ranged from 1.38 to 1.97 and decreased as porosity increased. In saturated samples, the Vp/Vs ratio ranged from 1.46 to 2.06 and appeared independent of porosity. A clear distinction between carbonate and mixed lithofacies under both saturated and dry conditions was observed in all samples. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

23 pages, 1105 KB  
Article
Examining Speech Perception–Production Relationships Through Tone Perception and Production Learning Among Indonesian Learners of Mandarin
by Keith K. W. Leung, Yu-An Lu and Yue Wang
Brain Sci. 2025, 15(7), 671; https://doi.org/10.3390/brainsci15070671 - 22 Jun 2025
Viewed by 664
Abstract
Background: A transfer of learning effects across speech perception and production is evident in second-language (L2)-learning research, suggesting that perception and production are closely linked in L2 speech learning. However, underlying factors, such as the phonetic cue weightings given to acoustic features, of [...] Read more.
Background: A transfer of learning effects across speech perception and production is evident in second-language (L2)-learning research, suggesting that perception and production are closely linked in L2 speech learning. However, underlying factors, such as the phonetic cue weightings given to acoustic features, of the relationship between perception and production improvements are less explored. To address this research gap, the current study explored the effects of Mandarin tone learning on the production and perception of critical (pitch direction) and non-critical (pitch height) perceptual cues. Methods: This study tracked the Mandarin learning effects of Indonesian adult learners over a four-to-six-week learning period. Results: We found that perception and production gains in Mandarin L2 learning concurrently occurred with the critical pitch direction cue, F0 slope. The non-critical pitch height cue, F0 mean, only displayed a production gain. Conclusions: The results indicate the role of critical perceptual cues in relating tone perception and production in general, and in the transfer of learning effects across the two domains for L2 learning. These results demonstrate the transfer of the ability to perceive phonological contrasts using critical phonetic information to the production domain based on the same cue weighting, suggesting interconnected encoding and decoding processes in L2 speech learning. Full article
(This article belongs to the Special Issue Language Perception and Processing)
Show Figures

Figure 1

34 pages, 2563 KB  
Review
Non-Destructive Detection of Fruit Quality: Technologies, Applications and Prospects
by Jingyi Liu, Jun Sun, Yasong Wang, Xin Liu, Yingjie Zhang and Haijun Fu
Foods 2025, 14(12), 2137; https://doi.org/10.3390/foods14122137 - 19 Jun 2025
Cited by 2 | Viewed by 1983
Abstract
Fruit quality testing plays a crucial role in the advancement of fruit industry, which is related to market competitiveness, consumer satisfaction and production process optimization. In recent years, nondestructive testing technology has become a research hotspot due to its outstanding advantages. In this [...] Read more.
Fruit quality testing plays a crucial role in the advancement of fruit industry, which is related to market competitiveness, consumer satisfaction and production process optimization. In recent years, nondestructive testing technology has become a research hotspot due to its outstanding advantages. In this paper, the principle, application, advantages and disadvantages of optical, acoustic, electromagnetics, dielectric properties research and electronic nose non-destructive testing technology in fruit quality testing are systematically reviewed. These technologies can detect a variety of chemical components of fruit, realize the assessment of maturity, damage degree, disease degree, and are suitable for orchard picking, quality grading, shelf life prediction and other fields. However, there are limitations to these techniques. The optical, acoustic and electronic nose technologies are susceptible to environmental factors, the electromagnetic technology has defects in the detection of complex molecules and fruit internal quality, and the dielectric characteristics are greatly affected by the shape and state of the sample surface. In the future, efforts should be made to enhance the implementation of non-destructive testing technology in the fruit industry through technology integration, optimization algorithm, cost reduction, and expansion of industrial chain application, so as to help the premium growth of the fruit industry. Full article
Show Figures

Figure 1

24 pages, 3412 KB  
Review
Comparative and Meta-Analysis Evaluation of Non-Destructive Testing Methods for Strength Assessment of Cemented Paste Backfill: Implications for Sustainable Pavement and Concrete Materials
by Sakariyau Babatunde Abdulkadir, Qiusong Chen, Erol Yilmaz and Daolin Wang
Materials 2025, 18(12), 2888; https://doi.org/10.3390/ma18122888 - 18 Jun 2025
Viewed by 499
Abstract
Cemented paste backfill (CPB) plays an important role in sustainable mining by providing structural support and reducing surface subsidence. While traditional destructive testing methods such as unconfined compressive strength (UCS) tests offer valuable understanding of material strength, they require a lot of resources, [...] Read more.
Cemented paste backfill (CPB) plays an important role in sustainable mining by providing structural support and reducing surface subsidence. While traditional destructive testing methods such as unconfined compressive strength (UCS) tests offer valuable understanding of material strength, they require a lot of resources, are time-consuming, and environmentally unfriendly. However, non-destructive testing (NDT) techniques such as ultrasonic pulse velocity (UPV), electrical resistivity (ER), and acoustic emission (AE) provide sustainable alternatives by preserving sample integrity, minimizing waste, and enabling real-time monitoring. This study systematically reviews and quantitatively compares the effectiveness of UPV, ER, and AE in predicting the strength of CPB. Meta-analysis of 30 peer-reviewed studies reveals that UPV and AE provide the most consistent and reliable correlations with UCS, with R2 values of 0.895 and 0.896, respectively, while ER shows more variability due to its sensitivity to environmental factors. Additionally, a synthetic model combining UPV, AE and ER demonstrates improved accuracy in predicting strength. This hybrid approach enhances predictions of material performance while supporting sustainability in mining and construction. Our research advocates for better testing practices and presents a promising direction for future infrastructure projects, where real-time, non-invasive monitoring can enhance material performance evaluation and optimize resource use. Full article
Show Figures

Graphical abstract

21 pages, 2572 KB  
Article
Acoustic Measurements and Simulations on Yachts: An Evaluation of Airborne Sound Insulation
by Michele Rocca, Francesca Di Puccio, Paola Forte, Francesco Fidecaro, Francesco Artuso, Simon Kanka and Francesco Leccese
J. Mar. Sci. Eng. 2025, 13(5), 988; https://doi.org/10.3390/jmse13050988 - 20 May 2025
Cited by 1 | Viewed by 628
Abstract
The perceived acoustic comfort on board modern yachts has recently been the subject of specific attention by the most important classification societies, which have issued new guidelines and regulations for the evaluation of noise and vibrations. The evaluation of the acoustic insulation performance [...] Read more.
The perceived acoustic comfort on board modern yachts has recently been the subject of specific attention by the most important classification societies, which have issued new guidelines and regulations for the evaluation of noise and vibrations. The evaluation of the acoustic insulation performance of the internal partitions of yachts is, therefore, a very current topic. The estimation of the acoustic performance of internal partitions can be very complex; on the one hand, on-board measurements can be extremely difficult, but on the other hand, manual or software calculation is extremely complex or potentially affected by non-negligible errors, which is also due to the high amount of highly detailed information required. This paper explores the possibility of using simplified models, commonly used in building construction, to determine the acoustic insulation of the internal partitions of yachts in the design phase, without having to resort, even from the beginning, to very advanced calculation tools such as those based on the Finite Elements Method or Statistical Energy Analysis. Using a 44 m yacht as a case study, this paper presents the results of a series of acoustic simulations of single partitions and compares them with the results of an on-board measurement campaign. From the comparison of the obtained results, it was possible to state that the simulations of single partitions (therefore, those not of the whole vessel) can be useful in the design phase to verify compliance with the acoustic requirements requested by the classification societies. Considering that the propagation of sound and vibrations through the structures is a determining factor for the correct acoustic design of the vessel and therefore for the achievement of adequate levels of acoustic comfort, the analysis with simplified models (which consider the single partition) can be extremely useful in the preliminary phase of the design process. Subsequently, starting from the data acquired in the first simulation phase, it is possible to proceed with more complex simulations of specific situations and of the whole vessel. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 4690 KB  
Article
Advanced Sustainable Architectural Acoustics Through Robotic Extrusion-Based Additive Manufacturing (EAM) of Fungal Biomaterials
by Alale Mohseni, Özgüç Bertuğ Çapunaman, Alireza Zamani, Natalie Walter and Benay Gürsoy
Appl. Sci. 2025, 15(10), 5587; https://doi.org/10.3390/app15105587 - 16 May 2025
Viewed by 825
Abstract
While prior studies have explored developing mycelium paste for EAM of this material, this research streamlined the EAM workflow for preparing living, extrudable mycelium mixtures, involving alterations in the preparation sequence and adjustments in the admixture ratios. The resultant mycelium mixture was employed [...] Read more.
While prior studies have explored developing mycelium paste for EAM of this material, this research streamlined the EAM workflow for preparing living, extrudable mycelium mixtures, involving alterations in the preparation sequence and adjustments in the admixture ratios. The resultant mycelium mixture was employed in a series of experiments to optimize the parameters of robotic EAM using Artificial Neural Networks. Next, a performance-based acoustic wall was designed informed by simulation in Pachyderm. Building upon previous research by authors, two adjacent panels with high complex geometric features were selected for fabrication, presenting a challenging test scenario, as conventional planar slicing introduces stair-stepping phenomena, while non-planar slicing introduces irregularities in layer height. To address these, a hybrid slicing strategy was used by integrating both slicing techniques. Next, an experimental framework was established to assess the influence of EAM toolpath planning factors on the acoustic properties of the designed acoustic panels. Lastly, two panels were fabricated using an ABB IRB 2400 robotic arm. The alignment of the toolpath planning factors and EAM parameters resulted in a uniform material deposition in the final fabricated panels. This study underscores the transformative capacity of robotic EAM and conformal toolpath planning, presenting the development of biodegradable building materials and advanced acoustic solutions. Full article
Show Figures

Figure 1

13 pages, 4832 KB  
Article
Enhancement of Quality Factors in a 6.5 GHz Resonator Using Mo/SiC Composite Microstructures
by Binghui Lin, Yupeng Zheng, Haiyang Li, Yuqi Ren, Tingting Yang, Zekai Wang, Yao Cai, Qinwen Xu and Chengliang Sun
Micromachines 2025, 16(5), 529; https://doi.org/10.3390/mi16050529 - 29 Apr 2025
Viewed by 495
Abstract
This study addresses the critical challenge of lateral acoustic wave energy leakage in high-frequency film bulk acoustic resonators (FBARs) and elucidates the reflection mechanism of acoustic waves at acoustic reflection boundaries. Based on the theory of acoustic impedance mismatch, a novel Mo/SiC composite [...] Read more.
This study addresses the critical challenge of lateral acoustic wave energy leakage in high-frequency film bulk acoustic resonators (FBARs) and elucidates the reflection mechanism of acoustic waves at acoustic reflection boundaries. Based on the theory of acoustic impedance mismatch, a novel Mo/SiC composite microstructure is designed to strategically establish multiple acoustic reflection boundaries along the lateral acoustic wave leakage paths. Finite element simulations reveal that SiC microstructures effectively suppress vibration amplitudes in non-resonant regions, thereby preventing acoustic wave leakage. By integrating Mo and SiC microstructures, the proposed composite structure significantly enhances the resonator’s acoustic confinement and energy retention capabilities. A resonator incorporating this Mo/SiC composite microstructure is fabricated, achieving a series resonance frequency of 6.488 GHz and a remarkable quality factor (Q) of 310. This represents a substantial 51.2% improvement in Q compared to the basic FBAR, confirming the effectiveness of the proposed design in mitigating lateral acoustic wave leakage and enhancing resonator performance for high-frequency, low-loss applications. This work offers valuable insights into the design of next-generation RF resonators for advanced wireless communication systems. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

17 pages, 5920 KB  
Article
Investigation of the Computational Framework of Leading-Edge Erosion for Wind Turbine Blades
by Hongyu Wang and Bin Chen
Energies 2025, 18(9), 2146; https://doi.org/10.3390/en18092146 - 22 Apr 2025
Cited by 1 | Viewed by 460
Abstract
Non-contact acoustic detection methods for blades have gained significant attention due to their advantages such as easy installation and immunity to mechanical noise interference. Numerical simulation investigations on the aerodynamic noise mechanism of blade erosion provide a theoretical basis for acoustic detection. However, [...] Read more.
Non-contact acoustic detection methods for blades have gained significant attention due to their advantages such as easy installation and immunity to mechanical noise interference. Numerical simulation investigations on the aerodynamic noise mechanism of blade erosion provide a theoretical basis for acoustic detection. However, constructing a three-dimensional erosion model remains a challenge due to the uncertainty in external natural environmental factors. This study investigates a leading-edge erosion calculation model for wind turbine blades subjected to rain erosion. A rain erosion distribution model based on the Weibull distribution of raindrop size is first constructed. Then, the airfoil modification scheme combined with the erosion distribution model is presented to calculate leading-edge erosion mass. Finally, for a sample National Renewable Energy Laboratory 5 MW wind turbine, a three-dimensional erosion model is investigated by analyzing erosion mass related to the parameter of the attack angle. The results indicate that the maximum erosion amount is presented at the pressure surface near the leading edge, and the decrease in erosion on the pressure surface is more rapid than the suction side from the leading edge to the trailing edge. With an increase in the attack angle, the erosion on the pressure side is more severe. Furthermore, a separation vortex appears at the leading edge of the airfoil under computational non-uniform erosion. For aerodynamic noise, a larger sound pressure level with significant fluctuation occurs at 400–1000 Hz. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

14 pages, 1388 KB  
Systematic Review
The Impact of Non-Acoustic Factors on Chinese Community Response to Noise: A Systematic Review
by Wenkai Wang, Hui Ma and Chao Wang
Int. J. Environ. Res. Public Health 2025, 22(4), 651; https://doi.org/10.3390/ijerph22040651 - 21 Apr 2025
Viewed by 579
Abstract
Noise pollution has become one of the most prominent environmental issues in China. Although many studies have summarized the impact of non-acoustic factors on noise annoyance, the unique mechanisms of these factors within the context of Chinese society and culture still require systematic [...] Read more.
Noise pollution has become one of the most prominent environmental issues in China. Although many studies have summarized the impact of non-acoustic factors on noise annoyance, the unique mechanisms of these factors within the context of Chinese society and culture still require systematic investigation. In this study, a systematic review of articles obtained from the CNKI, WanFang, WoS Core Collection, and Scopus databases (up to December 2024) was conducted, and 42 articles were included in a qualitative analysis to summarize the patterns of non-acoustic factors’ influence on the community response of Chinese residents to noise. The results revealed the following: (1) The effects of non-acoustic factors on Chinese residents are significant, with the trends for factors such as noise sensitivity, attitude to noise source, health status, perceived quality of the living environment, and education level influencing the Chinese community response to noise having been basically clarified. However, the influence of the remaining factors and the unique influences of various non-acoustic factors await further quantitative analyses. (2) Interactions among various factors deserve close attention. The interactions between non-acoustic factors, as well as those between non-acoustic factors and sound source types, have been reflected in some studies. These may be significant for explaining the effects of non-acoustic factors and merit further research. (3) Compared to international studies, research on non-acoustic factors in China is relatively limited in quantity and unevenly distributed, which is insufficient to support further quantitative analysis or a detailed exploration of the underlying mechanisms. Therefore, more studies are necessary to support the future rationalization of noise policies and national standards in China. Full article
(This article belongs to the Special Issue Community Response to Environmental Noise)
Show Figures

Figure 1

29 pages, 3169 KB  
Review
Recent Developments in Investigating and Understanding Impact Sound Annoyance—A Literature Review
by Martina Marija Vrhovnik and Rok Prislan
Acoustics 2025, 7(2), 21; https://doi.org/10.3390/acoustics7020021 - 14 Apr 2025
Viewed by 1219
Abstract
Impact sound, particularly prevalent indoors, emerges as a major source of annoyance necessitating a deeper and more comprehensive understanding of its implications. This literature review provides a systematic overview of recent research developments in the study of impact sound annoyance, focusing on advances [...] Read more.
Impact sound, particularly prevalent indoors, emerges as a major source of annoyance necessitating a deeper and more comprehensive understanding of its implications. This literature review provides a systematic overview of recent research developments in the study of impact sound annoyance, focusing on advances in the assessment of impact sound perception through laboratory listening testing and standardization efforts. This review provides a detailed summary of the listening setup, assessment procedure and key findings of each study. The studied correlations between SNQs and annoyance ratings are summarized and key research challenges are highlighted. Among the studies, considerable research effort has focused on the assessment of walking impact sound and the use of spectrum adaptation terms, albeit with inconsistent outcomes. Comparison with the previous literature also shows the influence of spatial and temporal characteristics of impact sound sources on perceived annoyance, with higher spatial fidelity leading to higher annoyance ratings. Furthermore, it has been shown that the consideration of non-acoustic factors such as noise sensitivity and visual features are important for the assessment. This review provides a comprehensive overview of recent advances in the understanding and assessment of impact sound annoyance and provides information for future research directions and standardization efforts. Full article
(This article belongs to the Special Issue Vibration and Noise (2nd Edition))
Show Figures

Figure 1

21 pages, 28617 KB  
Article
The Influence of Different Moisture Contents on the Acoustic Vibration Characteristics of Wood
by Hongru Qiu, Yunqi Cui, Liangping Zhang, Tao Ding and Nanfeng Zhu
Forests 2025, 16(4), 680; https://doi.org/10.3390/f16040680 - 14 Apr 2025
Viewed by 717
Abstract
This study investigates the vibrational and acoustic properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) and Indian rosewood (Dalbergia latifolia Roxb.), two common musical instrument woods, at moisture contents of 2%, 7%, and 12%. The specimens with dimensions of 400mm (longitudinal) [...] Read more.
This study investigates the vibrational and acoustic properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) and Indian rosewood (Dalbergia latifolia Roxb.), two common musical instrument woods, at moisture contents of 2%, 7%, and 12%. The specimens with dimensions of 400mm (longitudinal) × 25 mm (radial) × 10 mm (tangential) were tested under cantilever beam conditions using non-contact magnetic field excitation to generate sinusoidal and pulse signals. Vibration data were collected via acceleration sensors and FFT analyzers. The test method was based on ASTM D6874-12 standard. Results indicate that increasing moisture content reduces acoustic vibration characteristics, with hardwoods exhibiting higher declines than softwoods. From 2% to 12% moisture content, the first-order sound radiation quality factor of Sitka spruce and Indian rosewood decreased by 15.41% and 15.57%, respectively, while the sound conversion rate declined by 41.91% and 43.21%. Increased moisture content lowers first-order and second-order resonance frequencies, amplitude ratios, dynamic elastic modulus, vibration propagation velocity, acoustic radiation quality factor, and acoustic conversion efficiency, while increasing acoustic impedance and the loss factor. With excitation frequency increases from 100 Hz to 1500 Hz, vibration propagation velocity rises slightly, while the loss factor declines. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

9 pages, 3190 KB  
Proceeding Paper
Predicting Hit Songs Using Audio and Visual Features
by Cheng-Yuan Lee and Yi-Ning Tu
Eng. Proc. 2025, 89(1), 43; https://doi.org/10.3390/engproc2025089043 - 28 Mar 2025
Viewed by 1732
Abstract
Factors contributing to a song’s popularity are explored in this study. Recent studies have mainly focused on using acoustic features to identify popular songs. However, we combined audio and visual data to make predictions on 1000 YouTube songs. In total, 1000 songs were [...] Read more.
Factors contributing to a song’s popularity are explored in this study. Recent studies have mainly focused on using acoustic features to identify popular songs. However, we combined audio and visual data to make predictions on 1000 YouTube songs. In total, 1000 songs were grouped into two categories based on YouTube view counts: popular and non-popular. The visual features were extracted using OpenCV. These features were applied using machine learning algorithms, including random forest, support vector machines, decision trees, K-nearest neural networks, and logistic regression. Random forest performed the best, with an accuracy of 82%. Average accuracy increased by 9% in all models when using audio and visual features together. This indicates that visual elements are beneficial for identifying hit songs. Full article
Show Figures

Figure 1

15 pages, 4433 KB  
Article
Wearable 256-Element MUX-Based Linear Array Transducer for Monitoring of Deep Abdominal Muscles
by Daniel Speicher, Tobias Grün, Steffen Weber, Holger Hewener, Stephan Klesy, Schabo Rumanus, Hannah Strohm, Oskar Stamm, Luis Perotti, Steffen H. Tretbar and Marc Fournelle
Appl. Sci. 2025, 15(7), 3600; https://doi.org/10.3390/app15073600 - 25 Mar 2025
Cited by 1 | Viewed by 640
Abstract
Reliable acoustic coupling in a non-handheld mode and reducing the form factor of electronics are specific challenges in making ultrasound wearable. Applications relying on a large field of view (such as tracking of large muscles) induce a need for a large element count [...] Read more.
Reliable acoustic coupling in a non-handheld mode and reducing the form factor of electronics are specific challenges in making ultrasound wearable. Applications relying on a large field of view (such as tracking of large muscles) induce a need for a large element count to achieve high image quality. In our work, we developed a 256-element linear array for imaging of abdominal muscles with four integrated custom-developed 8:32 multiplexer Integrated Circuits (ICs), allowing the array to be driven by our compact 32 ch electronics. The system is optimized for flexible use in R&D applications and allows adjustable transmit voltages (up to +/−100 V), arbitrary delay patterns, and 12-bit analog-to-digital conversion (ADC) with up to 50 MSPS and wireless (21.6 MBit/s) or USB link. Image metrics (SLL, FWHM) were very similar to a fully populated array driven with a 256 ch system. The contrast allowed imaging of lesions down to 7 cm in the phantom. In a first in-vivo study, we demonstrated reliable acoustic contact even during exercise and were able to visualize deep abdominal muscles such as the TrA. In combination with a muscle tracking algorithm, the change of thickness of the TrA during SSE could be monitored, demonstrating the potential of the approach as biofeedback for physiotherapy training. Full article
Show Figures

Figure 1

Back to TopTop